JP3920492B2 - How to charge multiple battery packs - Google Patents

How to charge multiple battery packs Download PDF

Info

Publication number
JP3920492B2
JP3920492B2 JP08012399A JP8012399A JP3920492B2 JP 3920492 B2 JP3920492 B2 JP 3920492B2 JP 08012399 A JP08012399 A JP 08012399A JP 8012399 A JP8012399 A JP 8012399A JP 3920492 B2 JP3920492 B2 JP 3920492B2
Authority
JP
Japan
Prior art keywords
charging
battery
charge
battery pack
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08012399A
Other languages
Japanese (ja)
Other versions
JP2000277167A (en
Inventor
一 阿藤
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08012399A priority Critical patent/JP3920492B2/en
Publication of JP2000277167A publication Critical patent/JP2000277167A/en
Application granted granted Critical
Publication of JP3920492B2 publication Critical patent/JP3920492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複数のパック電池を順番にパルス充電する充電方法に関する。
【0002】
【従来の技術】
複数のパック電池を満充電する方法は、全てのパック電池を一緒に充電する方法と、順番に切り換えてパック電池を満充電する方法とがある。全てのパック電池を一緒に充電する方法は、それぞれのパック電池を最適な充電電流で充電するために、専用の充電回路を必要とするので、充電器のコストが高くなる。たとえば、4個のパック電池を理想的な状態で充電するには、4組の充電用電源を必要とする。出力電流を4倍とする1組の充電用電源の出力に、4個のパック電池を接続して充電できれば、充電用電源を簡単にできる。しかしながら、このような簡単な充電用電源では、全てのパック電池に、理想的な状態で充電電流を均一に分配して充電できなくなってしまう。たとえば、電圧の低い電池は、電圧が高い電池よりも大電流が流れて、電流を均一に分配できなくなる。
【0003】
1組の充電用電源に、複数のパック電池を並列に連結する充電方法は、それぞれのパック電池と直列に、充電電流を制御する電流制御回路を連結して、充電電流を理想的な状態に分配することが理論的には可能である。しかしながら、電流制御回路は、それ自体の内部抵抗を調整して、パック電池の充電電流を制御するので、ここで電力を消費する欠点があって、実用化は難しい。電流制御回路は、大電力を制御できる回路に設計する必要があり、部品コストが高くなる。また、電流制御回路で無駄に電力を消費するので、充電用電源の出力電力を大きく設計する必要もある。さらに、電流制御回路での発熱も大きく、大きな放熱フィンを必要とし、このことも部品コストを高くする。
【0004】
この欠点は、複数のパック電池を、順番に切り換えて充電する方法で解消できる。この充電方法は、満充電された電池を、次々と順番に切り換えて充電するので、1組の充電用電源で、複数のパック電池を理想的な充電電流に制御して満充電できる特長がある。
【0005】
この充電方法は、特開平4−105521号公報と、特開平3−164034号公報に記載される。これ等の公報に記載される充電方法は、最初に、第1のパック電池のみに充電電流を供給して、この電池を満充電する。その後、第1のパック電池が満充電されると、第1のパック電池の充電を遮断して、第2のパック電池にのみ充電電流を供給して、このパック電池を満充電する。このように、第1、第2、第3・・・と切り換えて、パック電池を満充電する。
【0006】
【発明が解決しようとする課題】
複数のパック電池を順番に切り換えて満充電する充電方法は、充電電流を小さくして、順番にパック電池を満充電できる。しかしながら、この充電方法は、全てのパック電池を満充電するのに時間がかかる欠点がある。満充電時間を短縮するために、充電電流を大きくすると、電池性能が低下する。パック電池は、好ましい状態で充電できる最大電流が制限されるからである。大電流で急速充電すると、電池温度が上昇し、あるいは、電池に悪い影響を与えて、電池の電気的な性能を低下させる。
【0007】
本発明は、さらにこの欠点を解決することを目的に開発されたもので、本発明の重要な目的は、極めて簡単な回路で、複数のパック電池の電池性能を低下させることなく、短時間で満充電できるパック電池の充電方法を提供することにある。
【0008】
また、本発明の他の大切な目的は、電池温度の上昇を少なくして、全てのパック電池を短時間で満充電できるパック電池の充電方法を提供するにある。
【0009】
さらにまた、本発明の他の大切な目的は、安価に製造できる充電用電源で複数のパック電池を短時間で満充電できるパック電池の充電方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の複数のパック電池の充電方法は、充電用電源1が、充電するパック電池2を切り換えて、充電制御回路6を内蔵している複数のパック電池2を充電する。充電用電源1は、各々のパック電池2の充電制御回路6に、所定の周期で充電許可信号を順番に出力する。パック電池2の充電制御回路6は、パック電池2に内蔵している二次電池5の充電状態を制御するスイッチング素子7と、このスイッチング素子7を制御する制御回路8とを備えている。制御回路8は、パック電池2に内蔵している二次電池5が満充電でないときに出力される充電要求信号と、充電用電源1から出力される充電許可信号の両方を検出するときにかぎって、スイッチング素子7をオンにして二次電池5を充電し、充電要求信号と充電許可信号のいずれかが検出されないときにスイッチング素子7をオフにして充電しないように制御する。
【0011】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための複数のパック電池の充電方法を例示するものであって、本発明は複数のパック電池の充電方法を以下のものに特定しない。
【0012】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0013】
図1は、本発明の充電方法に使用する、充電用電源1とパック電池2のブロック図を示している。この図は4組のパック電池2を充電する状態を示している。本発明の充電方法は、複数のパック電池を充電する方法にかかるものであるが、充電するパック電池の数を4組に特定するものではない。
【0014】
この図に示す充電用電源1は、電源回路3と充電制御信号発生回路4とを備えている。電源回路3は、パック電池2に内蔵される二次電池5を、充電できる電圧と電流を出力する。充電用電源1は、好ましくは、スイッチング電源である。スイッチング電源は、100ボルトの交流を整流する整流回路と、整流回路から出力される直流をスイッチングするスイッチング回路と、このスイッチング回路でスイッチングされる交流を一次側に入力して、入力される電圧を二次電池5の充電電圧に降下させるトランスと、トランスから出力される交流を整流して直流とするダイオードからなる整流回路と、整流回路の出力電圧と制御回路からの信号で、スイッチング回路がスイッチングするデューティーを制御するCV/CC制御回路および絶縁用PC回路とを備えている。電源回路3は、必ずしもスイッチング電源とする必要はない。電源回路は、入力される交流の100Vをトランスで降圧して整流し、整流した直流を、安定化させる回路とすることもできる。
【0015】
充電制御信号発生回路4は、各々のパック電池2の充電制御回路6に、所定の周期で充電許可信号を順番に出力する。充電制御信号発生回路4は、充電許可信号を信号出力端子P1、P2、P3、P4から出力する。信号出力端子P1、P2、P3、P4は、各々のパック電池2の信号入力端子11に接続されて、各々のパック電池2をパルス充電する順番とタイミングを決定する充電許可信号をパック電池2に出力する。したがって、信号出力端子は、充電できるパック電池2の数に等しい個数設けられる。図の充電用電源1は、4組のパック電池2をパルス充電するので、4個の信号出力端子P1、P2、P3、P4を有する。
【0016】
充電制御信号発生回路4が信号出力端子P1、P2、P3、P4から出力する充電許可信号を図2に示している。この図の充電許可信号は、パック電池2をCH1〜CH4の順番でパルス充電する。各々のパック電池2を1パルスで充電する充電時間は、充電許可信号のパルス幅で決定される。図の充電許可信号は、パルス幅を1秒として、1パルスの充電時間を1秒としている。ただし、本発明の充電方法は、パック電池をパルス充電する1パルスの充電時間を特定しない。パック電池をパルス充電する1パルスの充電時間は、たとえば、50ミリ秒〜10秒、好ましくは0.1〜5秒、さらに好ましくは0.2〜3秒、最適には0.3〜2秒に設定される。
【0017】
パック電池2の1パルスの充電時間は、電池性能を低下させることなく急速充電できる時間に設定される。さらに、複数のパック電池2をパルス充電するとき、全てのパック電池2を同じ充電電流でパルス充電する方法と、それぞれのパック電池2を異なる充電電流でパルス充電する方法とがある。全てのパック電池2を同じ充電電流で充電する方法は、充電用電源1を簡単な回路にできる。各々のパック電池2を、たとえば、容量に応じて充電電流を変更する方法は、大容量のパック電池2と小容量のパック電池2の充電時間の差を少なくできる。
【0018】
パルス充電するときの休止時間は、一緒に充電されるパック電池2の個数で決定される。全ての電池を充電するパルスを、順番を切り換えてパルス充電するからである。休止時間は、一緒に充電できる電池の個数をn個とし、充電時間をTとし、さらに、各々のパック電池2の充電の切換インターバル時間をtとするとき、T(n−1)+ntとなる。図2の充電許可信号は、4組のパック電池2を充電し、充電時間Tを1秒とし、切換インターバル時間を250ミリ秒とするので、充電休止時間は4秒となる。したがって、各々のパック電池2は、1秒充電、4秒充電休止を繰り返してパルス充電される。
【0019】
各々のパック電池2は、充電用電源1から充電許可信号が入力されるときに、必ず充電されるのではない。パック電池2は、充電状態を制御する充電制御回路6を内蔵している。充電制御回路6は、内蔵している二次電池5の充電状態を制御するスイッチング素子7と、このスイッチング素子7を制御する制御回路8とを備えている。スイッチング素子7がオンになると、二次電池5は充電され、スイッチング素子7がオフになると二次電池5は充電されない。
【0020】
制御回路8は、内蔵している二次電池5の充電容量を検出して、二次電池5を充電する必要があるときに充電要求信号を出力する充電容量検出回路9と、この充電要求信号と充電許可信号の両方が入力されたときに、スイッチング素子7をオンに制御するアンド回路10とを備える。充電容量検出回路9は、パック電池2に内蔵している二次電池5が満充電された状態でないときに、充電要求信号を出力する。ただし、充電容量検出回路は、必ずしも二次電池が満状態でないときに限って、充電要求信号を出力しない。それは、パック電池によっては、満状態されない状態、たとえば、満充電に対して80%充電された状態で充電を停止することもあるからである。
【0021】
アンド回路10は、ふたつの入力側に充電許可信号と充電要求信号を入力しており、充電許可信号と充電要求信号が入力されるときに限って、スイッチング素子7をオンに制御し、充電許可信号と充電要求信号のいずれかが入力されない状態では、スイッチング素子7をオフにする。したがって、各々のパック電池2は、充電用電源1から充電許可信号が入力され、かつ、充電容量検出回路9からは充電要求信号がアンド回路10に入力されるときに限って充電される。充電許可信号は、パルス信号であるため、パック電池2はパルス充電される。
【0022】
各々のパック電池2に内蔵されるスイッチング素子7は、充電許可信号によって何れかひとつをオン、他をオフ状態に制御して、パック電池2を順番に繰り返しパルス充電する。各々のパック電池2に内蔵されるスイッチング素子7は、順番にオンに切り換えられて、パック電池2を順番にパルス充電する。パック電池2に内蔵された二次電池5が満充電されると、このパック電池2に内蔵される制御回路8は充電要求信号を出力しなくなる。したがって、満充電されたパック電池2は、入力される充電許可信号でスイッチング素子7がオンに切り換えられるタイミングになっても、オンに切り換えられることはなく、充電は停止される。満充電されないパック電池2は、充電容量検出回路9が充電要求信号を出力するので、充電用電源1から入力される充電許可信号で、スイッチング素子7を一定の周期でオンに切り換えて二次電池5を満充電する。
【0023】
【発明の効果】
本発明のパック電池の充電方法は、複数のパック電池を、電池性能を低下させることなく、短時間で満充電できる特長がある。それは、本発明の充電方法が、複数のパック電池に所定の周期で充電許可信号を順番に出力し、この充電許可信号でもって、各々のパック電池をタイミングをずらせて順番にパルス充電するからである。この状態で充電されるパック電池は、パルス電流で繰り返し充電しながら、一定の時間は充電が休止される。充電を休止しているときに、パルス充電されたパック電池は冷却される。そして、パルス充電したパック電池を冷却しているときに、他のパック電池をパルス充電する。この方法で充電する方法は、一緒に充電するパック電池の個数が多くなると、充電の休止時間が長くなる。休止時間が長くなると、充電するパルス電流を大きくできるので、全体の充電時間が延長されるのを少なくできる。
【0024】
さらに、本発明の充電方法は、電池温度の上昇を少なくして、全てのパック電池を短時間で満充電できる特長がある。それは、パルス充電して充電を休止する時間、すなわち、大電流でパルス充電した後、電池の冷却時間を有効に利用して、他のパック電池を充電するからである。この特長は、多数のパック電池を満充電するときに特に大切である。それは、従来の充電方法では、充電するパック電池の個数が多くなるにしたがって、全体の充電時間が長くなるからである。本発明の充電方法は、一緒に充電する電池の個数が多くなっても、パルス充電して休止するときに、他のパック電池を充電するので、多数のパック電池を短時間で満充電できる。とくに、一緒に充電するパック電池が多くなると、充電を休止する時間が長くなるので、パルス充電するピーク電流を大きくして、急速充電する時間が延長されるのを少なくできる。
【0025】
さらにまた、本発明の充電方法は、安価に製造できる充電回路を使用し、複数のパック電池を短時間で満充電できる特長も実現される。それは、本発明の充電方法が、パック電池に内蔵されるスイッチング素子をオンオフに切り換えて、全てのパック電池を理想的な状態で満充電できるからである。
【0026】
さらに、本発明のパック電池の充電方法は、充電用電源から各々のパック電池に、所定の周期で充電許可信号を順番に出力し、パック電池側では、この充電許可信号に加えて、充電要求信号が発生されるときに限って、スイッチング素子をオンにしてパルス充電する。パック電池は、パック電池2に内蔵している二次電池を充電する必要があるときに、充電要求信号を出力する。充電用電源は、順番にパルス充電するパック電池を特定すると共に、パルス充電する時間を特定する充電許可信号をパック電池に出力する。パック電池は、この充電許可信号と充電要求信号の両方を検出してパルス充電する。この状態で複数のパック電池をパルス充電する本発明の充電方法は、充電用電源にスイッチング素子を内蔵させることなく、パック電池に内蔵しているスイッチング素子を利用して、各々のパック電池を短時間でパルス充電できる。
【図面の簡単な説明】
【図1】本発明の実施例の充電方法に使用する充電用電源とパック電池のブロック図
【図2】本発明の実施例の充電方法を示すタイミングチャート図
【符号の説明】
1…充電用電源
2…パック電池
3…電源回路
4…充電制御信号発生回路
5…二次電池
6…充電制御回路
7…スイッチング素子
8…制御回路
9…充電容量検出回路
10…アンド回路
11…信号入力端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging method for sequentially charging a plurality of battery packs with pulses.
[0002]
[Prior art]
There are two methods for fully charging a plurality of battery packs: a method for charging all battery packs together, and a method for switching the battery packs in order to fully charge the battery pack. The method of charging all the battery packs together requires a dedicated charging circuit in order to charge each battery pack with an optimal charging current, which increases the cost of the charger. For example, to charge four battery packs in an ideal state, four sets of charging power sources are required. If the four pack batteries can be connected to the output of a set of charging power sources, whose output current is quadrupled, the charging power source can be simplified. However, with such a simple power supply for charging, charging cannot be performed by uniformly distributing the charging current to all the battery packs in an ideal state. For example, a battery having a low voltage flows a larger current than a battery having a high voltage, and cannot distribute the current uniformly.
[0003]
A charging method in which a plurality of battery packs are connected in parallel to a set of charging power supplies is connected to a current control circuit for controlling the charging current in series with each battery pack so that the charging current is in an ideal state. It is theoretically possible to distribute. However, since the current control circuit adjusts its own internal resistance to control the charging current of the battery pack, there is a drawback of consuming power here, and it is difficult to put it into practical use. The current control circuit needs to be designed as a circuit capable of controlling a large amount of power, and the component cost increases. Further, since the current control circuit wastes power, it is necessary to design the output power of the charging power source to be large. Furthermore, the heat generated in the current control circuit is large, requiring a large heat radiating fin, which also increases the component cost.
[0004]
This disadvantage can be solved by charging a plurality of battery packs by switching in order. This charging method is characterized by being able to fully charge a plurality of battery packs by controlling them to an ideal charging current with a single set of charging power sources since charging is performed by sequentially switching fully charged batteries. .
[0005]
This charging method is described in JP-A-4-105521 and JP-A-3-164034. In the charging method described in these publications, first, a charging current is supplied only to the first pack battery, and this battery is fully charged. After that, when the first battery pack is fully charged, the charging of the first battery pack is interrupted, the charging current is supplied only to the second battery pack, and this battery pack is fully charged. In this way, the battery pack is fully charged by switching to the first, second, third, and so on.
[0006]
[Problems to be solved by the invention]
The charging method of switching a plurality of battery packs in order and fully charging them can reduce the charging current and fully charge the battery packs in order. However, this charging method has a drawback that it takes time to fully charge all the battery packs. If the charging current is increased in order to shorten the full charge time, the battery performance decreases. This is because the battery pack is limited in the maximum current that can be charged in a preferable state. When rapidly charged with a large current, the battery temperature rises, or the battery is adversely affected and the electrical performance of the battery is lowered.
[0007]
The present invention has been developed for the purpose of solving this drawback, and an important object of the present invention is an extremely simple circuit, which does not deteriorate the battery performance of a plurality of battery packs in a short time. The object is to provide a method for charging a battery pack that can be fully charged.
[0008]
Another important object of the present invention is to provide a method for charging a battery pack that can fully charge all battery packs in a short period of time by reducing an increase in battery temperature.
[0009]
Furthermore, another important object of the present invention is to provide a method for charging a battery pack that can fully charge a plurality of battery packs in a short time with a charging power source that can be manufactured at low cost.
[0010]
[Means for Solving the Problems]
In the method for charging a plurality of battery packs according to the present invention, the charging power source 1 switches the battery pack 2 to be charged and charges the battery packs 2 having the built-in charge control circuit 6 therein. The charging power source 1 sequentially outputs a charging permission signal to the charging control circuit 6 of each battery pack 2 at a predetermined cycle. The charge control circuit 6 of the battery pack 2 includes a switching element 7 that controls the charge state of the secondary battery 5 built in the battery pack 2, and a control circuit 8 that controls the switching element 7. The control circuit 8 is limited to detecting both a charge request signal output when the secondary battery 5 incorporated in the battery pack 2 is not fully charged and a charge permission signal output from the power supply 1 for charging. Then, the switching element 7 is turned on to charge the secondary battery 5, and when either the charge request signal or the charge permission signal is not detected, the switching element 7 is turned off so as not to be charged.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment shown below exemplifies a method for charging a plurality of battery packs for embodying the technical idea of the present invention, and the present invention provides a method for charging a plurality of battery packs as follows. Not specified.
[0012]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0013]
FIG. 1 shows a block diagram of a charging power source 1 and a battery pack 2 used in the charging method of the present invention. This figure shows a state in which four battery packs 2 are charged. The charging method of the present invention is related to a method of charging a plurality of battery packs, but does not specify the number of battery packs to be charged as four sets.
[0014]
The charging power source 1 shown in this figure includes a power source circuit 3 and a charging control signal generating circuit 4. The power supply circuit 3 outputs a voltage and a current that can charge the secondary battery 5 built in the battery pack 2. The charging power source 1 is preferably a switching power source. The switching power supply includes a rectifying circuit that rectifies 100-volt AC, a switching circuit that switches DC output from the rectifying circuit, and AC that is switched by the switching circuit is input to the primary side, and the input voltage is The switching circuit is switched by a transformer for lowering the charging voltage of the secondary battery 5, a rectifier circuit comprising a diode that rectifies the alternating current output from the transformer to direct current, an output voltage of the rectifier circuit and a signal from the control circuit. A CV / CC control circuit for controlling the duty and an insulating PC circuit. The power supply circuit 3 does not necessarily have to be a switching power supply. The power supply circuit may be a circuit that stabilizes the rectified direct current by stepping down and rectifying the input 100 V input with a transformer.
[0015]
The charge control signal generation circuit 4 sequentially outputs charge permission signals to the charge control circuit 6 of each battery pack 2 in a predetermined cycle. The charge control signal generation circuit 4 outputs a charge permission signal from the signal output terminals P1, P2, P3, and P4. The signal output terminals P1, P2, P3, and P4 are connected to the signal input terminals 11 of the respective battery packs 2, and a charge permission signal that determines the order and timing of pulse charging of each battery pack 2 is supplied to the battery pack 2. Output. Accordingly, the number of signal output terminals is equal to the number of pack batteries 2 that can be charged. The charging power source 1 shown in the figure has four signal output terminals P1, P2, P3, and P4 because it charges four sets of battery packs 2 in pulses.
[0016]
FIG. 2 shows charge permission signals output from the signal output terminals P1, P2, P3, and P4 by the charge control signal generation circuit 4. The charge permission signal in this figure pulse-charges the battery pack 2 in the order of CH1 to CH4. The charging time for charging each battery pack 2 with one pulse is determined by the pulse width of the charging permission signal. The charge permission signal in the figure has a pulse width of 1 second and a charge time of 1 pulse of 1 second. However, the charging method of the present invention does not specify the charging time of one pulse for pulse charging the battery pack. The charging time of one pulse for pulse charging the battery pack is, for example, 50 milliseconds to 10 seconds, preferably 0.1 to 5 seconds, more preferably 0.2 to 3 seconds, and optimally 0.3 to 2 seconds. Set to
[0017]
The charging time of one pulse of the battery pack 2 is set to a time during which rapid charging can be performed without degrading battery performance. Furthermore, when the plurality of battery packs 2 are pulse charged, there are a method of pulse charging all the battery packs 2 with the same charging current and a method of pulse charging each battery pack 2 with a different charging current. The method of charging all the battery packs 2 with the same charging current allows the charging power source 1 to be a simple circuit. For example, the method of changing the charging current of each battery pack 2 in accordance with the capacity can reduce the difference in charging time between the battery pack 2 with a large capacity and the battery pack 2 with a small capacity.
[0018]
The pause time for pulse charging is determined by the number of battery packs 2 charged together. This is because the pulses for charging all the batteries are pulse-charged by switching the order. The pause time is T (n-1) + nt, where n is the number of batteries that can be charged together, T is the charge time, and t is the switching interval time for charging each battery pack 2. . The charging permission signal in FIG. 2 charges four sets of battery packs 2, the charging time T is 1 second, and the switching interval time is 250 milliseconds, so the charging suspension time is 4 seconds. Therefore, each battery pack 2 is pulse-charged by repeatedly charging for 1 second and stopping for 4 seconds.
[0019]
Each battery pack 2 is not necessarily charged when a charging permission signal is input from the charging power source 1. The battery pack 2 includes a charge control circuit 6 that controls the state of charge. The charging control circuit 6 includes a switching element 7 that controls the charging state of the built-in secondary battery 5, and a control circuit 8 that controls the switching element 7. When the switching element 7 is turned on, the secondary battery 5 is charged, and when the switching element 7 is turned off, the secondary battery 5 is not charged.
[0020]
The control circuit 8 detects the charge capacity of the built-in secondary battery 5 and outputs a charge request signal when the secondary battery 5 needs to be charged, and the charge request signal And an AND circuit 10 that controls the switching element 7 to be turned on when both the charging permission signal and the charging permission signal are input. The charge capacity detection circuit 9 outputs a charge request signal when the secondary battery 5 built in the battery pack 2 is not fully charged. However, the charge capacity detection circuit does not necessarily output a charge request signal only when the secondary battery is not full. This is because, depending on the battery pack, charging may be stopped in a state where the battery is not fully charged, for example, 80% charged with respect to the full charge.
[0021]
The AND circuit 10 inputs the charging permission signal and the charging request signal to the two input sides, and controls the switching element 7 to be turned on only when the charging permission signal and the charging request signal are input, thereby charging permission. In a state where either the signal or the charge request signal is not input, the switching element 7 is turned off. Therefore, each battery pack 2 is charged only when a charging permission signal is input from the charging power source 1 and a charging request signal is input from the charging capacity detection circuit 9 to the AND circuit 10. Since the charge permission signal is a pulse signal, the battery pack 2 is pulse-charged.
[0022]
The switching element 7 incorporated in each battery pack 2 controls one of them to be on and the other to be turned off by a charge permission signal, and repeatedly charges the battery pack 2 in order. The switching elements 7 incorporated in each of the battery packs 2 are turned on in order, and the battery packs 2 are sequentially pulse-charged. When the secondary battery 5 built in the battery pack 2 is fully charged, the control circuit 8 built in the battery pack 2 does not output a charge request signal. Therefore, the fully charged battery pack 2 is not switched on even when the switching element 7 is switched on by the input charging permission signal, and charging is stopped. For the battery pack 2 that is not fully charged, since the charge capacity detection circuit 9 outputs a charge request signal, the switching element 7 is turned on at a constant cycle by the charge permission signal input from the power supply 1 for charging. 5 fully charged.
[0023]
【The invention's effect】
The method for charging a battery pack according to the present invention has a feature that a plurality of battery packs can be fully charged in a short time without deteriorating battery performance. This is because the charging method of the present invention sequentially outputs a charging permission signal to a plurality of battery packs in a predetermined cycle, and with this charging permission signal, the respective battery packs are pulse-charged in order at different timings. is there. The battery pack charged in this state is repeatedly charged with a pulse current, and charging is suspended for a certain time. When charging is suspended, the battery pack that has been pulse-charged is cooled. Then, when the pack battery that has been pulse-charged is being cooled, the other battery packs are pulse-charged. In this method of charging, as the number of battery packs charged together increases, the charging pause time becomes longer. Since the pulse current to be charged can be increased as the pause time becomes longer, the overall charging time can be reduced from being extended.
[0024]
Furthermore, the charging method of the present invention has the advantage that all battery packs can be fully charged in a short time by reducing the rise in battery temperature. This is because, after the pulse charging and the charging pause, that is, after the pulse charging with a large current, the other battery pack is charged by effectively using the cooling time of the battery. This feature is particularly important when fully charging a large number of battery packs. This is because in the conventional charging method, the total charging time becomes longer as the number of battery packs to be charged increases. According to the charging method of the present invention, even when the number of batteries to be charged together increases, other pack batteries are charged when the battery is paused by pulse charging, so that many pack batteries can be fully charged in a short time. In particular, as the number of battery packs to be charged together increases, the time for suspending charging becomes longer. Therefore, the peak current for pulse charging can be increased, and the time for rapid charging can be reduced.
[0025]
Furthermore, the charging method of the present invention uses a charging circuit that can be manufactured at low cost, and realizes a feature that a plurality of battery packs can be fully charged in a short time. This is because the charging method of the present invention can fully charge all the battery packs in an ideal state by switching on and off the switching elements incorporated in the battery pack.
[0026]
Furthermore, the method for charging a battery pack according to the present invention sequentially outputs a charging permission signal from the charging power source to each of the battery packs at a predetermined cycle. On the battery pack side, in addition to the charging permission signal, a charging request Only when a signal is generated, the switching element is turned on to perform pulse charging. The battery pack outputs a charge request signal when it is necessary to charge the secondary battery built in the battery pack 2 . The charging power supply sequentially specifies a battery pack that is pulse-charged, and outputs a charge permission signal that specifies a time for pulse charging to the battery pack. The battery pack performs pulse charging by detecting both the charging permission signal and the charging request signal. In the charging method of the present invention in which a plurality of battery packs are pulse-charged in this state, each battery pack is shortened by using the switching element incorporated in the battery pack without incorporating the switching element in the charging power source. It can be pulse charged with time.
[Brief description of the drawings]
FIG. 1 is a block diagram of a charging power source and a battery pack used in a charging method according to an embodiment of the present invention. FIG. 2 is a timing chart illustrating a charging method according to an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Charging power supply 2 ... Pack battery 3 ... Power supply circuit 4 ... Charge control signal generation circuit 5 ... Secondary battery 6 ... Charge control circuit 7 ... Switching element 8 ... Control circuit 9 ... Charge capacity detection circuit 10 ... AND circuit 11 ... Signal input terminal

Claims (1)

充電用電源(1)が、充電するパック電池(2)を切り換えて、充電制御回路(6)を内蔵している複数のパック電池(2)を充電する充電方法において、
充電用電源(1)が、各々のパック電池(2)の充電制御回路(6)に、所定の周期で充電許可信号を順番に出力すると共に、
パック電池(2)の充電制御回路(6)は、パック電池 (2) 内蔵している二次電池(5)の充電状態を制御するスイッチング素子(7)と、このスイッチング素子(7)を制御する制御回路(8)とを備えており、
制御回路(8)は、パック電池 (2) 内蔵している二次電池(5)が満充電でないときに出力される充電要求信号と、充電用電源(1)から出力される充電許可信号の両方を検出するときにかぎって、スイッチング素子(7)をオンにして二次電池(5)を充電し、充電要求信号と充電許可信号のいずれかが検出されないときにスイッチング素子(7)をオフにして充電しないように制御することを特徴とする複数のパック電池の充電方法。
In the charging method in which the charging power source (1) switches the battery pack (2) to be charged and charges a plurality of battery packs (2) having a built-in charge control circuit (6).
The power supply for charging (1) sequentially outputs a charging permission signal at a predetermined cycle to the charging control circuit (6) of each battery pack (2),
The charge control circuit (6) of the battery pack (2) includes a switching element (7) for controlling the charge state of the secondary battery (5) incorporated in the battery pack (2) , and the switching element (7). Control circuit (8) to control,
The control circuit (8) is a charge request signal that is output when the secondary battery (5) built in the battery pack (2) is not fully charged, and a charge permission signal that is output from the power supply for charging (1). Only when both are detected, the switching element (7) is turned on to charge the secondary battery (5), and when either the charge request signal or charge permission signal is not detected, the switching element (7) is turned on. A method for charging a plurality of battery packs, wherein the battery pack is controlled to be turned off and not charged.
JP08012399A 1999-03-24 1999-03-24 How to charge multiple battery packs Expired - Lifetime JP3920492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08012399A JP3920492B2 (en) 1999-03-24 1999-03-24 How to charge multiple battery packs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08012399A JP3920492B2 (en) 1999-03-24 1999-03-24 How to charge multiple battery packs

Publications (2)

Publication Number Publication Date
JP2000277167A JP2000277167A (en) 2000-10-06
JP3920492B2 true JP3920492B2 (en) 2007-05-30

Family

ID=13709443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08012399A Expired - Lifetime JP3920492B2 (en) 1999-03-24 1999-03-24 How to charge multiple battery packs

Country Status (1)

Country Link
JP (1) JP3920492B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545972B2 (en) * 1999-08-02 2004-07-21 日本電信電話株式会社 Charging the secondary battery pack for backup
JP5372031B2 (en) * 2011-01-11 2013-12-18 株式会社フルタイムシステム Electric vehicle charging device
JP6031747B2 (en) * 2011-11-14 2016-11-24 横河電機株式会社 Field equipment charging system
JP5831557B2 (en) * 2012-01-20 2015-12-09 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
KR101410000B1 (en) * 2012-05-16 2014-07-02 엘지전자 주식회사 Energy storage device and method for controlling the same
KR101542112B1 (en) 2013-11-14 2015-08-06 숭실대학교산학협력단 Multiple battery charger and control method thereof
US9728985B2 (en) * 2014-04-11 2017-08-08 Panasonic Corporation Charging device and charging method for charging a plurality of secondary battery-equipped devices
EP3197006B1 (en) 2016-01-21 2021-06-16 Samsung Electronics Co., Ltd. Apparatus and method of charging battery pack

Also Published As

Publication number Publication date
JP2000277167A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
KR100420388B1 (en) Method for charging plurality of battery
US8941357B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
CA2441920C (en) Apparatus and method for high-frequency operation in a battery charger
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
US20100123433A1 (en) Voltage equalization apparatus and method for battery system
JP2009142069A (en) Temperature regulator of battery pack and temperature regulation method of battery pack
JP2010063353A (en) Cell balancing system using transformer
JP2023528902A (en) Battery energy processing apparatus and method, and vehicle
EP4047804B1 (en) Converter and power adapter
JP3920492B2 (en) How to charge multiple battery packs
JP2011103746A (en) Charging method of battery
KR940005457B1 (en) Compact low noise/low power dual mode battery charging circuit
Liu et al. A Li-Ion Battery Charger With Variable Charging Current and Automatic Voltage-Compensation Controls for Parallel Charging
CN111525676B (en) DC output uninterrupted power supply
JPH11285161A (en) Method for charging secondary battery
KR20120121828A (en) Rapid charger for battery of pulse type having energy recovery capability and the method of controlling the charger
JPH10174305A (en) Battery charger
JP3778853B2 (en) Secondary battery charging method and charging device
CN108336789B (en) Wireless power supply system and control method of set top box
CN111446511B (en) Battery and method for charging battery core
Wang et al. Bi-directional equalization system for li-ion battery pack based on fly-back transformer
CN207368693U (en) A kind of charger
US6329790B1 (en) Battery charger
CN112636438B (en) Two-series battery pack boosting type balanced discharge circuit and control method
US20230324969A1 (en) Information processing apparatus, method for controlling information processing apparatus, and storage medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term