JP3922408B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3922408B2
JP3922408B2 JP30030597A JP30030597A JP3922408B2 JP 3922408 B2 JP3922408 B2 JP 3922408B2 JP 30030597 A JP30030597 A JP 30030597A JP 30030597 A JP30030597 A JP 30030597A JP 3922408 B2 JP3922408 B2 JP 3922408B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust passage
upstream
exhaust
active state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30030597A
Other languages
Japanese (ja)
Other versions
JPH11153021A (en
Inventor
司 窪島
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30030597A priority Critical patent/JP3922408B2/en
Publication of JPH11153021A publication Critical patent/JPH11153021A/en
Application granted granted Critical
Publication of JP3922408B2 publication Critical patent/JP3922408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気中に含まれる窒素酸化物(以下「NOx」と表記する)を複数の触媒で浄化する内燃機関の排気浄化装置に関するものである。
【0002】
【従来の技術】
近年、特開平4−214919号公報に示すように、排気の浄化効率を高めるために、内燃機関の排気管に複数個の触媒を直列に配置することが提案されている。また、ディーゼルエンジン等の酸素過剰雰囲気の排気中でNOxを浄化するためには、触媒にNOxの還元剤として燃料等の炭化水素(以下「HC」と表記する)を供給する必要がある。
【0003】
図2に示すように、触媒におけるHCの反応量は触媒温度の上昇とともに上昇し(図2のB)、触媒温度が高いと、HCの反応量がほぼ100%となる(図2のC)。従って、直列に配置した触媒の最上流からHCを供給する場合には、上流側に配置された触媒の温度が高いと、供給したHCのほぼ全量が上流側の触媒で反応してしまい、下流側の触媒にはHCを供給できない。このため、下流側の触媒ではNOxを浄化することができず、高いNOx浄化率が得られないという問題がある。
【0004】
この問題を解決するために、特開平4−214919号公報では、直列に設置した複数個の触媒のそれぞれの上流に複数個のHC供給装置を設け、それぞれの触媒に対して別々にHCを供給するようにしている。これにより、複数個の全ての触媒にHCを供給することで、高いNOx浄化率が得られるようにしている。
【0005】
【発明が解決しようとする課題】
しかし、上記公報の構成では、複数の触媒のそれぞれにHC供給装置が1つずつ必要になることから構成が複雑になり、コストが高くなるばかりか、装置が大型化して、車載が事実上、困難になるという問題がある。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、簡素な構成で複数個の全ての触媒にHCを供給することを可能とし、高効率でNOxを浄化できる内燃機関の排気浄化装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の排気浄化装置によれば、排気通路に複数の触媒を直列に設置し、燃料噴射制御手段は、各気筒の燃料噴射手段に対し圧縮上死点近傍で機関出力発生のための主噴射指令を出力すると共に、少なくとも1つの気筒の燃料噴射手段に対し機関の膨張行程又は排気行程において前記触媒にHCを供給するための後噴射指令を出力する。この際、複数の触媒の中で最下流の触媒よりも上流側に配置された触媒(以下「上流側触媒」という)の活性状態を上流側触媒活性状態判定手段により判定し、その上流側触媒の活性状態に応じて後噴射時期を後噴射時期補正手段により補正する。これにより、上流側触媒で反応するHC量を制御して、後噴射により供給したHCを下流側触媒まで到達させるようにする。
【0008】
ここで、後噴射時期の補正により上流側触媒で反応するHC量を制御できる理由を説明する。後噴射する燃料(軽油)は、高沸点HCであるが、これがシリンダ内の燃焼熱により改質(熱分解)されて低沸点HCに変化し、この低沸点HCの割合が高くなるほど(つまり改質度合が高くなるほど)、触媒上で反応しやすくなる。図3に示すように、後噴射燃料(HC)の改質度合は後噴射時のシリンダ内の温度によって変化し、後噴射時のシリンダ内の温度は後噴射時期によって変化するため、後噴射時期を変えれば、後噴射燃料(HC)の改質度合を変えることができる。
【0009】
このように、後噴射燃料の改質度合の変化によりHCの反応性が変わるため、上流側触媒で反応するHC量を制御することが可能となる。このため、上流側触媒の活性状態に応じて後噴射時期を補正することで、下流側触媒にもHCを行き渡らせることができ、複数の触媒を全て有効に使用してNOxを効率良く浄化することができ、高いNOx浄化率を得ることができる。しかも、後噴射により複数の触媒にHCを供給するため、前記公知例のように触媒の個数と同数のHC供給装置を設ける必要がなく、装置の構成を簡素化できて、装置を小型化・低コスト化することができ、車載が容易である。
【0010】
この場合、請求項2のように、上流側触媒活性状態判定手段で判定した上流側触媒の活性状態が低いほど、後噴射時期を進角補正し、上流側触媒の活性状態が高いほど、後噴射時期を遅角補正するように構成すると良い。すなわち、上流側触媒の温度が高く活性状態が高い場合(図2のC)には、後噴射時期を遅角補正すると、後噴射時のシリンダ内の温度が低くなるため、HCの改質度合が小さく(炭素数が大きく)なり、高沸点HCの割合が多いHCを触媒上流から供給できる。高沸点HCは反応性が低く、高い温度でもあまり反応しないため、上流側触媒の温度が高く活性状態が高くても、そこでのHC反応量を抑制することが可能となり、下流触媒にもHCを行き渡らせることができる。
【0011】
一方、上流側触媒の温度が低く活性状態が低い場合(図2のA及びBの低温側)には、後噴射時期を進角補正すると、後噴射時のシリンダ内の温度が高くなるため、HCの改質度が大きく(炭素数が小さく)なり、低沸点HCの割合が多いHCを触媒上流から供給できる。低沸点HCは反応性が高く、比較的低い温度でも反応するため、上流側触媒の温度が低く活性状態が低くても、NOxを浄化することが可能となる。また、低温時(図2のA及びBの低温側)には触媒におけるHCの浄化率が比較的低いため、上流側触媒で反応しなかったHCが下流側触媒に供給される。これにより、複数個の触媒を全て有効に使用してNOxを効率良く浄化することができ、高いNOx浄化率を得ることができる。
【0012】
また、請求項3では、排気通路に直列に配設された複数の触媒の間に、主排気通路と、HC吸着材を有するバイパス排気通路を並列に設けると共に、この並列通路よりも上流側に配置された触媒の活性状態を上流側触媒活性状態判定手段により判定して、その判定結果に応じて両排気通路を排気通路切換手段により切り換えるようにしても良い。このようにすれば、上流側触媒の活性状態が高く、後噴射したHCが上流側触媒で全量反応してしまう場合でも、排気の流れを、HC吸着材を有するバイパス排気通路に切り換えることで、それまでにHC吸着材に吸着させておいたHCを脱離させて下流側の触媒に供給することができる。従って、上流側触媒の活性状態が高くなっても、下流側の触媒にHCを供給することができ、全ての触媒を有効に使うことができて、高いNOx浄化率を得ることができる。
【0013】
この場合、請求項のように、上流側触媒の活性状態がNOx浄化率の高い所定範囲内(図2のB)であるか否かによって排気通路切換手段を切り換えるようにしても良い。例えば、上流側触媒の活性状態が所定範囲よりも低い場合(図2のA)には、HCの浄化率が低いため、供給したHCが未反応のまま上流側触媒を通過してしまう。そこで、この状態では、排気をバイパス排気通路側へ流し、通過したHCをHC吸着材で吸着するようにする。つまり、上流側触媒の活性状態が所定範囲よりも低い場合には、下流側触媒の活性状態も所定範囲よりも低いと推定し、上流側触媒を通過した排気中のHCをバイパス排気通路内のHC吸着材で吸着することで、その後のNOxの浄化のためにHCを蓄えるものである。これにより、後噴射量を低減できると共に、HCが下流側触媒をすり抜けて大気中に排出されることを防止でき、大気中へのHC排出量を大幅に低減することができる。
【0014】
また、上流側触媒の活性状態が所定範囲内(図2のB)にある場合には、供給したHCの一部が未反応のまま上流側触媒を通過するが、排気温度が比較的高いため、下流側触媒の温度も高くなり、下流側触媒でもNOxを浄化可能となる。そこで、この状態では、排気の流れを主排気通路側に切り換えて、上流側触媒を通過したHCを主排気通路を通して下流側触媒へ供給することで、下流側触媒でもNOxを浄化することができる。
【0015】
また、上流側触媒の活性状態が所定範囲よりも高い場合(図2のC)には、上流側触媒におけるHC浄化率がほぼ100%となるため、後噴射により供給したHCは、全て上流側触媒で反応してしまい、下流側触媒には供給されない。そこで、この状態では、高温の排気をバイパス排気通路側へ流して、HC吸着材の温度を上昇させることで、それまでにHC吸着材に吸着させておいたHCを脱離させて下流側触媒へ供給し、下流側触媒でNOxを浄化する。
【0016】
このように、上流側触媒の活性状態が所定範囲内(図2のB)であるか否かによって排気通路を切り換えるようにすれば、上流側触媒の活性状態が変化しても下流側触媒へHCを確実に供給することができ、全ての触媒を有効に使用して、高いNOx浄化率を得ることができる。
【0017】
また、請求項のように、上流側触媒の活性状態に加え、下流側触媒の活性状態を判定し、両者をもとに排気通路切換手段を次のように切り換えるようにしても良い。
【0018】
(1)上流側触媒の活性状態が所定範囲よりも低い場合(図2のA)
この場合には、上流側触媒で未反応のHCが上流側触媒を通過する。その際、下流側触媒の活性状態が所定範囲内(図2のB)にあり、下流側触媒において高いNOx浄化率が得られる場合には、排気を主排気通路へ流し、HCを直接下流側触媒へ供給してNOxを浄化させる。一方、下流側触媒の活性状態が所定範囲内になく(図2のAとC)、下流側触媒において高いNOx浄化率が得られない場合には、下流側触媒でHCを有効に利用できないため、排気をバイパス排気通路へ流し、排気中のHCをHC吸着材に吸着させる。
【0019】
(2)上流側触媒の活性状態が所定範囲内にある場合(図2のB)
この場合には、供給したHCの多くが上流側触媒で反応するため、下流側触媒の活性状態が所定範囲内(図2のB)にあっても、下流側触媒では、HCが不足してNOx浄化率が低下する。そこで、この場合には、排気をバイパス排気通路へ流す。これにより、HC吸着材に比較的高温の排気が通過するため、それまでにHC吸着材に吸着させておいたHCが脱離し、下流側触媒へと供給されるため、下流側触媒にも十分な量のHCが供給されてNOxが浄化される。一方、下流側触媒の活性状態が所定範囲内になく(図2のAとC)、下流側触媒において高いNOx浄化率が得られない場合には、下流側触媒では、HCを有効に利用できないため、排気を主排気通路へ流すことで、バイパス排気通路内のHC吸着材からのHCの脱離を防ぐ。
【0020】
(3)上流側触媒の活性状態が所定範囲よりも高い場合(図2のC)
この場合には、供給したHCのほぼ全てが上流側触媒で反応するため、上流側触媒の活性状態が所定範囲内にある場合と同様に、下流側触媒の活性状態が所定範囲内であるか否かによって排気通路を切り換える。
【0021】
以上のように、上流側触媒の活性状態と下流側触媒の活性状態に応じて排気通路を切り換えることで、後噴射により供給したHCを複数の触媒それぞれにおいて極めて効率良く利用でき、NOx浄化率を高めることができる。
【0022】
ところで、主排気通路に排気を流す時間が長くなると、バイパス排気通路内のHC吸着材の温度が放熱のために低下する。この状態で、排気の流れを主排気通路からバイパス排気通路側へ急に切り換えると、冷えたHC吸着材を排気が通過するため、排気温度が下がる。そのため、下流側触媒の温度が低下して、NOx浄化率が低下する場合がある。
【0023】
この対策として、請求項のように、排気の流れを主排気通路からバイパス排気通路に切り換える際に、暫くの期間は、排気通路切換手段をバイパス排気通路側と主排気通路側とに交互に切り換える動作を繰り返すようにしても良い。このようにすれば、排気の流れを主排気通路からバイパス排気通路に切り換える際に、暫くの期間は、高温の排気が間欠的に主排気通路を通って下流側触媒に供給されるため、下流側触媒の急激な温度低下を防ぐことができ、排気通路切換直後から下流側触媒でも高い浄化率でNOxを浄化することができる。
【0024】
この場合、請求項のように、排気の流れを主排気通路からバイパス排気通路に切り換える際に、上流側触媒の活性状態の変化速度に応じて排気通路切換手段の切換周波数と切換間隔の時間比率の少なくとも一方を変化させるようにしても良い。すなわち、上流側触媒の活性状態の変化が緩やかな時ほど(つまり排気温度の変化が緩やかな時ほど)、排気の流れを主排気通路からバイパス排気通路に急激に切り換えると、下流側触媒に流入する排気の温度低下によるNOx浄化率の低下が大きくなりやすい。この場合には、排気通路切換手段の切換周波数を大きくして、バイパス排気通路側から下流側触媒に低温の排気を供給する時間間隔を短くしたり、或は、主排気通路側を流す排気の割合を多くするように切換間隔の時間比率を変更すれば、下流側触媒に流入する排気の温度低下を抑えることができて、下流側触媒のNOx浄化率の低下をより確実に防ぐことができる。
【0025】
また、請求項のように、直列に設置した複数の触媒にそれぞれHC吸着材を設け、そのHC吸着能力を下流側のHC吸着材ほど大きくしても良い。すなわち、触媒高活性時に、直列に設置した触媒のうち上流側の触媒には、主に後噴射によりHCを供給し、一方、下流側の触媒には、主にHC吸着手段にて予め吸着していたHCを脱離させることでHCを供給する。これにより、触媒高活性時に後噴射により供給したHCが上流側の触媒で消費されて下流側の触媒へ到達しにくいという事情があっても、HC吸着手段からHCを脱離させて下流側の触媒にHCを供給することができるため、触媒高活性時に下流側触媒においてHCが不足してNOxを浄化できなくなることを防止することができ、浄化率向上に極めて有効である。
【0026】
この場合、上流側のHC吸着手段のHC吸着能力を大きくすると、後噴射で供給したHCの多くが上流側のHC吸着手段で吸着されてしまい、下流側のHC吸着手段へ到達するHCが少なくなってしまう。そこで、請求項では、HC吸着手段のHC吸着能力が上流側のものより下流側のものの方が大きくなるように構成することで、後噴射で供給したHCを下流側にも十分に行き渡らせて、上流側、下流側の双方のHC吸着手段に十分な量のHCを吸着させる。その後、触媒の活性状態が高くなった時に、各HC吸着手段からHCが脱離して下流側の触媒にも供給されるため、下流側の触媒も、上流側の触媒と同じように有効に使用してNOxを浄化することができ、NOx浄化率を大きく向上することができる。
【0027】
更に、請求項のように、複数の触媒の中で最下流の触媒よりも上流側に設置された触媒(以下「上流側触媒」という)の活性状態を上流側触媒活性状態判定手段により判定し、上流側触媒の活性状態が低く上流側触媒におけるNOx浄化率が低い場合には後噴射指令を所定期間だけ出力するようにしても良い。すなわち、上流側触媒の活性状態が低くNOx浄化率が低い場合には、上流側触媒及び下流側触媒のHC吸着手段にHCを吸着させて、その後の触媒高活性時に各HC吸着手段からHCを脱離させてNOx浄化率を向上することを狙う。但し、HC吸着手段のHC吸着量は有限であるため、過剰のHC供給はNOx浄化率向上につながらず、燃費悪化を招いてしまう。そこで、所定期間だけ後噴射を実施して有効なHC量を吸着した後は後噴射を中止することで、後噴射による燃料消費を必要最小限に抑えて、低燃費の要求を満たす。
【0028】
【発明の実施の形態】
[実施形態(1)]
以下、本発明をディーゼルエンジンに適用した実施形態(1)を図1乃至図8に基づいて説明する。
【0029】
まず、図1に基づいてエンジン制御システム全体の構成を説明する。内燃機関であるディーゼルエンジン10の各気筒には、吸気管11を通して吸入される吸入空気が吸気マニホールド13を通して吸入される。ディーゼルエンジン10の各気筒には、電磁弁式の燃料噴射弁14(燃料噴射手段)が取り付けられ、各燃料噴射弁14には、高圧燃料ポンプ15から高圧に蓄圧された燃料がコモンレール16を通して分配される。このコモンレール16には、燃料噴射弁14に分配する燃料の圧力(コモンレール燃圧)を検出する燃圧センサ12が取り付けられている。
【0030】
燃料噴射弁14は、図4に示すように、圧縮上死点近傍でエンジン出力発生のための主噴射を行うと共に、この主噴射に先立ち、パイロット噴射を行って少量の燃料を噴射し、この燃料が着火状態になったところで、主噴射を行うことで、燃焼初期の予混合燃焼を減少させてNOx排出量を低減させる。更に、少なくとも1つの気筒の燃料噴射弁14は、膨張行程又は排気行程において後述するNOx触媒20,21にHCを供給するための後噴射を実行する。
【0031】
ディーゼルエンジン10の各気筒から排出される排気ガスは、排気マニホールド17を通して1本の排気管18(排気通路)に排出され、この排気管18の途中には、2個のNOx触媒19,20が直列に配設されている。各NOx触媒19,20は、セラミックや金属等の担体の表面に、酸素過剰雰囲気中でも還元剤(HC)の存在下でNOxを還元浄化可能な触媒成分(例えばCuーゼオライトやPt−ゼオライト等)を担持したものである。
【0032】
この場合、担持されたゼオライトは低温時(例えば200℃以下)に排気中のHCを吸着し、高温時(例えば200℃以上)に吸着したHCを脱離する炭化水素吸着手段の役割を果たし、ゼオライト量が多いほどHC吸着能力が大きくなる。本実施形態(1)では、上流側のNOx触媒19と比較して下流側のNOx触媒20のゼオライトの量を増やして(例えば1.5倍)担持する。
【0033】
このNOx触媒19,20のNOx浄化特性は、図2に示すように、所定温度範囲BにおいてNOx浄化率が高く、これ以外の温度範囲A,CではNOx浄化率が極端に低下する。また、NOx触媒19,20のHC浄化特性は、低温領域Aでは、HCはほとんど反応せずに通り抜ける。更に、NOx浄化率が高くなる所定温度範囲Bでは、温度が高くなるほどHC浄化率が高くなり、高温領域Cでは、HC浄化率がほぼ100%となる。
【0034】
2個のNOx触媒19,20の間には排気温度センサ21が設置されている。この排気温度センサ21は、上流側NOx触媒19の流出ガス温度を検出することで、上流側NOx触媒19の活性状態(触媒温度)を判定する上流側触媒活性状態判定手段としての役割を果たす。
【0035】
この排気温度センサ21の出力信号は、エンジン電子制御回路(以下「ECU」と表記する)22に入力される。このECU22は、エンジン回転数センサ23やアクセルセンサ24等の出力信号を読み込んでディーゼルエンジン10の運転状態を検出し、パイロット噴射、主噴射、後噴射の噴射量と噴射時期を演算し、特許請求の範囲でいう燃料噴射制御手段としての役割を果たすと共に、排気温度センサ21で検出した排気温度、すなわち上流側NOx触媒19の温度(以下「上流側触媒温度」という)に応じて後噴射時期を補正する。
【0036】
この場合、上流側触媒温度が低い場合(図2のA)には、所定期間だけ後噴射を行う。すなわち、温度が高いシリンダ内へ燃料を後噴射して十分にガス化したHCをNOx触媒19,20へ供給する。このHCは、活性が低い上流側NOx触媒19ではほとんど反応せず、その一部が上流側NOx触媒19のHC吸着手段(ゼオライト)に吸着されるが、ガス化しているためその吸着量は少なく、多くが下流側NOx触媒20のHC吸着手段へ到達する。下流側NOx触媒20のHC吸着手段はHC吸着能力が大きいため、到達したHCの大部分がそこで吸着される。こうして下流側NOx触媒20のHC吸着手段に吸着されたHCは、その後の触媒活性時に脱離して下流側NOx触媒20へと供給されてNOx浄化に有効に使われる。その際にHC吸着手段におけるHC吸着量には上限があり、また長時間にわたる多量の後噴射は燃費悪化につながるため、これを回避すべく、所定期間経過したら後噴射を中止する。
【0037】
一方、上流側触媒温度が比較的高い場合(図2のB、C)には、上流側触媒温度が低いほど、後噴射時期を遅角補正する。すなわち、上流側触媒温度が高い場合には、供給したHCのほぼ全量が上流側NOx触媒19で反応するため、下流側NOx触媒20にはHCが行き渡らず、下流側NOx触媒20ではNOxを浄化できなくなってしまう。
【0038】
これを防ぐために、上流側触媒温度が高い場合には、後噴射時期を遅角して、後噴射時のシリンダ内の温度を低くし、それによってHCの改質度合を低下させて、高沸点HCの割合が多いHCを両NOx触媒19,20に供給する。高沸点HCは反応性が低く、高い温度でもあまり反応しないため、上流側触媒温度が高く活性状態が高くても、上流側NOx触媒19でのHC反応量を抑制することが可能となり、下流側NOx触媒20にもHCを供給することができる。
【0039】
一方、上流側触媒温度が比較的低い場合(図2のB、特に低温側)には、後噴射時期を進角して、後噴射時のシリンダ内の温度を高くし、それによってHCの改質度合を大きくして、低沸点HCの割合が多いHCを両NOx触媒19,20に供給する。低沸点HCは反応性が高く、比較的低い温度でも反応するため、上流側触媒温度が低く活性状態が低くても、NOxを浄化することが可能となる。また、低温時(図2のB、特に低温側)ではHC浄化率が比較的低いため、上流側NOx触媒19で反応しなかったHCが下流側NOx触媒20へ供給される。これにより、上流側と下流側の2つのNOx触媒19,20を有効に使用してNOxを効率良く浄化することができ、高いNOx浄化率を得ることができる。
【0040】
以上説明したNOx浄化制御は、図5に示す後噴射時期補正プログラムにより実行される。本プログラムは、ECU22にて所定時間毎(例えば1秒毎)に実行され、特許請求の範囲でいう後噴射時期補正手段としての役割を果たす。本プログラムが起動されると、まず、ステップ101において、排気温度センサ21の出力信号を読み込む。この場合、排気温度センサ21は上流側NOx触媒19の下流に設けられているため、排気温度センサ21で検出する温度は、上流側NOx触媒19の流出ガス温度であり、ひいては上流側NOx触媒19の活性状態を表す上流側触媒温度Tである。
【0041】
次のステップ102で、この上流側触媒温度Tが含まれる領域が図2のA、B、Cのいずれに該当するか判定する。例えば、上流側触媒温度Tが200℃以下ならばAと判定し、上流側触媒温度Tが200〜300℃ならばBと判定し、上流側触媒温度Tが300℃以上ならばCと判定する。
【0042】
そして、上記ステップ102で判定した領域がAならば、ステップ103にて後噴射を実施する。この際の後噴射時期は、後噴射燃料がシリンダ内で燃焼しない時期に設定され、各センサの出力をもとにECU22にて決定する。ステップ103で後噴射を開始した後、ステップ104にて所定時間が経過したか否かを判定し、経過していなければ、経過するまで待機し、経過した時点で、ステップ105へ進み、後噴射を中止する。この場合の所定時間は、例えばHC吸着手段における飽和吸着量とエンジン運転条件、後噴射量等をもとにECU22にて決定する。また、簡易的に一定値としてもよい。
【0043】
一方、上記ステップ102で判定した領域がB或はCならば、ステップ106へ進み、この上流側触媒温度Tを設定温度T1と比較する。ここで、設定温度T1は、図2のBにおいてNOx浄化率がピークとなる温度であり、例えば250〜500℃の間に設定されている。もし、上流側触媒温度Tが設定温度T1よりも高ければ、ステップ107に進み、上流側触媒温度Tに応じて後噴射時期をマップ等により遅角補正し、次のステップ108で、補正した後噴射時期で後噴射を実施する。その際の後噴射時期の補正量は、図6に示すように、上流側触媒温度Tが高いほど遅角量を大きくする。これにより、上流側触媒温度Tが高いほどHCの改質度合を小さくして反応性が低いHCを得ることで、図7に示すように、上流側NOx触媒19におけるHCの反応による減少量を少なくでき、下流側NOx触媒20にも十分な量のHCを供給できる。この結果、下流側NOx触媒20でも十分にNOxを浄化できるようになり、高いNOx浄化率を得ることができる。
【0044】
一方、上流側触媒温度Tが設定温度T1以下であれば、ステップ109に進み、上流側触媒温度に応じて後噴射時期をマップ等により進角補正し、続くステップ108で、補正した後噴射時期で後噴射を実施する。その際の後噴射時期の補正量は、図6に示すように、上流側触媒温度Tが低いほど進角量を大きくする。これにより、上流側触媒温度Tが低いほどHCの改質度合を大きくして反応性が高いHCを得ることで、図8に示すように、上流側と下流側の両NOx触媒19,20を有効に使用してNOxを効率良く浄化することができ、高いNOx浄化率を得ることができる。
【0045】
以上説明した実施形態(1)では、図6のマップに従って、上流側触媒温度に応じて後噴射時期を連続的に補正するようにしたが、後噴射時期の補正量を上流側触媒温度に応じて複数段階に切り換えるようにしても良い。また、シリンダ内の温度はクランク角度が同じでも、エンジン運転条件(エンジン回転数と負荷)により異なるため、エンジン運転条件に応じて後噴射時期や後噴射時期の補正量を異ならせるようにしても良い。
【0046】
また、本実施形態(1)では、上流側NOx触媒19の下流に設けた排気温度センサ21により上流側NOx触媒19の流出ガス温度を検出することで、上流側NOx触媒19の活性状態(上流側触媒温度)を評価するようにしたが、この代わりに、上流側NOx触媒19の流入ガス温度と流出ガス温度を検出して両者から上流側NOx触媒19の活性状態(上流側触媒温度)を推定しても良い。その際に、上流側NOx触媒19の流入ガス温度をエンジン運転条件から算出するようにしても良い。また、上流側NOx触媒19自体に温度センサを設けて、上流側NOx触媒19の活性状態(上流側触媒温度)を直接検出するようにしても良い。
【0047】
尚、本実施形態(1)では、排気管18に2個のNOx触媒を直列に設けたが、3個以上のNOx触媒を直列に設けるようにしても良い。
【0048】
[実施形態(2)]
図9に本発明の実施形態(2)の構成を示す。以下、図1に示す実施形態(1)と異なる部分についてのみ説明する。
【0049】
本実施形態(2)では、上流側触媒19と下流側触媒20との間に、HC吸着手段としてHC吸着材40を設置している。すなわち、前記実施形態(1)では下流側触媒20におけるHC吸着手段は下流側触媒20に担持したゼオライト層のみから構成されたが、本実施形態(2)では、下流側触媒20のHC吸着手段におけるHC吸着量を更に増やすためにHC吸着材40を設置している。このHC吸着材40は、セラミックや金属等の担体の表面に、例えばゼオライト等の多孔材質を担持したものであり、低温時(例えば200℃以下)に排気中のHCを吸着し、高温時(例えば200℃以上)に吸着したHCを脱離する。
【0050】
以上の構成の本実施形態(2)を前記実施形態(1)と同様に制御することで、前記実施形態(1)で説明したのと同等以上の効果を得ることができる。
尚、NOx触媒19,20、HC吸着材40のうち複数のものを同一ケース内に収納しても構わない。
【0051】
[実施形態(3)]
以下、図10乃至図12を用いて本発明の実施形態(3)を説明する。この実施形態(3)では、排気管18に直列に配設された2個のNOx触媒19,20の間に主排気通路31とバイパス排気通路32を並列に設け、バイパス排気通路32の途中に、排気中のHCを吸着するHC吸着材33を配設している。このHC吸着材33は、セラミックや金属等の担体の表面に、例えばゼオライト等の多孔質材を担持したものであり、低温時(例えば200℃以下)に排気中のHCを吸着し、高温時(例えば200℃以上)に吸着したHCを脱離する。
【0052】
一方、主排気通路31とバイパス排気通路32との上流側分岐部に、排気通路切換バルブ34が設けられ、この排気通路切換バルブ34の切り換えにより排気の流れを主排気通路31とバイパス排気通路32のいずれかに選択的に切り換えるようになっている。この排気通路切換バルブ34は、駆動源としてモータ又は負圧を用い、ECU22によって制御される。上流側NOx触媒19と排気通路切換バルブ34との間に排気温度センサ21(上流側触媒活性状態判定手段)が設置されている。その他のシステム構成は、前述した実施形態(1)と同じである。
【0053】
本実施形態(3)においても、前記実施形態(3)と同様に、エンジン出力発生のための主燃料噴射の後の膨張行程又は排気行程においてNOx触媒19,20に還元剤としてのHCを供給するための後噴射を行うが、その際に、上流側NOx触媒19の活性状態(上流側触媒温度)に応じて排気の流れを主排気通路31とバイパス排気通路32のいずれかに選択的に切り換える。
【0054】
すなわち、上流側触媒温度(活性状態)が所定範囲よりも低い場合(図2のA)には、HCの浄化率が低いため、供給したHCが未反応のまま上流側NOx触媒19を通過してしまう。そこで、この状態では、排気をバイパス排気通路32側へ流し、通過したHCをHC吸着材33で吸着するようにする。つまり、上流側NOx触媒19の活性状態が所定範囲よりも低い場合には、下流側NOx触媒20の活性状態も所定範囲よりも低いと推定し、上流側NOx触媒19を通過した排気中のHCをバイパス排気通路32内のHC吸着材33で吸着することで、その後のNOxの浄化のためにHCを蓄えるものである。特に、コモンレール式ディーゼルエンジンの後噴射で得られたHCは、十分にガス化しているため、上流側NOx触媒19を比較的通過しやすい。従って、このHCをHC吸着材33に吸着させれば、HC有効利用とHC排出量低減の効果が大きい。
【0055】
また、上流側NOx触媒19の活性状態が所定範囲内(図2のB)にある場合には、供給したHCの一部が未反応のまま上流側NOx触媒19を通過するが、排気温度が比較的高いため、下流側NOx触媒20の温度も高くなり、下流側NOx触媒20でもNOxを浄化可能となる。そこで、この状態では、排気の流れを主排気通路31側に切り換えて、上流側NOx触媒19を通過したHCを主排気通路31を通して下流側NOx触媒20に供給することで、下流側NOx触媒20でもNOxを浄化する。
【0056】
また、上流側NOx触媒19の活性状態が所定範囲よりも高い場合(図2のC)には、上流側NOx触媒19におけるHC浄化率がほぼ100%となるため、後噴射により供給したHCは、全て上流側NOx触媒19で反応してしまい、下流側NOx触媒20には供給されない。そこで、この状態では、高温の排気をバイパス排気通路32側へ流して、HC吸着材33の温度を上昇させることで、それまでにHC吸着材33に吸着させておいたHCを脱離させて下流側NOx触媒20へ供給し、下流側NOx触媒20でNOxを浄化する。
【0057】
以上説明したNOx浄化制御は、図11に示す排気通路切換制御プログラムにより実行される。本プログラムは、ECU22にて所定時間毎(例えば1秒毎)に実行され、特許請求の範囲でいう制御手段としての役割を果たす。本プログラムが起動されると、まず、ステップ201で、排気温度センサ21で検出した上流側触媒温度T(上流側NOx触媒19の活性状態)を読み込み、次のステップ202で、この上流側触媒温度Tが含まれる活性状態の領域が図2のA,B,Cのいずれに該当するか判定する。例えば、上流側触媒温度Tが200℃以下ならばAと判定し、上流側触媒温度Tが200〜300℃ならばBと判定し、上流側触媒温度Tが300℃以上ならばCと判定する。
【0058】
そして、上記ステップ202で判定した領域がA又はCならば、ステップ203に進み、排気通路切換バルブ34をバイパス排気通路32側に排気を流すように切り換える。すなわち、上流側触媒温度Tが低温の領域Aでは、HCが未反応のまま上流側NOx触媒19を通過し、且つ下流側NOx触媒20も温度が低く低活性状態であるため、上流側NOx触媒19から流出する排気をバイパス排気通路32のHC吸着材33に流すことで、排気中のHCをHC吸着材33に吸着させる。また、上流側触媒温度Tが高温の領域Cでは、供給したHCが全て上流側NOx触媒19で反応してしまうため、高温の排気をバイパス排気通路32側へ流して、HC吸着材33の温度を上昇させることで、それまでにHC吸着材33に吸着させておいたHCを脱離させて下流側NOx触媒20へ供給し、下流側NOx触媒20でNOxを浄化する。
【0059】
一方、上記ステップ202で判定した領域がBならば、ステップ204に進み、排気通路切換バルブ34を主排気通路31側に排気を流すように切り換える。すなわち、領域Bでは、供給したHCの一部が未反応のまま上流側NOx触媒19を通過するが、下流側NOx触媒20もNOx浄化可能な状態になっているため、排気の流れを主排気通路31側に切り換えて、上流側NOx触媒19を通過したHCを下流側NOx触媒20に供給することで、下流側NOx触媒20でもNOxを浄化する。
【0060】
以上説明した排気通路切換制御では、例えば、図12に示すように、上流側NOx触媒19の活性状態(上流側触媒温度)がA→B→Cの順に変化する場合、最初の低温の領域Aでは、排気をバイパス排気通路32側へ流し、通過したHCをHC吸着材33で吸着する。その後、領域Bになると、排気の流れを主排気通路31側に切り換えて、上流側NOx触媒19を通過したHCを主排気通路31を通して下流側NOx触媒20に供給する。これにより、上流側NOx触媒19と下流側NOx触媒20の双方でNOxを浄化する。この際、以前の領域AでHC吸着材33に吸着させたHCは保持される。
【0061】
その後、高温の領域Cになると、排気をバイパス排気通路32側へ流して、HC吸着材33の温度を上昇させることで、それまでにHC吸着材33に吸着させておいたHCを脱離させて下流側NOx触媒20に供給し、下流側NOx触媒20でNOxを浄化する。この際、従来は、下流側NOx触媒20に供給するHCが不足して、下流側NOx触媒20ではほとんどNOxを浄化できなかったが、本実施形態(3)では、HC吸着材33からHCを下流側NOx触媒20に供給できるため、下流側NOx触媒20でNOxを浄化することができ、従来と比較してNOx浄化率を向上できる。
【0062】
以上説明した実施形態(3)によれば、上流側NOx触媒19の活性状態(上流側触媒温度)に応じて排気通路を切り換えるので、上流側NOx触媒19の活性状態が高い場合でも、下流側NOx触媒20にHCを確実に供給することができ、上流側と下流側の2つのNOx触媒19,20を有効に使用して、高いNOx浄化率を得ることができる。しかも、上流側NOx触媒19がNOxを高効率で浄化できない低温状態である時には、上流側NOx触媒19を通過した排気中のHCをHC吸着材33で吸着して、その後のNOxの浄化のためにHCを蓄えることができるので、後噴射量を低減できて燃費を節減できると共に、HCが下流側NOx触媒20をすり抜けて大気中に排出されることを防止でき、大気中へのHC排出量を大幅に低減することができる。
【0063】
尚、本実施形態(3)では、NOx触媒に還元剤(HC)を供給する還元剤供給手段として、燃料噴射弁14の後噴射を用いたが、これに代えて、HC供給ノズルを上流側NOx触媒19の上流側の排気管18に取り付け、このHC供給ノズルから排気管18内にHCを供給するようにしても良い。また、本実施形態(3)においても、排気管に3個以上のNOx触媒を直列に設けるようにしても良い。
【0064】
[実施形態(4)]
図13及び図14に示す本発明の実施形態(4)では、前記実施形態(3)のシステム構成に加え、下流側NOx触媒20の下流側に、下流側触媒活性状態判定手段として排気温度センサ35を設けている。その他のシステム構成は、前記実施形態(3)と同じである。
【0065】
本実施形態(4)では、ECU22は、上流側と下流側の2つの排気温度センサ21,35の出力信号に基づいて排気通路切換バルブ34を次のように制御する。
【0066】
(1)上流側NOx触媒19の活性状態が所定範囲よりも低い場合(図2のA)の制御方法は次の通りである。
この場合には、上流側NOx触媒19で未反応のHCが上流側NOx触媒19を通過する。その際、下流側NOx触媒20の活性状態が所定範囲内(図2のB)にあり、下流側NOx触媒20で高いNOx浄化率が得られる場合には、排気を主排気通路31に流し、HCを直接下流側NOx触媒20へ供給してNOxを浄化させる。一方、下流側NOx触媒20の活性状態が所定範囲内になく(図2のAとC)、下流側NOx触媒20で高いNOx浄化率が得られない場合には、下流側NOx触媒20でHCを有効に利用できないため、排気をバイパス排気通路32に流し、HCをHC吸着材33に吸着させる。
【0067】
(2)上流側NOx触媒19の活性状態が所定範囲内にある場合(図2のB)の制御方法は次の通りである。
この場合には、供給したHCの多くが上流側NOx触媒19で反応するため、下流側NOx触媒20の活性状態が所定範囲内(図2のB)にあっても、下流側NOx触媒20では、HCが不足してNOx浄化率が低下する。そこで、この場合には、排気をバイパス排気通路32に流す。これにより、HC吸着材33に比較的高温の排気が通過するため、それまでにHC吸着材33に吸着させておいたHCが脱離し、下流側NOx触媒20へと供給される。このため、下流側NOx触媒20にも十分の量のHCが供給されてNOxが浄化される。一方、下流側NOx触媒20の活性状態が所定範囲内になく(図2のAとC)、下流側NOx触媒20で高いNOx浄化率が得られない場合には、下流側NOx触媒20では、HCを有効に利用できないため、排気を主排気通路31に流すことで、バイパス排気通路32内のHC吸着材33からのHCの脱離を防ぐ。
【0068】
(3)上流側NOx触媒19の活性状態が所定範囲よりも高い場合(図2のC)の制御方法は次の通りである。
この場合には、供給したHCのほぼ全てが上流側NOx触媒19で反応するため、上流側NOx触媒19の活性状態が所定範囲内にある場合と同様に、下流側NOx触媒20の活性状態が所定範囲内であるか否かによって排気通路を切り換える。
【0069】
以上説明したNOx浄化制御は、ECU22にて所定時間毎(例えば1秒毎)に図14の排気通路切換制御プログラムに従って実行される。本プログラムが起動されると、まず、ステップ301で、2つの排気温度センサ21,35で検出した上流側触媒温度Ta(上流側NOx触媒19の活性状態)と下流側触媒温度Tb(下流側NOx触媒20の活性状態)を読み込む。この後、ステップ302で、上流側触媒温度Taが領域Aに含まれるか否かを判定する。
【0070】
上流側触媒温度Taが領域Aに含まれる場合(つまり上流側NOx触媒19の活性状態が低い場合)には、ステップ303に進み、下流側触媒温度Tbが領域Bに含まれるか否かを判定する。下流側触媒温度Tbが領域Bに含まれる場合には、下流側NOx触媒20の活性状態が所定の範囲内にあり、下流側NOx触媒20のNOx浄化率が高いため、ステップ306に進み、排気通路切換バルブ34を主排気通路31側に排気を流すように切り換え、未反応のまま上流側NOx触媒19を通過したHCを下流側NOx触媒20に供給する。
【0071】
一方、ステップ303で、下流側触媒温度Tbが領域Bに含まれないと判定した場合には、下流側NOx触媒20の活性状態が所定の範囲内になく、下流側NOx触媒20のNOx浄化率があまり高くないため、HCの有効利用の観点から、ステップ305に進み、排気通路切換バルブ34をバイパス排気通路32側に排気を流すように切り換え、上流側NOx触媒19を通過したHCをHC吸着材33に吸着させる。
【0072】
また、前述したステップ302において、上流側触媒温度Taが領域Aに含まれないと判定された場合、上流側NOx触媒19が活性化しているため、上流側NOx触媒19を通過するHCは比較的少ない。この場合には、ステップ304に進み、下流側触媒温度Tbが領域Bに含まれるか否かを判定し、領域Bに含まれる場合は、下流側NOx触媒20の活性状態が所定の範囲内にあり、下流側NOx触媒20のNOx浄化率が高いため、ステップ305に進み、排気通路切換バルブ34をバイパス排気通路32側に排気を流すように切り換える。これにより、高温の排気をバイパス排気通路32側へ流して、HC吸着材33の温度を上昇させることで、それまでにHC吸着材33に吸着させておいたHCを脱離させて下流側NOx触媒20へ供給し、下流側NOx触媒20でNOxを浄化する。
【0073】
一方、ステップ304において、下流側触媒温度Tbが領域Bに含まれないと判定した場合には、下流側NOx触媒20の活性状態が所定範囲内になく、下流側NOx触媒20のNOx浄化率があまり高くないため、HCの有効利用の観点から、ステップ306に進み、排気通路切換バルブ34を主排気通路31側に排気を流すように切り換え、HC吸着材33からのHCの脱離を中止する。
【0074】
以上説明した実施形態(4)では、上流側触媒温度Ta(上流側NOx触媒19の活性状態)に加え、下流側触媒温度Tb(下流側NOx触媒20の活性状態)も検出し、双方の検出結果に応じて排気通路を切り換えるようにしたので、前記実施形態(3)のように上流側触媒温度のみに基づいて排気通路を切り換える場合と比較して、より適正な排気通路の切換を行うことができ、燃費の節減やNOx浄化率向上の効果を更に大きくできる。
【0075】
尚、本実施形態(4)においても、NOx触媒に還元剤(HC)を供給する還元剤供給手段として、後噴射に代えて、上流側NOx触媒の上流側にHC供給ノズルを接続しても良く、また、排気管に3個以上のNOx触媒を直列に設けるようにしても良い。
【0076】
[実施形態(5)]
図15乃至図17に示す本発明の実施形態(5)では、図10に示す実施形態(3)と同じシステム構成において、排気の流れを主排気通路31からバイパス排気通路32に切り換える際に、排気通路切換バルブ34をバイパス排気通路32側と主排気通路31側とに交互に切り換える動作を所定時間又は所定回数繰り返すようにしたものである。その他の構成は、図10と同じである。
【0077】
つまり、主排気通路31に排気を流す時間が長くなると、バイパス排気通路32内のHC吸着材33の温度が放熱のために低下する。この状態で、排気の流れを主排気通路31からバイパス排気通路32側へ急激に切り換えると、冷えたHC吸着材33を排気が通過するため、排気温度が下がる。そのため、下流側NOx触媒20の温度が低下して、NOx浄化率が低下する場合がある。
【0078】
本実施形態(5)では、これを防止するために、排気の流れを主排気通路31からバイパス排気通路32に切り換える際に、排気通路切換バルブ34をバイパス排気通路32側と主排気通路31側とに交互に切り換える動作を所定時間又は所定回数繰り返すことで、下流側NOx触媒20の急激な温度低下を防ぐものである。更に、この排気通路切換時に、上流側NOx触媒19の活性状態(上流側触媒温度)の変化速度が小さいほど、排気通路切換バルブ34の切換周波数fを大きくする。
【0079】
すなわち、排気温度の変化が緩やかで上流側NOx触媒19の活性状態の変化が小さい時ほど、排気の流れを主排気通路31からバイパス排気通路32に急に切り換えると、下流側NOx触媒20に流入する排気の温度低下によるNOx浄化率の低下が大きくなりやすい。この対策として、排気通路切換バルブ34の切換周波数fを大きくすると、バイパス排気通路32側から下流側NOx触媒20に低温の排気を供給する時間間隔が短くなり、下流側NOx触媒20の温度変化が少なくなるため、排気の温度低下によるNOx浄化率の低下を防ぐことができる。
【0080】
以上説明したNOx浄化制御は、ECU22にて所定時間毎(例えば1秒毎)に図15の排気通路切換制御プログラムに従って実行される。本プログラムが起動されると、まず、ステップ401で、排気温度センサ21で検出した上流側触媒温度T(上流側NOx触媒19の活性状態)を読み込み、次のステップ402で、この上流側触媒温度Tが含まれる活性状態の領域が図2のA,B,Cのいずれに該当するか判定する。
【0081】
そして、上記ステップ402で判定した領域がA又はCならば、ステップ403に進み、上流側触媒温度Tの変化速度を例えば前回の温度Tから今回の温度Tを差し引くことで算出し、更に、この上流側触媒温度Tの変化速度に基づいて排気通路切換バルブ34の切換周波数fをマップにより算出する。この切換周波数fのマップは、図16に示すように上流側触媒温度Tの変化速度をパラメータとして決められ、上流側触媒温度Tの変化速度が小さくなるほど、切換周波数fが大きくなるように設定されている。
【0082】
切換周波数fの算出後、ステップ404に進み、排気の流れを主排気通路31からバイパス排気通路32に切り換える際に、排気通路切換バルブ34を切換周波数fでバイパス排気通路32側と主排気通路31側とに交互に切り換える動作を所定時間又は所定回数繰り返す。一方、上記ステップ402で判定した領域がBならば、ステップ405に進み、排気通路切換バルブ34を主排気通路31側に排気を流すように切り換える。
【0083】
以上説明した排気通路切換制御では、例えば、図17に示すように、上流側NOx触媒19の活性状態(上流側触媒温度)がA→B→Cの順に変化する場合、A→Bの領域は、前記実施形態(3)と同じ制御が行われる。この後、上流側NOx触媒19の活性状態がBからCへ変わる時刻Xにおいて、排気通路を主排気通路31側からバイパス排気通路32側に切り換えるが、これを一度に切り換えると、時刻X以前での放熱により冷えたHC吸着材33を排気が通過するため、排気温度が下がり、そのため、下流側NOx触媒20の温度が低下して、NOx浄化率が低下する。
【0084】
これに対し、本実施形態(5)では、排気通路を主排気通路31側からバイパス排気通路32側に切り換える際に、排気通路切換バルブ34を切換周波数fで切り換えることで、高温の排気を間欠的に主排気通路31側から下流側NOx触媒20に供給することができて、下流側NOx触媒20の急激な温度低下を防ぐことができ、排気通路切換直後から下流側NOx触媒20でも高いNOx浄化率を得ることができる。
【0085】
尚、本実施形態(5)では、上流側NOx触媒19の活性状態(上流側触媒温度)の変化速度に応じて切換周波数を変更したが、切換周波数一定で切換間隔の時間比率(デューティー比)を変更しても良く、勿論、切換周波数と切換間隔の時間比率の双方を変更しても良い。この場合、上流側NOx触媒19の活性状態の変化速度が小さいほど、主排気通路31側を流す排気の割合を多くするように切換間隔の時間比率を変更すれば良い。
【0086】
或は、排気通路切換時に、排気通路切換バルブ34を切換周波数fで切り換える代わりに、排気通路切換バルブ34を中間的な位置で保持し、その開度を上流側NOx触媒19の活性状態に応じて制御するようにしても、同様の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示すエンジン制御システム全体の構成図
【図2】触媒温度と浄化率との関係を示す図
【図3】後噴射時期、シリンダ内温度、HCの改質度合の関係を示す図
【図4】パイロット噴射、主噴射、後噴射の関係を示すタイムチャート
【図5】後噴射時期制御プログラムの処理の流れを示すフローチャート
【図6】上流側触媒温度Tと後噴射時期との関係を示す図
【図7】上流側触媒温度T>設定温度T1の場合の排気中のHC量とNOx量の分布を示す図
【図8】上流側触媒温度T≦設定温度T1の場合の排気中のHC量とNOx量の分布を示す図
【図9】本発明の実施形態(2)を示すエンジン制御システム全体の構成図
【図10】本発明の実施形態(3)を示すエンジン制御システム全体の構成図
【図11】本発明の実施形態(3)の排気通路切換制御プログラムの処理の流れを示すフローチャート
【図12】本発明の実施形態(3)の排気通路切換制御の挙動を示すタイムチャート
【図13】本発明の実施形態(4)を示すエンジン制御システム全体の構成図
【図14】本発明の実施形態(4)の排気通路切換制御プログラムの処理の流れを示すフローチャート
【図15】本発明の実施形態(5)の排気通路切換制御プログラムの処理の流れを示すフローチャート
【図16】上流側触媒温度の変化速度をパラメータとする排気通路切換バルブの切換周波数のマップを概念的に示す図
【図17】本発明の実施形態(5)の排気通路切換制御の挙動を示すタイムチャート
【符号の説明】
10…ディーゼルエンジン(内燃機関)、11…吸気管、14…燃料噴射弁(燃料噴射手段,還元剤供給手段)、15…高圧燃料ポンプ、18…排気管(排気通路)、19…上流側NOx触媒(触媒)、20…下流側NOx触媒(触媒)、21…排気温度センサ(上流側触媒活性状態判定手段)、22…ECU(燃料噴射制御手段,後噴射時期補正手段,制御手段)、23…エンジン回転数センサ、31…主排気通路、32…バイパス排気通路、33…HC吸着材、34…排気通路切換バルブ(排気通路切換手段)、35…排気温度センサ(下流側触媒活性状態判定手段)、40…HC吸着材(HC吸着手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies nitrogen oxides (hereinafter referred to as “NOx”) contained in the exhaust gas of the internal combustion engine with a plurality of catalysts.
[0002]
[Prior art]
In recent years, as disclosed in JP-A-4-214919, it has been proposed to arrange a plurality of catalysts in series in an exhaust pipe of an internal combustion engine in order to increase exhaust purification efficiency. Further, in order to purify NOx in exhaust gas in an oxygen-excess atmosphere such as a diesel engine, it is necessary to supply a hydrocarbon such as fuel (hereinafter referred to as “HC”) as a NOx reducing agent to the catalyst.
[0003]
As shown in FIG. 2, the reaction amount of HC in the catalyst increases with an increase in the catalyst temperature (B in FIG. 2). When the catalyst temperature is high, the reaction amount of HC becomes almost 100% (C in FIG. 2). . Therefore, when supplying HC from the uppermost stream of the catalyst arranged in series, if the temperature of the catalyst arranged on the upstream side is high, almost all of the supplied HC reacts with the upstream catalyst, and downstream. HC cannot be supplied to the catalyst on the side. For this reason, there is a problem that the downstream catalyst cannot purify NOx and a high NOx purification rate cannot be obtained.
[0004]
In order to solve this problem, Japanese Patent Laid-Open No. 4-214919 discloses that a plurality of HC supply devices are provided upstream of a plurality of catalysts installed in series, and HC is separately supplied to each catalyst. Like to do. Thereby, by supplying HC to all the plurality of catalysts, a high NOx purification rate is obtained.
[0005]
[Problems to be solved by the invention]
However, in the configuration of the above publication, since one HC supply device is required for each of the plurality of catalysts, the configuration becomes complicated and the cost is increased, and the device is increased in size, so that the vehicle is actually mounted. There is a problem that it becomes difficult.
[0006]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to make it possible to supply HC to all of a plurality of catalysts with a simple structure and to efficiently purify NOx. An object of the present invention is to provide an exhaust emission control device for an engine.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the exhaust gas purification apparatus for an internal combustion engine of claim 1 of the present invention, a plurality of catalysts are installed in series in the exhaust passage, and the fuel injection control means is connected to the fuel injection means of each cylinder. On the other hand, a main injection command for generating engine output is output near the compression top dead center, and at the same time, post-injection for supplying HC to the catalyst in the expansion stroke or exhaust stroke of the engine to the fuel injection means of at least one cylinder Outputs a command. In this case, the active state of the catalyst (hereinafter referred to as “upstream catalyst”) arranged upstream of the most downstream catalyst among the plurality of catalysts is determined by the upstream catalyst active state determination means, and the upstream catalyst The post-injection timing is corrected by the post-injection timing correcting means in accordance with the active state of. Thus, the amount of HC that reacts with the upstream catalyst is controlled so that the HC supplied by the post injection reaches the downstream catalyst.
[0008]
Here, the reason why the amount of HC that reacts with the upstream catalyst can be controlled by correcting the post-injection timing will be described. The post-injected fuel (diesel oil) has a high boiling point HC, which is reformed (pyrolyzed) by the combustion heat in the cylinder and changes to a low boiling point HC. The higher the quality), the easier it is to react on the catalyst. As shown in FIG. 3, the degree of reforming of the post-injected fuel (HC) changes depending on the temperature in the cylinder at the time of post-injection, and the temperature in the cylinder at the time of post-injection changes depending on the post-injection time. Can change the degree of reforming of the post-injected fuel (HC).
[0009]
As described above, since the reactivity of HC changes due to the change in the reforming degree of the post-injected fuel, it is possible to control the amount of HC that reacts with the upstream catalyst. For this reason, by correcting the post-injection timing according to the active state of the upstream catalyst, HC can be distributed to the downstream catalyst, and NOx is efficiently purified by using all of the plurality of catalysts effectively. And a high NOx purification rate can be obtained. In addition, since HC is supplied to a plurality of catalysts by post-injection, it is not necessary to provide the same number of HC supply devices as the number of catalysts as in the above-mentioned known example, the configuration of the device can be simplified, and the device can be downsized. The cost can be reduced and the vehicle can be easily mounted.
[0010]
In this case, as in claim 2, the lower the upstream catalyst active state determined by the upstream catalyst active state determining means, the more the post-injection timing is corrected, and the higher the upstream catalyst active state, It may be configured to correct the injection timing by retarding the angle. That is, when the upstream catalyst temperature is high and the active state is high (C in FIG. 2), if the post-injection timing is retarded, the temperature in the cylinder at the time of post-injection becomes low. Can be supplied from the upstream side of the catalyst. Since high boiling point HC has low reactivity and does not react very much even at high temperatures, even if the temperature of the upstream catalyst is high and the active state is high, it is possible to suppress the amount of HC reaction there, and HC is also applied to the downstream catalyst. Can be spread.
[0011]
On the other hand, when the temperature of the upstream catalyst is low and the active state is low (the low temperature side of A and B in FIG. 2), if the post injection timing is corrected to advance, the temperature in the cylinder at the time of post injection becomes high. The degree of reforming of HC is large (the number of carbon atoms is small), and HC with a high proportion of low boiling point HC can be supplied from the upstream side of the catalyst. Since the low boiling point HC is highly reactive and reacts even at a relatively low temperature, even if the temperature of the upstream catalyst is low and the active state is low, it is possible to purify NOx. Further, since the purification rate of HC in the catalyst is relatively low at a low temperature (the low temperature side of A and B in FIG. 2), HC that has not reacted with the upstream catalyst is supplied to the downstream catalyst. As a result, NOx can be efficiently purified by effectively using a plurality of catalysts, and a high NOx purification rate can be obtained.
[0012]
According to a third aspect of the present invention, the main exhaust passage and the bypass exhaust passage having the HC adsorbent are provided in parallel between the plurality of catalysts arranged in series in the exhaust passage, and upstream of the parallel passage. The active state of the arranged catalyst may be determined by the upstream side catalyst active state determination means, and both the exhaust passages may be switched by the exhaust passage switching means according to the determination result. By doing this, even when the upstream catalyst is in a high active state and the post-injected HC reacts entirely with the upstream catalyst, by switching the exhaust flow to the bypass exhaust passage having the HC adsorbent, The HC that has been adsorbed on the HC adsorbent so far can be desorbed and supplied to the downstream catalyst. Therefore, even if the active state of the upstream catalyst becomes high, HC can be supplied to the downstream catalyst, all the catalysts can be used effectively, and a high NOx purification rate can be obtained.
[0013]
In this case, the claim 5 As described above, the exhaust passage switching means may be switched depending on whether the activation state of the upstream catalyst is within a predetermined range (B in FIG. 2) where the NOx purification rate is high. For example, when the activation state of the upstream catalyst is lower than a predetermined range (A in FIG. 2), the HC purification rate is low, and thus the supplied HC passes through the upstream catalyst without being reacted. Therefore, in this state, exhaust gas is caused to flow to the bypass exhaust passage side, and the HC that has passed through is adsorbed by the HC adsorbent. In other words, when the upstream catalyst activity state is lower than the predetermined range, it is estimated that the downstream catalyst activity state is also lower than the predetermined range, and the HC in the exhaust gas that has passed through the upstream catalyst is placed in the bypass exhaust passage. By adsorbing with HC adsorbent, HC is stored for the subsequent purification of NOx. As a result, the post-injection amount can be reduced, and HC can be prevented from passing through the downstream catalyst and discharged into the atmosphere, so that the amount of HC discharged into the atmosphere can be greatly reduced.
[0014]
In addition, when the activation state of the upstream catalyst is within a predetermined range (B in FIG. 2), a part of the supplied HC passes through the upstream catalyst without being reacted, but the exhaust temperature is relatively high. Further, the temperature of the downstream catalyst becomes high, and the downstream catalyst can also purify NOx. Therefore, in this state, by switching the exhaust flow to the main exhaust passage side and supplying the HC that has passed through the upstream catalyst to the downstream catalyst through the main exhaust passage, the downstream catalyst can also purify NOx. .
[0015]
Further, when the activation state of the upstream side catalyst is higher than the predetermined range (C in FIG. 2), the HC purification rate in the upstream side catalyst is almost 100%. It reacts with the catalyst and is not supplied to the downstream catalyst. Therefore, in this state, high temperature exhaust gas is flowed to the bypass exhaust passage side to raise the temperature of the HC adsorbent, thereby desorbing the HC that has been adsorbed on the HC adsorbent so far, and the downstream catalyst. And the NOx is purified by the downstream catalyst.
[0016]
In this way, if the exhaust passage is switched depending on whether or not the active state of the upstream catalyst is within a predetermined range (B in FIG. 2), even if the active state of the upstream catalyst changes, the downstream catalyst is changed. HC can be reliably supplied, and a high NOx purification rate can be obtained by using all the catalysts effectively.
[0017]
Claims 3 As described above, in addition to the active state of the upstream catalyst, the active state of the downstream catalyst may be determined, and the exhaust passage switching means may be switched as follows based on both.
[0018]
(1) When the active state of the upstream catalyst is lower than the predetermined range (A in FIG. 2)
In this case, unreacted HC in the upstream catalyst passes through the upstream catalyst. At that time, when the active state of the downstream catalyst is within a predetermined range (B in FIG. 2) and a high NOx purification rate is obtained in the downstream catalyst, the exhaust is flowed to the main exhaust passage and HC is directly downstream Supply to catalyst to purify NOx. On the other hand, when the active state of the downstream catalyst is not within the predetermined range (A and C in FIG. 2) and the high NOx purification rate cannot be obtained in the downstream catalyst, HC cannot be effectively used in the downstream catalyst. The exhaust gas is caused to flow into the bypass exhaust passage, and the HC in the exhaust gas is adsorbed by the HC adsorbent.
[0019]
(2) When the active state of the upstream catalyst is within a predetermined range (B in FIG. 2)
In this case, since most of the supplied HC reacts with the upstream catalyst, even if the activity state of the downstream catalyst is within the predetermined range (B in FIG. 2), the downstream catalyst has insufficient HC. The NOx purification rate decreases. Therefore, in this case, the exhaust is allowed to flow to the bypass exhaust passage. As a result, a relatively high temperature exhaust gas passes through the HC adsorbent, so that the HC that has been adsorbed by the HC adsorbent so far is desorbed and supplied to the downstream catalyst. A sufficient amount of HC is supplied to purify NOx. On the other hand, when the active state of the downstream catalyst is not within the predetermined range (A and C in FIG. 2) and a high NOx purification rate cannot be obtained in the downstream catalyst, HC cannot be effectively used in the downstream catalyst. Therefore, by letting the exhaust gas flow into the main exhaust passage, HC desorption from the HC adsorbent in the bypass exhaust passage is prevented.
[0020]
(3) When the active state of the upstream catalyst is higher than the predetermined range (C in FIG. 2)
In this case, since almost all of the supplied HC reacts with the upstream catalyst, whether the activity state of the downstream catalyst is within the predetermined range as in the case where the activity state of the upstream catalyst is within the predetermined range. The exhaust passage is switched depending on whether or not.
[0021]
As described above, by switching the exhaust passage according to the active state of the upstream catalyst and the active state of the downstream catalyst, the HC supplied by the post-injection can be used very efficiently in each of the plurality of catalysts, and the NOx purification rate can be increased. Can be increased.
[0022]
By the way, when the time for flowing the exhaust gas to the main exhaust passage becomes long, the temperature of the HC adsorbent in the bypass exhaust passage decreases due to heat dissipation. If the exhaust flow is suddenly switched from the main exhaust passage to the bypass exhaust passage in this state, the exhaust passes through the cooled HC adsorbent, so that the exhaust temperature decreases. Therefore, the temperature of the downstream side catalyst may decrease, and the NOx purification rate may decrease.
[0023]
As a countermeasure, the claims 4 As described above, when switching the flow of exhaust from the main exhaust passage to the bypass exhaust passage, the operation of alternately switching the exhaust passage switching means between the bypass exhaust passage side and the main exhaust passage side is repeated for a while. Also good. In this way, when the flow of the exhaust gas is switched from the main exhaust passage to the bypass exhaust passage, the high-temperature exhaust gas is intermittently supplied to the downstream catalyst through the main exhaust passage for a while. The rapid temperature drop of the side catalyst can be prevented, and NOx can be purified at a high purification rate even immediately after switching the exhaust passage even at the downstream side catalyst.
[0024]
In this case, the claim 6 As described above, when the exhaust flow is switched from the main exhaust passage to the bypass exhaust passage, at least one of the switching frequency of the exhaust passage switching means and the time ratio of the switching interval is changed according to the change speed of the active state of the upstream catalyst. You may make it let it. In other words, the more the change in the active state of the upstream catalyst is more gradual (that is, the more the change in exhaust temperature is), the more sudden the exhaust flow is switched from the main exhaust passage to the bypass exhaust passage, the more the catalyst flows into the downstream catalyst. The reduction in the NOx purification rate due to the temperature drop of the exhaust gas is likely to increase. In this case, the switching frequency of the exhaust passage switching means is increased to shorten the time interval for supplying the low temperature exhaust gas from the bypass exhaust passage side to the downstream catalyst, or the exhaust gas flowing through the main exhaust passage side. If the time ratio of the switching interval is changed so as to increase the ratio, the temperature decrease of the exhaust gas flowing into the downstream catalyst can be suppressed, and the decrease in the NOx purification rate of the downstream catalyst can be prevented more reliably. .
[0025]
Claims 7 As described above, an HC adsorbent may be provided for each of a plurality of catalysts installed in series, and the HC adsorbing capacity thereof may be increased as the HC adsorbent on the downstream side. That is, when the catalyst is highly active, among the catalysts installed in series, HC is mainly supplied to the upstream catalyst by post-injection, while the downstream catalyst is mainly adsorbed in advance by the HC adsorption means. HC is supplied by desorbing the HC. As a result, even when there is a situation where the HC supplied by post-injection is consumed by the upstream catalyst and hardly reaches the downstream catalyst when the catalyst is highly active, the HC is desorbed from the HC adsorbing means and the downstream side Since HC can be supplied to the catalyst, it is possible to prevent the downstream catalyst from becoming deficient due to insufficient HC when the catalyst is highly active, which is extremely effective in improving the purification rate.
[0026]
In this case, if the HC adsorption capacity of the upstream HC adsorption means is increased, most of the HC supplied by the post-injection is adsorbed by the upstream HC adsorption means, and the amount of HC reaching the downstream HC adsorption means is small. turn into. Therefore, the claim 7 Then, by configuring the HC adsorption capacity of the HC adsorption means to be larger on the downstream side than on the upstream side, the HC supplied by the post-injection can be sufficiently distributed to the downstream side, A sufficient amount of HC is adsorbed by both HC adsorption means on the downstream side. After that, when the active state of the catalyst becomes high, HC is desorbed from each HC adsorbing means and is also supplied to the downstream catalyst, so the downstream catalyst is also used as effectively as the upstream catalyst Thus, NOx can be purified, and the NOx purification rate can be greatly improved.
[0027]
Further claims 7 Thus, the upstream catalyst activity state determining means determines the active state of a catalyst installed upstream of the most downstream catalyst (hereinafter referred to as “upstream catalyst”) among the plurality of catalysts, and the upstream catalyst The post-injection command may be output only for a predetermined period when the active state is low and the NOx purification rate in the upstream catalyst is low. That is, when the active state of the upstream catalyst is low and the NOx purification rate is low, HC is adsorbed by the HC adsorbing means of the upstream catalyst and the downstream catalyst, and the HC is adsorbed from each HC adsorbing means when the catalyst is highly active thereafter. The aim is to improve the NOx purification rate by desorption. However, since the amount of HC adsorbed by the HC adsorbing means is finite, excessive HC supply does not lead to an improvement in the NOx purification rate, leading to deterioration in fuel consumption. Therefore, after the post-injection is performed only for a predetermined period and after the effective HC amount is adsorbed, the post-injection is stopped, thereby minimizing the fuel consumption by the post-injection and satisfying the demand for low fuel consumption.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) in which the present invention is applied to a diesel engine will be described with reference to FIGS.
[0029]
First, the overall configuration of the engine control system will be described with reference to FIG. The intake air sucked through the intake pipe 11 is sucked through the intake manifold 13 into each cylinder of the diesel engine 10 which is an internal combustion engine. A solenoid valve type fuel injection valve 14 (fuel injection means) is attached to each cylinder of the diesel engine 10, and fuel accumulated at a high pressure from a high pressure fuel pump 15 is distributed to each fuel injection valve 14 through a common rail 16. Is done. A fuel pressure sensor 12 that detects the pressure of fuel distributed to the fuel injection valve 14 (common rail fuel pressure) is attached to the common rail 16.
[0030]
As shown in FIG. 4, the fuel injection valve 14 performs main injection for generating engine output in the vicinity of compression top dead center, and prior to this main injection, performs pilot injection to inject a small amount of fuel. When the fuel is ignited, the main injection is performed to reduce the premixed combustion in the early stage of combustion and reduce the NOx emission amount. Further, the fuel injection valve 14 of at least one cylinder performs post-injection for supplying HC to NOx catalysts 20 and 21 described later in the expansion stroke or the exhaust stroke.
[0031]
Exhaust gas discharged from each cylinder of the diesel engine 10 is discharged to one exhaust pipe 18 (exhaust passage) through the exhaust manifold 17, and two NOx catalysts 19, 20 are disposed in the middle of the exhaust pipe 18. They are arranged in series. Each NOx catalyst 19, 20 has a catalyst component (for example, Cu-zeolite, Pt-zeolite, etc.) capable of reducing and purifying NOx in the presence of a reducing agent (HC) even in an oxygen-rich atmosphere on the surface of a ceramic or metal carrier. It is supported.
[0032]
In this case, the supported zeolite serves as a hydrocarbon adsorbing means that adsorbs HC in the exhaust gas at a low temperature (eg, 200 ° C. or less) and desorbs the adsorbed HC at a high temperature (eg, 200 ° C. or more), The greater the amount of zeolite, the greater the HC adsorption capacity. In the present embodiment (1), the amount of zeolite in the downstream NOx catalyst 20 is increased (for example, 1.5 times) and supported as compared with the upstream NOx catalyst 19.
[0033]
As shown in FIG. 2, the NOx purification characteristics of the NOx catalysts 19 and 20 have a high NOx purification rate in the predetermined temperature range B, and the NOx purification rate extremely decreases in the other temperature ranges A and C. Further, in the HC purification characteristics of the NOx catalysts 19 and 20, in the low temperature region A, HC passes through with little reaction. Further, in the predetermined temperature range B where the NOx purification rate becomes high, the HC purification rate becomes higher as the temperature becomes higher, and in the high temperature region C, the HC purification rate becomes almost 100%.
[0034]
An exhaust temperature sensor 21 is installed between the two NOx catalysts 19 and 20. The exhaust gas temperature sensor 21 serves as upstream side catalyst active state determination means for determining the active state (catalyst temperature) of the upstream side NOx catalyst 19 by detecting the outflow gas temperature of the upstream side NOx catalyst 19.
[0035]
An output signal of the exhaust temperature sensor 21 is input to an engine electronic control circuit (hereinafter referred to as “ECU”) 22. The ECU 22 reads output signals from the engine speed sensor 23, the accelerator sensor 24, etc., detects the operating state of the diesel engine 10, calculates the injection amount and injection timing of pilot injection, main injection, and post-injection, and claims And the post-injection timing according to the exhaust temperature detected by the exhaust temperature sensor 21, that is, the temperature of the upstream NOx catalyst 19 (hereinafter referred to as "upstream catalyst temperature"). to correct.
[0036]
In this case, when the upstream catalyst temperature is low (A in FIG. 2), post-injection is performed for a predetermined period. That is, HC that is sufficiently gasified by post-injecting fuel into the cylinder having a high temperature is supplied to the NOx catalysts 19 and 20. The HC hardly reacts with the upstream NOx catalyst 19 having low activity, and a part of the HC is adsorbed to the HC adsorption means (zeolite) of the upstream NOx catalyst 19, but the adsorption amount is small because it is gasified. , Most of them reach the HC adsorption means of the downstream side NOx catalyst 20. Since the HC adsorption means of the downstream side NOx catalyst 20 has a large HC adsorption capacity, most of the reached HC is adsorbed there. The HC adsorbed by the HC adsorbing means of the downstream side NOx catalyst 20 is desorbed and supplied to the downstream side NOx catalyst 20 when the catalyst is subsequently activated, and is effectively used for NOx purification. At that time, there is an upper limit on the amount of HC adsorbed by the HC adsorbing means, and a large amount of post-injection over a long period of time leads to deterioration of fuel consumption.
[0037]
On the other hand, when the upstream side catalyst temperature is relatively high (B and C in FIG. 2), the post-injection timing is retarded as the upstream side catalyst temperature is lower. That is, when the upstream side catalyst temperature is high, almost all of the supplied HC reacts with the upstream side NOx catalyst 19, so that the HC does not reach the downstream side NOx catalyst 20, and the downstream side NOx catalyst 20 purifies NOx. It becomes impossible.
[0038]
In order to prevent this, when the upstream catalyst temperature is high, the post-injection timing is retarded to lower the temperature in the cylinder at the time of post-injection, thereby reducing the degree of reforming of HC and increasing the high boiling point. HC having a high HC ratio is supplied to both NOx catalysts 19 and 20. Since high boiling point HC has low reactivity and does not react very much even at high temperature, it becomes possible to suppress the amount of HC reaction in the upstream NOx catalyst 19 even if the upstream catalyst temperature is high and the active state is high. HC can also be supplied to the NOx catalyst 20.
[0039]
On the other hand, when the upstream catalyst temperature is relatively low (B in FIG. 2, particularly the low temperature side), the post-injection timing is advanced to increase the temperature in the cylinder at the time of post-injection, thereby improving the HC. The quality is increased, and HC having a high proportion of low-boiling HC is supplied to both NOx catalysts 19 and 20. Since the low boiling point HC has high reactivity and reacts even at a relatively low temperature, it is possible to purify NOx even if the upstream catalyst temperature is low and the active state is low. Further, since the HC purification rate is relatively low at a low temperature (B in FIG. 2, particularly the low temperature side), HC that has not reacted with the upstream NOx catalyst 19 is supplied to the downstream NOx catalyst 20. Thereby, NOx can be efficiently purified by effectively using the two NOx catalysts 19 and 20 on the upstream side and the downstream side, and a high NOx purification rate can be obtained.
[0040]
The NOx purification control described above is executed by a post injection timing correction program shown in FIG. The program is executed by the ECU 22 at predetermined time intervals (for example, every second) and serves as post injection timing correction means in the claims. When this program is started, first, in step 101, the output signal of the exhaust temperature sensor 21 is read. In this case, since the exhaust temperature sensor 21 is provided downstream of the upstream NOx catalyst 19, the temperature detected by the exhaust temperature sensor 21 is the outflow gas temperature of the upstream NOx catalyst 19, and consequently the upstream NOx catalyst 19. Is the upstream catalyst temperature T representing the active state of
[0041]
In the next step 102, it is determined whether the region including the upstream catalyst temperature T corresponds to any of A, B, and C in FIG. For example, if the upstream catalyst temperature T is 200 ° C. or lower, it is determined as A, if the upstream catalyst temperature T is 200 to 300 ° C., it is determined as B, and if the upstream catalyst temperature T is 300 ° C. or higher, it is determined as C. .
[0042]
If the region determined in step 102 is A, post-injection is performed in step 103. The post-injection time at this time is set to a time when the post-injected fuel does not burn in the cylinder, and is determined by the ECU 22 based on the output of each sensor. After starting the post-injection in step 103, it is determined in step 104 whether or not a predetermined time has elapsed. If not, the process waits until it elapses. Cancel. The predetermined time in this case is determined by the ECU 22 based on, for example, the saturated adsorption amount in the HC adsorption means, the engine operating conditions, the post-injection amount, and the like. Moreover, it is good also as a fixed value simply.
[0043]
On the other hand, if the region determined in step 102 is B or C, the process proceeds to step 106, and the upstream catalyst temperature T is compared with the set temperature T1. Here, the set temperature T1 is a temperature at which the NOx purification rate reaches a peak in B of FIG. 2, and is set to, for example, 250 to 500 ° C. If the upstream catalyst temperature T is higher than the set temperature T1, the routine proceeds to step 107, where the post-injection timing is delayed by a map or the like according to the upstream catalyst temperature T, and corrected in the next step 108. Post-injection is performed at the injection timing. As shown in FIG. 6, the correction amount of the post-injection timing at that time increases the retard amount as the upstream catalyst temperature T increases. As a result, the higher the upstream side catalyst temperature T is, the smaller the degree of reforming of HC and the lower the reactivity of HC are obtained. As shown in FIG. 7, the reduction amount due to the HC reaction in the upstream side NOx catalyst 19 is reduced. A sufficient amount of HC can be supplied to the downstream side NOx catalyst 20 as well. As a result, the downstream NOx catalyst 20 can sufficiently purify NOx, and a high NOx purification rate can be obtained.
[0044]
On the other hand, if the upstream catalyst temperature T is equal to or lower than the set temperature T1, the routine proceeds to step 109, where the post-injection timing is corrected by a map or the like according to the upstream catalyst temperature, and the post-injection timing corrected in the following step 108. After injection is carried out. As shown in FIG. 6, the correction amount of the post-injection timing at that time increases the advance amount as the upstream catalyst temperature T is lower. Thereby, as the upstream catalyst temperature T is lower, the degree of reforming of HC is increased to obtain HC having higher reactivity, so that both the upstream and downstream NOx catalysts 19, 20 can be connected as shown in FIG. Effectively used, NOx can be purified efficiently, and a high NOx purification rate can be obtained.
[0045]
In the embodiment (1) described above, the post-injection timing is continuously corrected according to the upstream catalyst temperature according to the map of FIG. 6, but the correction amount of the post-injection timing is set according to the upstream catalyst temperature. It is also possible to switch to a plurality of stages. Further, since the temperature in the cylinder is different depending on the engine operating conditions (engine speed and load) even if the crank angle is the same, the post-injection timing and the correction amount of the post-injection timing may be varied depending on the engine operating conditions. good.
[0046]
Further, in the present embodiment (1), the exhaust gas temperature sensor 21 provided downstream of the upstream NOx catalyst 19 detects the outflow gas temperature of the upstream NOx catalyst 19 so that the upstream NOx catalyst 19 is activated (upstream). However, instead of this, the inflow gas temperature and the outflow gas temperature of the upstream NOx catalyst 19 are detected, and the activation state (upstream catalyst temperature) of the upstream NOx catalyst 19 is determined from both of them. It may be estimated. At that time, the inflow gas temperature of the upstream NOx catalyst 19 may be calculated from the engine operating conditions. Further, a temperature sensor may be provided in the upstream NOx catalyst 19 itself so as to directly detect the active state (upstream catalyst temperature) of the upstream NOx catalyst 19.
[0047]
In the present embodiment (1), two NOx catalysts are provided in series in the exhaust pipe 18, but three or more NOx catalysts may be provided in series.
[0048]
[Embodiment (2)]
FIG. 9 shows the configuration of the embodiment (2) of the present invention. Hereinafter, only different portions from the embodiment (1) shown in FIG. 1 will be described.
[0049]
In the present embodiment (2), an HC adsorbent 40 is installed as an HC adsorbing means between the upstream catalyst 19 and the downstream catalyst 20. That is, in the embodiment (1), the HC adsorption means in the downstream catalyst 20 is composed only of the zeolite layer supported on the downstream catalyst 20, but in this embodiment (2), the HC adsorption means of the downstream catalyst 20 is used. In order to further increase the amount of HC adsorbed in HC, an HC adsorbent 40 is installed. This HC adsorbent 40 is a material in which a porous material such as zeolite is supported on the surface of a carrier such as ceramic or metal, adsorbs HC in the exhaust at a low temperature (for example, 200 ° C. or less), and at a high temperature ( For example, HC adsorbed at 200 ° C. or higher is desorbed.
[0050]
By controlling the embodiment (2) having the above configuration in the same manner as the embodiment (1), it is possible to obtain an effect equal to or greater than that described in the embodiment (1).
A plurality of the NOx catalysts 19 and 20 and the HC adsorbent 40 may be accommodated in the same case.
[0051]
[Embodiment (3)]
The embodiment (3) of the present invention will be described below with reference to FIGS. In this embodiment (3), the main exhaust passage 31 and the bypass exhaust passage 32 are provided in parallel between the two NOx catalysts 19, 20 arranged in series with the exhaust pipe 18, and in the middle of the bypass exhaust passage 32. An HC adsorbent 33 that adsorbs HC in the exhaust is disposed. This HC adsorbent 33 is a material in which a porous material such as zeolite is supported on the surface of a carrier such as ceramic or metal, adsorbs HC in the exhaust at a low temperature (eg, 200 ° C. or less), and at a high temperature HC adsorbed on (for example, 200 ° C. or higher) is desorbed.
[0052]
On the other hand, an exhaust passage switching valve 34 is provided at an upstream branch portion between the main exhaust passage 31 and the bypass exhaust passage 32, and the exhaust flow is changed by switching the exhaust passage switching valve 34. Is selectively switched to one of the above. The exhaust passage switching valve 34 is controlled by the ECU 22 using a motor or negative pressure as a drive source. Between the upstream NOx catalyst 19 and the exhaust passage switching valve 34, an exhaust temperature sensor 21 (upstream catalyst active state determination means) is installed. Other system configurations are the same as those of the above-described embodiment (1).
[0053]
In the present embodiment (3), as in the embodiment (3), HC as a reducing agent is supplied to the NOx catalysts 19 and 20 in the expansion stroke or exhaust stroke after the main fuel injection for generating engine output. In this case, the flow of exhaust gas is selectively sent to either the main exhaust passage 31 or the bypass exhaust passage 32 in accordance with the active state of the upstream NOx catalyst 19 (upstream catalyst temperature). Switch.
[0054]
That is, when the upstream catalyst temperature (active state) is lower than the predetermined range (A in FIG. 2), since the HC purification rate is low, the supplied HC passes through the upstream NOx catalyst 19 without being reacted. End up. Therefore, in this state, the exhaust is caused to flow toward the bypass exhaust passage 32 so that the HC that has passed through is adsorbed by the HC adsorbent 33. In other words, when the activation state of the upstream NOx catalyst 19 is lower than the predetermined range, it is estimated that the activation state of the downstream NOx catalyst 20 is also lower than the predetermined range, and the HC in the exhaust gas passing through the upstream NOx catalyst 19 is estimated. Is adsorbed by the HC adsorbent 33 in the bypass exhaust passage 32 to store HC for subsequent purification of NOx. In particular, HC obtained by the post-injection of the common rail diesel engine is sufficiently gasified, so that it easily passes through the upstream NOx catalyst 19. Therefore, if this HC is adsorbed on the HC adsorbent 33, the effect of effective use of HC and reduction of HC emission amount is great.
[0055]
When the activation state of the upstream NOx catalyst 19 is within a predetermined range (B in FIG. 2), a part of the supplied HC passes through the upstream NOx catalyst 19 without being reacted, but the exhaust temperature is Since the temperature is relatively high, the temperature of the downstream NOx catalyst 20 also becomes high, and the downstream NOx catalyst 20 can also purify NOx. Therefore, in this state, the flow of the exhaust gas is switched to the main exhaust passage 31 side, and the HC that has passed through the upstream NOx catalyst 19 is supplied to the downstream NOx catalyst 20 through the main exhaust passage 31, so that the downstream NOx catalyst 20 But it purifies NOx.
[0056]
When the activation state of the upstream NOx catalyst 19 is higher than the predetermined range (C in FIG. 2), the HC purification rate in the upstream NOx catalyst 19 is almost 100%. , All react with the upstream NOx catalyst 19 and are not supplied to the downstream NOx catalyst 20. Therefore, in this state, high-temperature exhaust is caused to flow toward the bypass exhaust passage 32 to raise the temperature of the HC adsorbent 33, thereby desorbing the HC that has been adsorbed on the HC adsorbent 33 so far. The downstream NOx catalyst 20 is supplied and the downstream NOx catalyst 20 purifies NOx.
[0057]
The NOx purification control described above is executed by the exhaust passage switching control program shown in FIG. This program is executed by the ECU 22 every predetermined time (for example, every second), and serves as a control means in the claims. When this program is started, first, in step 201, the upstream catalyst temperature T detected by the exhaust temperature sensor 21 (the active state of the upstream NOx catalyst 19) is read. In the next step 202, this upstream catalyst temperature is read. It is determined whether the active state region including T corresponds to any of A, B, and C in FIG. For example, if the upstream catalyst temperature T is 200 ° C. or lower, it is determined as A, if the upstream catalyst temperature T is 200 to 300 ° C., it is determined as B, and if the upstream catalyst temperature T is 300 ° C. or higher, it is determined as C. .
[0058]
If the region determined in step 202 is A or C, the process proceeds to step 203, and the exhaust passage switching valve 34 is switched to allow exhaust to flow to the bypass exhaust passage 32 side. That is, in the region A where the upstream catalyst temperature T is low, HC passes through the upstream NOx catalyst 19 without being reacted, and the downstream NOx catalyst 20 is also in a low activity state with a low temperature. The exhaust gas flowing out from the exhaust gas 19 is caused to flow through the HC adsorbent 33 in the bypass exhaust passage 32 so that the HC in the exhaust is adsorbed by the HC adsorbent 33. Further, in the region C where the upstream catalyst temperature T is high, all of the supplied HC reacts with the upstream NOx catalyst 19, so that the high temperature exhaust gas flows to the bypass exhaust passage 32 side and the temperature of the HC adsorbent 33 is increased. , The HC adsorbed by the HC adsorbent 33 until then is desorbed and supplied to the downstream NOx catalyst 20, and the downstream NOx catalyst 20 purifies NOx.
[0059]
On the other hand, if the region determined in step 202 is B, the process proceeds to step 204, and the exhaust passage switching valve 34 is switched so that the exhaust flows to the main exhaust passage 31 side. That is, in the region B, a part of the supplied HC passes through the upstream NOx catalyst 19 without being reacted, but the downstream NOx catalyst 20 is also in a state capable of purifying NOx, so that the flow of the exhaust is changed to the main exhaust. By switching to the passage 31 side and supplying HC that has passed through the upstream side NOx catalyst 19 to the downstream side NOx catalyst 20, the downstream side NOx catalyst 20 also purifies NOx.
[0060]
In the exhaust passage switching control described above, for example, as shown in FIG. 12, when the active state (upstream catalyst temperature) of the upstream NOx catalyst 19 changes in the order of A → B → C, the first low-temperature region A Then, the exhaust is caused to flow toward the bypass exhaust passage 32, and the HC that has passed is adsorbed by the HC adsorbent 33. Thereafter, in the region B, the flow of the exhaust gas is switched to the main exhaust passage 31 side, and the HC that has passed through the upstream NOx catalyst 19 is supplied to the downstream NOx catalyst 20 through the main exhaust passage 31. Thereby, NOx is purified by both the upstream NOx catalyst 19 and the downstream NOx catalyst 20. At this time, the HC adsorbed on the HC adsorbent 33 in the previous region A is retained.
[0061]
Thereafter, in the high temperature region C, the exhaust gas is flowed to the bypass exhaust passage 32 side, and the temperature of the HC adsorbent 33 is increased, so that the HC adsorbed by the HC adsorbent 33 until then is desorbed. To the downstream NOx catalyst 20 and the downstream NOx catalyst 20 purifies NOx. At this time, conventionally, the amount of HC supplied to the downstream side NOx catalyst 20 is insufficient, and the downstream side NOx catalyst 20 could hardly purify NOx. However, in this embodiment (3), HC is removed from the HC adsorbent 33. Since it can be supplied to the downstream NOx catalyst 20, NOx can be purified by the downstream NOx catalyst 20, and the NOx purification rate can be improved as compared with the conventional case.
[0062]
According to the embodiment (3) described above, the exhaust passage is switched in accordance with the activation state (upstream catalyst temperature) of the upstream NOx catalyst 19, so that even if the activation state of the upstream NOx catalyst 19 is high, the downstream side HC can be reliably supplied to the NOx catalyst 20, and a high NOx purification rate can be obtained by effectively using the two upstream and downstream NOx catalysts 19,20. In addition, when the upstream NOx catalyst 19 is in a low temperature state where NOx cannot be purified with high efficiency, the HC in the exhaust gas that has passed through the upstream NOx catalyst 19 is adsorbed by the HC adsorbent 33 and the subsequent NOx purification. Since HC can be stored in the exhaust gas, the post-injection amount can be reduced, fuel consumption can be reduced, and HC can be prevented from passing through the downstream side NOx catalyst 20 and discharged into the atmosphere. Can be greatly reduced.
[0063]
In this embodiment (3), the post-injection of the fuel injection valve 14 is used as the reducing agent supply means for supplying the reducing agent (HC) to the NOx catalyst. It may be attached to the exhaust pipe 18 upstream of the NOx catalyst 19 and HC may be supplied into the exhaust pipe 18 from this HC supply nozzle. Also in the present embodiment (3), three or more NOx catalysts may be provided in series in the exhaust pipe.
[0064]
[Embodiment (4)]
In the embodiment (4) of the present invention shown in FIGS. 13 and 14, in addition to the system configuration of the embodiment (3), an exhaust gas temperature sensor as a downstream side catalyst active state determination means is provided downstream of the downstream side NOx catalyst 20. 35 is provided. Other system configurations are the same as those in the embodiment (3).
[0065]
In the present embodiment (4), the ECU 22 controls the exhaust passage switching valve 34 as follows based on the output signals of the two upstream and downstream exhaust temperature sensors 21 and 35.
[0066]
(1) The control method when the active state of the upstream NOx catalyst 19 is lower than the predetermined range (A in FIG. 2) is as follows.
In this case, unreacted HC in the upstream NOx catalyst 19 passes through the upstream NOx catalyst 19. At that time, if the active state of the downstream NOx catalyst 20 is within a predetermined range (B in FIG. 2) and a high NOx purification rate can be obtained with the downstream NOx catalyst 20, the exhaust flows through the main exhaust passage 31, HC is directly supplied to the downstream NOx catalyst 20 to purify NOx. On the other hand, when the activation state of the downstream NOx catalyst 20 is not within the predetermined range (A and C in FIG. 2) and the high NOx purification rate cannot be obtained with the downstream NOx catalyst 20, the downstream NOx catalyst 20 performs HC. Therefore, exhaust gas is allowed to flow through the bypass exhaust passage 32 and HC is adsorbed by the HC adsorbent 33.
[0067]
(2) The control method when the activation state of the upstream NOx catalyst 19 is within the predetermined range (B in FIG. 2) is as follows.
In this case, since most of the supplied HC reacts with the upstream NOx catalyst 19, even if the activation state of the downstream NOx catalyst 20 is within a predetermined range (B in FIG. 2), the downstream NOx catalyst 20 HC is insufficient and the NOx purification rate decreases. Therefore, in this case, the exhaust gas is caused to flow through the bypass exhaust passage 32. As a result, the relatively high temperature exhaust gas passes through the HC adsorbent 33, so that the HC that has been adsorbed by the HC adsorbent 33 so far is desorbed and supplied to the downstream NOx catalyst 20. For this reason, a sufficient amount of HC is also supplied to the downstream NOx catalyst 20 to purify NOx. On the other hand, if the downstream NOx catalyst 20 is not within the predetermined range (A and C in FIG. 2) and the downstream NOx catalyst 20 cannot obtain a high NOx purification rate, the downstream NOx catalyst 20 Since HC cannot be used effectively, the exhaust is allowed to flow through the main exhaust passage 31 to prevent HC from being desorbed from the HC adsorbent 33 in the bypass exhaust passage 32.
[0068]
(3) The control method when the active state of the upstream NOx catalyst 19 is higher than the predetermined range (C in FIG. 2) is as follows.
In this case, since almost all of the supplied HC reacts with the upstream NOx catalyst 19, the active state of the downstream NOx catalyst 20 is the same as when the upstream NOx catalyst 19 is within the predetermined range. The exhaust passage is switched depending on whether it is within a predetermined range.
[0069]
The NOx purification control described above is executed by the ECU 22 at predetermined time intervals (for example, every second) according to the exhaust passage switching control program of FIG. When this program is started, first, in step 301, the upstream side catalyst temperature Ta (active state of the upstream side NOx catalyst 19) detected by the two exhaust temperature sensors 21 and 35 and the downstream side catalyst temperature Tb (downstream side NOx). The active state of the catalyst 20) is read. Thereafter, in step 302, it is determined whether or not the upstream catalyst temperature Ta is included in the region A.
[0070]
When the upstream catalyst temperature Ta is included in the region A (that is, when the activation state of the upstream NOx catalyst 19 is low), the process proceeds to step 303 to determine whether or not the downstream catalyst temperature Tb is included in the region B. To do. When the downstream catalyst temperature Tb is included in the region B, the active state of the downstream NOx catalyst 20 is within a predetermined range, and the NOx purification rate of the downstream NOx catalyst 20 is high. The passage switching valve 34 is switched to allow the exhaust to flow toward the main exhaust passage 31, and HC that has passed through the upstream NOx catalyst 19 without being reacted is supplied to the downstream NOx catalyst 20.
[0071]
On the other hand, if it is determined in step 303 that the downstream catalyst temperature Tb is not included in the region B, the activation state of the downstream NOx catalyst 20 is not within the predetermined range, and the NOx purification rate of the downstream NOx catalyst 20 is Therefore, from the viewpoint of effective use of HC, the process proceeds to Step 305, where the exhaust passage switching valve 34 is switched to flow exhaust to the bypass exhaust passage 32 side, and the HC that has passed through the upstream side NOx catalyst 19 is adsorbed by HC. Adsorbed to the material 33.
[0072]
If it is determined in step 302 described above that the upstream catalyst temperature Ta is not included in the region A, the upstream NOx catalyst 19 is activated, so that the HC passing through the upstream NOx catalyst 19 is relatively Few. In this case, the process proceeds to step 304 to determine whether or not the downstream catalyst temperature Tb is included in the region B. If included in the region B, the activation state of the downstream NOx catalyst 20 is within a predetermined range. Yes, since the NOx purification rate of the downstream side NOx catalyst 20 is high, the routine proceeds to step 305, where the exhaust passage switching valve 34 is switched so that the exhaust flows to the bypass exhaust passage 32 side. As a result, high-temperature exhaust gas is caused to flow toward the bypass exhaust passage 32 to raise the temperature of the HC adsorbent 33, thereby desorbing the HC that has been adsorbed by the HC adsorbent 33 so far and downstream NOx. The catalyst is supplied to the catalyst 20 and the downstream NOx catalyst 20 purifies NOx.
[0073]
On the other hand, when it is determined in step 304 that the downstream catalyst temperature Tb is not included in the region B, the activation state of the downstream NOx catalyst 20 is not within the predetermined range, and the NOx purification rate of the downstream NOx catalyst 20 is Since it is not so high, from the viewpoint of effective use of HC, the process proceeds to step 306, where the exhaust passage switching valve 34 is switched to flow the exhaust to the main exhaust passage 31 side, and HC desorption from the HC adsorbent 33 is stopped. .
[0074]
In the embodiment (4) described above, in addition to the upstream catalyst temperature Ta (the active state of the upstream NOx catalyst 19), the downstream catalyst temperature Tb (the active state of the downstream NOx catalyst 20) is also detected. Since the exhaust passage is switched according to the result, the exhaust passage is switched more appropriately than in the case of switching the exhaust passage based only on the upstream side catalyst temperature as in the embodiment (3). This can further reduce the fuel consumption and increase the NOx purification rate.
[0075]
In this embodiment (4) as well, as a reducing agent supply means for supplying a reducing agent (HC) to the NOx catalyst, an HC supply nozzle may be connected upstream of the upstream NOx catalyst instead of post-injection. Alternatively, three or more NOx catalysts may be provided in series in the exhaust pipe.
[0076]
[Embodiment (5)]
In the embodiment (5) of the present invention shown in FIGS. 15 to 17, when the exhaust flow is switched from the main exhaust passage 31 to the bypass exhaust passage 32 in the same system configuration as the embodiment (3) shown in FIG. The operation of alternately switching the exhaust passage switching valve 34 between the bypass exhaust passage 32 side and the main exhaust passage 31 side is repeated for a predetermined time or a predetermined number of times. Other configurations are the same as those in FIG.
[0077]
That is, when the time for flowing the exhaust gas to the main exhaust passage 31 becomes longer, the temperature of the HC adsorbent 33 in the bypass exhaust passage 32 decreases due to heat dissipation. In this state, if the flow of exhaust gas is suddenly switched from the main exhaust passage 31 to the bypass exhaust passage 32 side, the exhaust gas passes through the cooled HC adsorbent 33, so that the exhaust temperature decreases. For this reason, the temperature of the downstream NOx catalyst 20 may decrease, and the NOx purification rate may decrease.
[0078]
In the present embodiment (5), in order to prevent this, when switching the exhaust flow from the main exhaust passage 31 to the bypass exhaust passage 32, the exhaust passage switching valve 34 is connected to the bypass exhaust passage 32 side and the main exhaust passage 31 side. By repeating the operation of alternately switching to a predetermined time or a predetermined number of times, a rapid temperature drop of the downstream side NOx catalyst 20 is prevented. Further, at the time of switching the exhaust passage, the switching frequency f of the exhaust passage switching valve 34 is increased as the change rate of the active state (upstream catalyst temperature) of the upstream NOx catalyst 19 is smaller.
[0079]
That is, when the exhaust gas temperature changes more gradually and the change in the active state of the upstream NOx catalyst 19 is smaller, the exhaust flow suddenly switches from the main exhaust passage 31 to the bypass exhaust passage 32 and flows into the downstream NOx catalyst 20. The reduction in the NOx purification rate due to the temperature drop of the exhaust gas is likely to increase. As a countermeasure, when the switching frequency f of the exhaust passage switching valve 34 is increased, the time interval for supplying low-temperature exhaust gas from the bypass exhaust passage 32 side to the downstream NOx catalyst 20 is shortened, and the temperature change of the downstream NOx catalyst 20 is reduced. Therefore, it is possible to prevent a reduction in the NOx purification rate due to a decrease in exhaust gas temperature.
[0080]
The NOx purification control described above is executed by the ECU 22 at predetermined time intervals (for example, every second) according to the exhaust passage switching control program of FIG. When this program is started, first, in step 401, the upstream catalyst temperature T (active state of the upstream NOx catalyst 19) detected by the exhaust temperature sensor 21 is read. In the next step 402, this upstream catalyst temperature is read. It is determined whether the active state region including T corresponds to any of A, B, and C in FIG.
[0081]
If the region determined in step 402 is A or C, the process proceeds to step 403, where the change rate of the upstream catalyst temperature T is calculated by subtracting the current temperature T from the previous temperature T, for example. Based on the change rate of the upstream catalyst temperature T, the switching frequency f of the exhaust passage switching valve 34 is calculated from a map. As shown in FIG. 16, the map of the switching frequency f is determined by using the change rate of the upstream catalyst temperature T as a parameter, and is set so that the change frequency f increases as the change rate of the upstream catalyst temperature T decreases. ing.
[0082]
After calculating the switching frequency f, the process proceeds to step 404, and when the exhaust flow is switched from the main exhaust passage 31 to the bypass exhaust passage 32, the exhaust passage switching valve 34 is set to the bypass exhaust passage 32 side and the main exhaust passage 31 at the switching frequency f. The operation of switching alternately to the side is repeated for a predetermined time or a predetermined number of times. On the other hand, if the region determined in step 402 is B, the process proceeds to step 405, and the exhaust passage switching valve 34 is switched to allow the exhaust to flow to the main exhaust passage 31 side.
[0083]
In the exhaust passage switching control described above, for example, as shown in FIG. 17, when the active state (upstream catalyst temperature) of the upstream NOx catalyst 19 changes in the order of A → B → C, the region of A → B is The same control as in the embodiment (3) is performed. Thereafter, at time X when the activation state of the upstream NOx catalyst 19 changes from B to C, the exhaust passage is switched from the main exhaust passage 31 side to the bypass exhaust passage 32 side. Since the exhaust gas passes through the HC adsorbent 33 cooled by the heat release, the exhaust gas temperature decreases, so that the temperature of the downstream NOx catalyst 20 decreases and the NOx purification rate decreases.
[0084]
On the other hand, in the present embodiment (5), when switching the exhaust passage from the main exhaust passage 31 side to the bypass exhaust passage 32 side, the exhaust passage switching valve 34 is switched at the switching frequency f, thereby intermittently discharging the high-temperature exhaust. Therefore, the downstream NOx catalyst 20 can be supplied from the main exhaust passage 31 side to the downstream NOx catalyst 20, and a rapid temperature drop of the downstream NOx catalyst 20 can be prevented. A purification rate can be obtained.
[0085]
In the present embodiment (5), the switching frequency is changed in accordance with the changing speed of the active state (upstream catalyst temperature) of the upstream NOx catalyst 19, but the switching frequency is constant and the time ratio (duty ratio) of the switching interval is changed. Of course, both the switching frequency and the time ratio of the switching interval may be changed. In this case, the time ratio of the switching interval may be changed so that the ratio of the exhaust flowing through the main exhaust passage 31 increases as the change rate of the activation state of the upstream NOx catalyst 19 decreases.
[0086]
Alternatively, at the time of switching the exhaust passage, instead of switching the exhaust passage switching valve 34 at the switching frequency f, the exhaust passage switching valve 34 is held at an intermediate position, and the opening degree thereof depends on the active state of the upstream NOx catalyst 19. Even if the control is performed, the same effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.
FIG. 2 is a graph showing the relationship between catalyst temperature and purification rate
FIG. 3 is a graph showing the relationship between post-injection timing, cylinder internal temperature, and HC reforming degree.
FIG. 4 is a time chart showing the relationship between pilot injection, main injection, and post-injection.
FIG. 5 is a flowchart showing a process flow of a post-injection timing control program.
FIG. 6 is a graph showing the relationship between upstream catalyst temperature T and post-injection timing.
FIG. 7 is a graph showing the distribution of the HC amount and NOx amount in the exhaust when the upstream catalyst temperature T> the set temperature T1.
FIG. 8 is a graph showing the distribution of the HC amount and NOx amount in the exhaust when the upstream catalyst temperature T ≦ the set temperature T1.
FIG. 9 is a block diagram of the entire engine control system showing the embodiment (2) of the present invention.
FIG. 10 is a configuration diagram of the entire engine control system showing the embodiment (3) of the present invention.
FIG. 11 is a flowchart showing a processing flow of an exhaust passage switching control program according to the embodiment (3) of the present invention.
FIG. 12 is a time chart showing the behavior of the exhaust passage switching control according to the embodiment (3) of the present invention.
FIG. 13 is a block diagram of the entire engine control system showing the embodiment (4) of the present invention.
FIG. 14 is a flowchart showing the flow of processing of an exhaust passage switching control program according to the embodiment (4) of the present invention.
FIG. 15 is a flowchart showing a processing flow of an exhaust passage switching control program according to the embodiment (5) of the present invention.
FIG. 16 is a diagram conceptually showing a map of the switching frequency of the exhaust passage switching valve using the change rate of the upstream catalyst temperature as a parameter.
FIG. 17 is a time chart showing the behavior of the exhaust passage switching control according to the embodiment (5) of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Diesel engine (internal combustion engine), 11 ... Intake pipe, 14 ... Fuel injection valve (fuel injection means, reducing agent supply means), 15 ... High-pressure fuel pump, 18 ... Exhaust pipe (exhaust passage), 19 ... Upstream NOx Catalyst (catalyst), 20 ... downstream side NOx catalyst (catalyst), 21 ... exhaust gas temperature sensor (upstream side catalyst active state determination means), 22 ... ECU (fuel injection control means, post-injection timing correction means, control means), 23 ... engine speed sensor, 31 ... main exhaust passage, 32 ... bypass exhaust passage, 33 ... HC adsorbent, 34 ... exhaust passage switching valve (exhaust passage switching means), 35 ... exhaust temperature sensor (downstream catalyst active state judging means) ), 40 ... HC adsorbent (HC adsorbing means).

Claims (7)

内燃機関の各気筒毎に燃料噴射手段を設けると共に、前記内燃機関の排気通路に、排気中の窒素酸化物を還元浄化する複数の触媒を直列に設置し、前記各気筒の燃料噴射手段に対し圧縮上死点近傍で機関出力発生のための主噴射指令を出力すると共に少なくとも1つの気筒の燃料噴射手段に対し機関の膨張行程又は排気行程において前記触媒に炭化水素を供給するための後噴射指令を出力する燃料噴射制御手段を備えた内燃機関の排気浄化装置において、
前記複数の触媒の中で最下流の触媒よりも上流側に配置された触媒(以下「上流側触媒」という)の活性状態を判定する上流側触媒活性状態判定手段を備え、
前記燃料噴射制御手段は、前記上流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態に応じて前記後噴射指令における後噴射時期を補正する後噴射時期補正手段を有することを特徴とする内燃機関の排気浄化装置。
A fuel injection means is provided for each cylinder of the internal combustion engine, and a plurality of catalysts for reducing and purifying nitrogen oxides in the exhaust gas are installed in series in the exhaust passage of the internal combustion engine. A main injection command for generating engine output in the vicinity of the compression top dead center and a post-injection command for supplying hydrocarbons to the catalyst in the expansion stroke or exhaust stroke of the engine to the fuel injection means of at least one cylinder In an exhaust gas purification apparatus for an internal combustion engine provided with a fuel injection control means for outputting
An upstream catalyst active state determining means for determining an active state of a catalyst (hereinafter referred to as “upstream catalyst”) disposed upstream of the most downstream catalyst among the plurality of catalysts;
The fuel injection control means includes post-injection timing correction means for correcting a post-injection timing in the post-injection command in accordance with the active state of the upstream catalyst determined by the upstream catalyst active state determination means. An exhaust purification device for an internal combustion engine.
前記後噴射時期補正手段は、前記上流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態が低いほど、前記後噴射時期を進角補正し、前記上流側触媒の活性状態が高いほど、前記後噴射時期を遅角補正することを特徴とする請求項1に記載の内燃機関の排気浄化装置。  The post-injection timing correction means corrects the advance of the post-injection timing as the upstream catalyst activation state determined by the upstream catalyst activation state determination means is low, and the upstream catalyst activation state is high. 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the post-injection timing is corrected for delay. 内燃機関の排気通路に直列に配設され、排気中の窒素酸化物を還元浄化する複数の触媒と、
前記触媒に窒素酸化物の還元剤を供給する還元剤供給手段と、
前記複数の触媒の間に並列に形成された主排気通路及びバイパス排気通路と、
前記バイパス排気通路に設けられ、低温時に排気中の炭化水素を吸着し、高温時に吸着した炭化水素を脱離する炭化水素吸着材と、
排気の流れを前記主排気通路と前記バイパス排気通路のいずれかに選択的に切り換える排気通路切換手段と、
前記主排気通路と前記バイパス排気通路との並列通路よりも上流側に配置された触媒(以下「上流側触媒」という)の活性状態を判定する上流側触媒活性状態判定手段と、
前記主排気通路と前記バイパス排気通路との下流側合流部よりも下流側に配置された触媒(以下「下流側触媒」という)の活性状態が窒素酸化物浄化率の高い所定範囲内であるか否かを判定する下流側触媒活性状態判定手段と、
前記上流側触媒活性状態判定手段及び前記下流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態及び前記下流側触媒の活性状態に基づいて前記排気通路切換手段の切換位置を制御する制御手段と
を備え
前記制御手段は、
前記上流側触媒の活性状態が窒素酸化物浄化率の高い所定範囲よりも低く且つ前記下流側触媒の活性状態が前記所定範囲から外れていると判定された時に、排気を前記バイパス排気通路に流すように前記排気通路切換手段を切り換え、
前記上流側触媒の活性状態が前記所定範囲よりも低く且つ前記下流側触媒の活性状態が前記所定範囲内にあると判定された時に、排気を前記主排気通路に流すように前記排気通路切換手段を切り換え、
前記上流側触媒の活性状態が前記所定範囲内又はそれよりも高く且つ前記下流側触媒の活性状態が前記所定範囲から外れていると判定された時に、排気を前記主排気通路に流すように前記排気通路切換手段を切り換え、
前記上流側触媒の活性状態が前記所定範囲内又はそれよりも高く且つ前記下流側触媒の活性状態が前記所定範囲内にあると判定された時に、排気を前記バイパス排気通路に流すように前記排気通路切換手段を切り換えることを特徴とする内燃機関の排気浄化装置。
A plurality of catalysts arranged in series in the exhaust passage of the internal combustion engine for reducing and purifying nitrogen oxides in the exhaust; and
Reducing agent supply means for supplying a nitrogen oxide reducing agent to the catalyst;
A main exhaust passage and a bypass exhaust passage formed in parallel between the plurality of catalysts;
A hydrocarbon adsorbent that is provided in the bypass exhaust passage, adsorbs hydrocarbons in exhaust at low temperatures, and desorbs hydrocarbons adsorbed at high temperatures;
Exhaust passage switching means for selectively switching the flow of exhaust to either the main exhaust passage or the bypass exhaust passage;
Upstream side catalyst active state determining means for determining an active state of a catalyst (hereinafter referred to as “upstream side catalyst”) disposed upstream of a parallel passage of the main exhaust passage and the bypass exhaust passage;
Whether the active state of the catalyst (hereinafter referred to as “downstream catalyst”) disposed downstream of the downstream side joining portion between the main exhaust passage and the bypass exhaust passage is within a predetermined range in which the nitrogen oxide purification rate is high. Downstream catalytic activity state determining means for determining whether or not,
Control for controlling the switching position of the exhaust passage switching means based on the active state of the upstream catalyst and the active state of the downstream catalyst determined by the upstream catalyst active state determining means and the downstream catalyst active state determining means and means,
The control means includes
When it is determined that the activation state of the upstream catalyst is lower than a predetermined range in which the nitrogen oxide purification rate is high and the activation state of the downstream catalyst is out of the predetermined range, exhaust gas is allowed to flow through the bypass exhaust passage. Switching the exhaust passage switching means,
The exhaust passage switching means is configured to cause the exhaust to flow into the main exhaust passage when it is determined that the active state of the upstream catalyst is lower than the predetermined range and the active state of the downstream catalyst is within the predetermined range. Switch
When it is determined that the active state of the upstream catalyst is within or higher than the predetermined range and the active state of the downstream catalyst is out of the predetermined range, the exhaust is caused to flow through the main exhaust passage. Switch the exhaust passage switching means,
The exhaust gas is caused to flow through the bypass exhaust passage when it is determined that the active state of the upstream catalyst is within or higher than the predetermined range and the active state of the downstream catalyst is within the predetermined range. An exhaust emission control device for an internal combustion engine, wherein the passage switching means is switched .
内燃機関の排気通路に直列に配設され、排気中の窒素酸化物を還元浄化する複数の触媒と、
前記触媒に窒素酸化物の還元剤を供給する還元剤供給手段と、
前記複数の触媒の間に並列に形成された主排気通路及びバイパス排気通路と、
前記バイパス排気通路に設けられ、低温時に排気中の炭化水素を吸着し、高温時に吸着した炭化水素を脱離する炭化水素吸着材と、
排気の流れを前記主排気通路と前記バイパス排気通路のいずれかに選択的に切り換える排気通路切換手段と、
前記主排気通路と前記バイパス排気通路との並列通路よりも上流側に配置された触媒(以下「上流側触媒」という)の活性状態を判定する上流側触媒活性状態判定手段と、
前記上流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態に基づいて前記排気通路切換手段の切換位置を制御する制御手段と
を備え、
前記制御手段は、排気の流れを前記主排気通路から前記バイパス排気通路に切り換える際に、暫くの期間は、前記排気通路切換手段を前記バイパス排気通路側と前記主排気通路側とに交互に切り換える動作を繰り返すことを特徴とする内燃機関の排気浄化装置。
A plurality of catalysts arranged in series in the exhaust passage of the internal combustion engine for reducing and purifying nitrogen oxides in the exhaust; and
Reducing agent supply means for supplying a nitrogen oxide reducing agent to the catalyst;
A main exhaust passage and a bypass exhaust passage formed in parallel between the plurality of catalysts;
A hydrocarbon adsorbent that is provided in the bypass exhaust passage, adsorbs hydrocarbons in exhaust at low temperatures, and desorbs hydrocarbons adsorbed at high temperatures;
Exhaust passage switching means for selectively switching the flow of exhaust to either the main exhaust passage or the bypass exhaust passage;
Upstream side catalyst active state determining means for determining an active state of a catalyst (hereinafter referred to as “upstream side catalyst”) disposed upstream of a parallel passage of the main exhaust passage and the bypass exhaust passage;
Control means for controlling the switching position of the exhaust passage switching means based on the active state of the upstream catalyst determined by the upstream catalyst active state determination means;
With
The control means switches the exhaust passage switching means alternately between the bypass exhaust passage side and the main exhaust passage side for a while when the exhaust flow is switched from the main exhaust passage to the bypass exhaust passage. exhaust gas purification apparatus for an internal combustion engine you and repeating the operation.
前記上流側触媒活性状態判定手段は、前記上流側触媒の活性状態が窒素酸化物浄化率の高い所定範囲内であるか否かを判定し、
前記制御手段は、前記上流側触媒の活性状態が前記所定範囲内であると判定された時に排気を前記主排気通路に流すように前記排気通路切換手段を切り換え、前記上流側触媒の活性状態が前記所定範囲から外れていると判定された時に排気を前記バイパス排気通路に流すように前記排気通路切換手段を切り換えることを特徴とする請求項に記載の内燃機関の排気浄化装置。
The upstream side catalyst active state determining means determines whether the active state of the upstream side catalyst is within a predetermined range with a high nitrogen oxide purification rate,
The control means switches the exhaust passage switching means so that the exhaust flows into the main exhaust passage when it is determined that the active state of the upstream catalyst is within the predetermined range, and the active state of the upstream catalyst is 5. The exhaust emission control device for an internal combustion engine according to claim 4 , wherein the exhaust passage switching means is switched so that the exhaust flows through the bypass exhaust passage when it is determined that the exhaust gas is out of the predetermined range.
前記上流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態の変化速度を判定する手段を備え、
前記制御手段は、排気の流れを前記主排気通路から前記バイパス排気通路に切り換える際に、前記上流側触媒の活性状態の変化速度に応じて前記排気通路切換手段の切換周波数と切換間隔の時間比率の少なくとも一方を変化させることを特徴とする請求項3乃至5のいずれかに記載の内燃機関の排気浄化装置。
Means for determining the change rate of the activation state of the upstream catalyst determined by the upstream catalyst activation state determination unit;
The control means, when switching the flow of exhaust from the main exhaust passage to the bypass exhaust passage, the ratio of the switching frequency of the exhaust passage switching means and the time ratio of the switching interval according to the change rate of the active state of the upstream catalyst 6. The exhaust gas purification apparatus for an internal combustion engine according to claim 3 , wherein at least one of them is changed.
内燃機関の各気筒毎に燃料噴射手段を設けると共に、前記内燃機関の排気通路に、排気中の窒素酸化物を還元浄化する複数の触媒を直列に設置し、前記各気筒の燃料噴射手段に対し圧縮上死点近傍で機関出力発生のための主噴射指令を出力すると共に少なくとも1つの気筒の燃料噴射手段に対し機関の膨張行程又は排気行程において前記触媒に炭化水素を供給するための後噴射指令を出力する燃料噴射制御手段と、前記複数の触媒の中で最下流の触媒よりも上流側に設置された触媒(以下「上流側触媒」という)の活性状態を判定する上流側触媒活性状態判定手段とを備えた内燃機関の排気浄化装置において、
前記複数の触媒は、低温時に排気中の炭化水素を吸着し、高温時に吸着した炭化水素を脱離する炭化水素吸着手段をそれぞれ有し、前記複数の炭化水素吸着手段は、炭化水素吸着能力が上流側のものより下流側のものの方が大きくなるように構成され
前記燃料噴射制御手段は、前記上流側触媒活性状態判定手段で判定した前記上流側触媒の活性状態が窒素酸化物浄化率が高い所定範囲よりも低い場合に、所定期間だけ、後噴射指令を出力することを特徴とする内燃機関の排気浄化装置。
A fuel injection means is provided for each cylinder of the internal combustion engine, and a plurality of catalysts for reducing and purifying nitrogen oxides in the exhaust gas are installed in series in the exhaust passage of the internal combustion engine. A main injection command for generating engine output in the vicinity of the compression top dead center and a post-injection command for supplying hydrocarbons to the catalyst in the expansion stroke or exhaust stroke of the engine to the fuel injection means of at least one cylinder And an upstream catalyst active state determination for determining an active state of a catalyst (hereinafter referred to as an “upstream catalyst”) installed upstream of the most downstream catalyst among the plurality of catalysts. An exhaust gas purification apparatus for an internal combustion engine comprising means ,
The plurality of catalysts each have hydrocarbon adsorption means for adsorbing hydrocarbons in exhaust at low temperatures and desorbing hydrocarbons adsorbed at high temperatures, and the plurality of hydrocarbon adsorption means have hydrocarbon adsorption capacity. It is configured so that the downstream one is larger than the upstream one ,
The fuel injection control means outputs a post-injection command only for a predetermined period when the upstream catalyst active state determined by the upstream catalyst active state determination means is lower than a predetermined range in which the nitrogen oxide purification rate is high. exhaust gas purification apparatus for an internal combustion engine you characterized by.
JP30030597A 1997-09-16 1997-10-31 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3922408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30030597A JP3922408B2 (en) 1997-09-16 1997-10-31 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-250294 1997-09-16
JP25029497 1997-09-16
JP30030597A JP3922408B2 (en) 1997-09-16 1997-10-31 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11153021A JPH11153021A (en) 1999-06-08
JP3922408B2 true JP3922408B2 (en) 2007-05-30

Family

ID=26539721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30030597A Expired - Lifetime JP3922408B2 (en) 1997-09-16 1997-10-31 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3922408B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543473B2 (en) * 2000-01-20 2010-09-15 マツダ株式会社 Engine exhaust purification system
JP4020054B2 (en) 2003-09-24 2007-12-12 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
FR2877693B1 (en) * 2004-11-08 2007-04-13 Peugeot Citroen Automobiles Sa EXHAUST GAS NOx TREATMENT SYSTEM OF A MOTOR VEHICLE THERMAL MOTOR
ATE465328T1 (en) * 2004-12-23 2010-05-15 Umicore Ag & Co Kg METHOD FOR MONITORING THE NITROGEN OXIDE STORAGE CAPACITY OF A NITROGEN OXIDE STORAGE CATALYST USED AS A STARTING CATALYST
EP2063077B1 (en) * 2007-04-03 2013-07-31 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP4940099B2 (en) * 2007-10-23 2012-05-30 本田技研工業株式会社 Fluid temperature estimation device for internal combustion engine
JP5006776B2 (en) * 2007-12-10 2012-08-22 本田技研工業株式会社 Fuel reformer

Also Published As

Publication number Publication date
JPH11153021A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
EP1873381B1 (en) Exhaust gas purifying method and purifier
EP0839996B1 (en) Exhaust gas purifying device for engine
US6742329B2 (en) Exhaust emission control system of diesel engine
JPWO2011114540A1 (en) Exhaust gas purification device for internal combustion engine
EP1344910B1 (en) Exhaust-emission purifying apparatus for internal combustion engine
WO2013175604A1 (en) Exhaust emission purification device for internal combustion engine
AU2011376494B2 (en) Exhaust gas purification apparatus for an internal combustion engine
WO2013118252A1 (en) Exhaust emission control device for internal combustion engine
WO2007110997A1 (en) METHOD OF CONTROLLING NOx PURIFICATION SYSTEM AND NOx PURIFICATION SYSTEM
WO2013035155A1 (en) Exhaust gas purification device for internal combustion engine
JPWO2010079619A1 (en) Exhaust gas purification device for internal combustion engine
JP6024835B2 (en) Exhaust gas purification device for internal combustion engine
JP3922408B2 (en) Exhaust gas purification device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
KR101707388B1 (en) Exhaust purification system for an internal combustion engine
JP5994931B2 (en) Exhaust gas purification device for internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP5163808B2 (en) Exhaust gas purification device for internal combustion engine
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
JP3629953B2 (en) Exhaust gas purification device for internal combustion engine
JP6183537B2 (en) Exhaust gas purification device for internal combustion engine
JP3334592B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP4910656B2 (en) Exhaust gas purification device for internal combustion engine
JP2010180709A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6