JP3920019B2 - Damper device in hydraulic circuit and damper member used therefor - Google Patents

Damper device in hydraulic circuit and damper member used therefor Download PDF

Info

Publication number
JP3920019B2
JP3920019B2 JP2000327693A JP2000327693A JP3920019B2 JP 3920019 B2 JP3920019 B2 JP 3920019B2 JP 2000327693 A JP2000327693 A JP 2000327693A JP 2000327693 A JP2000327693 A JP 2000327693A JP 3920019 B2 JP3920019 B2 JP 3920019B2
Authority
JP
Japan
Prior art keywords
chamber
damper member
damper
side wall
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000327693A
Other languages
Japanese (ja)
Other versions
JP2002071083A (en
Inventor
和久 尾崎
彰 深津
治道 坪井
泰司 佐藤
慎吾 前塚
芳信 野崎
秀夫 友松
五生 神谷
英樹 宮田
武臣 矢野
肇彦 黒木
伸吾 久木原
昭一 早瀬
裕之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Nok Corp
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Aisin AW Co Ltd, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2000327693A priority Critical patent/JP3920019B2/en
Publication of JP2002071083A publication Critical patent/JP2002071083A/en
Application granted granted Critical
Publication of JP3920019B2 publication Critical patent/JP3920019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Pipe Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧回路における油圧振動を吸収するダンパ装置に係り、特に自動変速機の油圧回路におけるソレノイドバルブからの信号油圧が供給される油路に連通して好適であり、詳しくは弾性材料からなるダンパ部材を用いるダンパ装置に関する。
【0002】
【従来の技術】
従来、ソレノイドバルブからの出力(信号)油圧の脈動を吸収する装置として、実開昭63−142488号公報に示すものがある。このものは、黄銅等からなる渦巻き状の導管を、ソレノイドバルブからの信号油圧が連通する油路に介在して、ソレノイドバルブのデューティ制御に基づく信号油圧の脈動を、上記渦巻き状の導管が半径方向へ弾性変形することによって吸収する。
【0003】
【発明が解決しようとする課題】
上記脈動防止装置は、多数に巻かれた渦巻き状の導管からなり、大掛かりな装置となって、自動変速機のバルブボディ等の設置スペースが限られているものに適用するのは困難である。また、黄銅等の渦巻き状の導管の半径方向の弾性変形による油圧変動の吸収では、減衰効果が充分ではなく、また繰返される導管の弾性変形により、黄銅等の金属材料が疲労して、耐久性も充分ではない。
【0004】
そこで、本発明は、小型の装置でもって、油圧振動を高い精度で吸収しかつ充分な耐久性を有する、油圧回路におけるダンパ装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
請求項1に係る本発明は(例えば図1ないし図5参照)、油圧回路の油路(f)に連通し、該油路の油圧振動を吸収するダンパ装置(10)において、
弾性材料からなり、円筒状の側壁(11a)と、該側壁の一端に形成される底壁(11b)と、前記側壁の他端に形成される開口部(11c)と、前記側壁、底壁及び開口部にて構成される油室(11p)と、を有するダンパ部材(11)と、
前記ダンパ部材を収納する室(12)(12’)(12”)を有する本体(13)と、
前記油路(f,f1 )からの油圧を前記ダンパ部材(11)の油室(11p)に連通する油孔(16)を有し、前記本体(13)の室(12)(12’)(12”)内に前記ダンパ部材(11)を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材(15)と、を備え、
前記ダンパ部材(11)の底壁(11b)中心部近傍が前記本体の室底面(12b)に接触すると共に、前記側壁(11a)と前記室側面(12a)との間に略々均一な空隙(d)を有するように、該ダンパ部材(11)が前記本体室(12)内に配置され、
前記油路に連通する油室(11p)の油圧変化に基づき、前記ダンパ部材(11)が、前記本体の室(12)(12’)(12”)内で専ら前記側壁(11a)の伸縮にて伸縮変形することを特徴とする、
油圧回路におけるダンパ装置にある。
請求項2に係る本発明は(例えば図1ないし図5参照)、油圧回路の油路(f)に連通し、該油路の油圧振動を吸収するダンパ装置(10)において、
弾性材料からなり、円筒状の側壁(11a)と、該側壁の一端に形成される底壁(11b)と、前記側壁の他端に形成される開口部(11c)と、前記側壁、底壁及び開口部にて構成される油室(11p)と、を有するダンパ部材(11)と、
前記ダンパ部材を収納する室(12)(12’)(12”)を有する本体(13)と、
前記油路(f,f 1 )からの油圧を前記ダンパ部材(11)の油室(11p)に連通する油孔(16)を有し、前記本体(13)の室(12)(12’)(12”)内に前記ダンパ部材(11)を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材(15)と、を備え、
前記ダンパ部材(11)の側壁(11a)が前記本体の室側面(12”a)に接触すると共に、前記底壁(11b)と前記室底面(12”b)との間に略々均一な空隙(d)を有するように、該ダンパ部材(11)が前記本体室(12”)内に配置され、
前記油路に連通する油室(11p)の油圧変化に基づき、前記ダンパ部材(11)が、前記本体の室(12)(12’)(12”)内で専ら前記底壁(11b)の伸縮にて伸縮変形することを特徴とする、
油圧回路におけるダンパ装置にある。
請求項3に係る本発明は(例えば図1ないし図5参照)、油圧回路の油路(f)に連通し、該油路の油圧振動を吸収するダンパ装置(10)において、
弾性材料からなり、円筒状の側壁(11a)と、該側壁の一端に形成される底壁(11b)と、前記側壁の他端に形成される開口部(11c)と、前記側壁、底壁及び開口部にて構成される油室(11p)と、を有するダンパ部材(11)と、
前記ダンパ部材を収納する室(12)(12’)(12”)を有する本体(13)と、
前記油路(f,f 1 )からの油圧を前記ダンパ部材(11)の油室(11p)に連通する油孔(16)を有し、前記本体(13)の室(12)(12’)(12”)内に前記ダンパ部材(11)を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材(15)と、を備え、
前記本体(13)の室(12’)が、前記ダンパ部材(11)の側壁(11a)及び底壁(11b)との間に略々均一な空隙(d)を有するように形成され、
前記油路に連通する油室(11p)の油圧変化に基づき、前記ダンパ部材(11)が、前記本体の室(12)(12’)(12”)内で前記側壁(11a)及び底壁(11b) の伸縮にて伸縮変形することを特徴とする、
油圧回路におけるダンパ装置にある。
【0006】
請求項に係る本発明は(例えば図6、図7参照)、前記ダンパ部材(11’)の側壁(11’a)及び底壁(11’b)の少なくとも一部の外側面に凹部(11’g)を有することを特徴とする、
請求項1ないし3のいずれか記載の油圧回路におけるダンパ装置にある。
【0007】
請求項に係る本発明は(例えば図6参照)、前記凹部(11’g)は、略々半球形状からなり、複数個を略々均一に配置されることを特徴とする、
請求項記載の油圧回路におけるダンパ装置にある。
【0011】
請求項に係る本発明は(例えば図2ないし図5参照)、前記ダンパ部材(11)の底壁(11b)が、半球形状からなり、かつ前記室の底面(12b)(12b’)が、半球形状からなる、
請求項1ないし5のいずれか記載の油圧回路におけるダンパ装置にある。
【0012】
請求項に係る本発明は(例えば図2ないし図5参照)、前記ダンパ部材(11)は、前記開口部(11c)の周囲にリップ部(11e)を有し、
前記蓋部材(15)を前記本体(13)に固定した際に、前記リップ部が該蓋部材との間をシールすることを特徴とする、
請求項1ないし6のいずれか記載の油圧回路におけるダンパ装置にある。
【0013】
請求項に係る本発明は(例えば図2参照)、前記リップ部(11e)は、その先端が内径側に傾斜するように形成され、前記蓋部材(15)を前記本体に固定する際、該リップ部(11e)が内径方向に倒れた状態になる、
請求項記載の油圧回路におけるダンパ装置にある。
【0014】
請求項に係る本発明は(例えば図2参照)、前記ダンパ部材(11)は、前記開口部(11c)の外周の鍔部(11d)に外径方向に突出する突起(11f)を有することを特徴とする、
請求項1ないし8のいずれか記載の油圧回路におけるダンパ装置にある。
【0015】
請求項10に係る本発明は(例えば図1参照)、前記油圧回路は、自動変速機用油圧回路であり、かつ前記油路(f)は、ソレノイドバルブ(2)からの信号油圧(Ps)が供給され、かつ前記油路(f)から分岐された油路(f1 )を介して前記ダンパ部材(11)の油室(11p)に前記信号油圧(Ps)が連通することを特徴とする、
請求項1ないし9のいずれか記載の油圧回路におけるダンパ装置にある。
【0016】
請求項11に係る本発明は、油圧回路の油路(f)に連通し、該油路(f)の油圧振動を吸収するダンパ室(12)(12’)(12”)に配置されるダンパ部材であって、
弾性材料からなり、
円筒状に形成されて前記ダンパ室(12)(12’)(12”)との間に空隙(d)を有する側壁(11a)と、
前記側壁(11a)の一端に形成される底壁(11b)と、
前記側壁(11a)の他端に形成される開口部(11c)と、
前記側壁(11a)、底壁(11b)及び開口部(11c)にて構成される油室(11p)と、を備え、
前記開口部(11c)の周囲に軸方向に突出するとともに径方向内方に傾斜して、前記ダンパ室(12)(12’)(12”)の開口を覆う蓋部材(15)と当接するリップ部(11e)と、前記開口部(11c)の外周の鍔部(11d)に外径方向に突出する突起(11f)と、を設けたことを特徴とする、
ダンパ部材(11)にある。
【0018】
請求項12に係る本発明は、前記ダンパ部材(11)は、前記側壁(11a)及び前記底壁(11b)の少なくとも一部の外側面に凹部(11’g)を有することを特徴とする、
請求項11記載のダンパ部材(11’)にある。
【0019】
[作用]
以上構成に基づき、例えばソレノイドバルブ(2)からの信号油圧(Ps)が油路(f,f1 )を介してダンパ部材(11)の油室(11p)に導かれ、該油路の油圧振動は、弾性材料からなるダンパ部材が伸縮変形して吸収される。
【0020】
なお、上記カッコ内の符号は、図面と対照するためのものであるが、特許請求の範囲の構成に何等影響を与えるものではない。
【0021】
【発明の効果】
請求項1に係る本発明によると、油圧回路の油路の油圧振動は、弾性材料からなるダンパ部材の伸縮変形により、高い精度で吸収され、かつ該ダンパ部材は、側壁、底壁及び開口部にて構成される閉空間からなる油室を有すると共に、本体の室に収納され、かつ蓋部材にて密閉されるので、小型な装置で足り、また充分な耐久性を有する。また、ダンパ部材の変形が、専ら側壁の伸縮により行われるので、上記弾性変形は、主に平面(2次元)的な変形であって、ダンパ部材を構成する弾性材料の疲労に対する影響が少なく、かつダンパ部材の側壁と本体の室側面との間の空隙が略々均一であるので、前記側壁の伸縮が全周に亘って略々均等であると共に最大伸び量が略々均等に規制されて、ダンパ部材が極部及び過度に変形することを防止し、これらが相俟ってダンパ部材の耐久性を向上することができる。
請求項2に係る本発明によると、油圧回路の油路の油圧振動は、弾性材料からなるダンパ部材の伸縮変形により、高い精度で吸収され、かつ該ダンパ部材は、側壁、底壁及び開口部にて構成される閉空間からなる油室を有すると共に、本体の室に収納され、かつ蓋部材にて密閉されるので、小型な装置で足り、また充分な耐久性を有する。また、ダンパ部材の変形が、専ら底壁の伸縮により行われるので、上記弾性変形は、主に平面(2次元)的な変形であって、ダンパ部材を構成する弾性材料の疲労に対する影響が少なく、かつダンパ部材の底壁と本体の室底面との間の空隙が略々均一であるので、前記側壁の伸縮が全周に亘って略々均等であると共に最大伸び量が略々均等に規制されて、ダンパ部材が極部及び過度に変形することを防止し、これらが相俟ってダンパ部材の耐久性を向上することができる。
請求項3に係る本発明によると、油圧回路の油路の油圧振動は、弾性材料からなるダンパ部材の伸縮変形により、高い精度で吸収され、かつ該ダンパ部材は、側壁、底壁及び開口部にて構成される閉空間からなる油室を有すると共に、本体の室に収納され、かつ蓋部材にて密閉されるので、小型な装置で足り、また充分な耐久性を有する。また、ダンパ部材の変形が、側壁及び底壁の伸縮により行われるので、油室の容量に対するダンパ部材の変形量が大きくなり、油圧振動の吸収エネルギに対するダンパ装置のコンパクト化が可能となり、かつダンパ部材の側壁及び底壁と本体の室との間の空隙が略々均一であるので、ダンパ部材の伸縮変形が略々均等であると共に、最大伸び量が略々均等に規制されて、ダンパ部材の耐久性をも維持することができる。
【0022】
請求項に係る本発明によると、油圧振動により油圧が増した際に、ダンパ部材の側壁及び底壁の外側面に有する凹部がバルブボディ本体の側壁及び底壁に押圧されて略々平滑な面となり、内側面に凹部が形成されてダンパ部材の油室の体積が増加するので、同じ大きさのダンパ装置であっても油圧変動に対する吸収量が増加して、更に大きい油圧変動を吸収し、ダンパ性能を向上することができる。それにより、弾性限界ひずみを越えるような場合の油圧応力によるダンパ部材の破壊及び塑性変形を防ぐことができる。また、ダンパ性能が向上するので、油圧回路におけるダンパ装置を小型化することもできる。
【0023】
請求項に係る本発明によると、凹部は略々半球形状であるので、バルブボディ本体の側壁及び底壁に押圧された際に、ダンパ部材の外側面は平滑となり易く、かつ反対側のダンパ部材の内側面に凹部が形成され易く、油圧変動による吸収量を、ダンパ部材の塑性変形を防ぎつつ、更に増加することができ、かつ複数の凹部が略々均一に配置されることで、略々均一に伸縮を行うことができることと相俟って、一層のダンパ装置の小型化を図ることができる。
【0027】
請求項に係る本発明によると、ダンパ部材の底壁及び室底面が半球形状からなるので、ダンパ部材の弾性変形量を略々均等にして、極部的な変形をなくすことができる。
【0028】
請求項に係る本発明によると、ダンパ部材の開口部周囲にリップ部を設けて、蓋部材との間をシールするので、本体の室等の加工精度が高くなくても、ダンパ部材と蓋部材の密閉を確実に保持することができ、例えば本体を、鋳造状態のままで機械加工を施さなくても足り、油圧振動の高い精度での吸収を維持しつつコストダウンも図ることができる。
【0029】
請求項に係る本発明によると、リップ部は、蓋部材を本体に固定する際に内径方向に倒れるように形成されているので、蓋部材を本体に固定する際、リップ部が本体との間に挟まれることを確実に防止できると共に、ダンパ部材の油室に作用する油圧に応じてリップ部が自動的に蓋部材に押圧され、シール効果を確実に保持することができる。
【0030】
請求項に係る本発明によると、鍔部に外径方向に突出する突起を設けたので、本体の室における上記鍔部の座面となる環状凹面の加工精度が高くなくても、該室とダンパ部材の軸芯の整合を行うことができ、例えば本体を、鋳造状態のままで機械加工を施さなくても足り、油圧振動の高い精度での吸収を維持しつつコストダウンも図ることができる。
【0031】
請求項10に係る本発明によると、自動変速機の油圧回路におけるソレノイドバルブからの信号油圧が供給される油路に適用して、ソレノイドバルブに起因する油圧振動を小型な装置でもって吸収することにより、自動変速機の油圧回路をコンパクトに維持すると共に、信号油圧の振動を吸収して、自動変速機の性能を向上することができる。
【0032】
請求項11に係る本発明によると、ダンパ部材は、油圧回路の油路の油圧振動を、弾性材料からなる該ダンパ部材の伸縮変形により、高い精度で吸収し、かつ、側壁、底壁及び開口部にて構成される閉空間からなる油室を有すると共に、ダンパ室に収納されので、例えば小型なダンパ装置に適用することができ、充分な耐久性を有する。また、ダンパ部材は、蓋部材との間をシールするので、ダンパ室等の加工精度が高くなくても、蓋部材の密閉を確実に保持することができる。更に、ダンパ部材は、鍔部に外径方向に突出する突起を有しているので、ダンパ室における上記鍔部の座面となる環状凹面の加工精度が高くなくても、該室とダンパ部材の軸芯の整合を行うことができる。それにより、例えばダンパ部材を適用するダンパ装置を、鋳造状態のままで機械加工を施さなくても足り、油圧振動の高い精度での吸収を維持しつつコストダウンも図ることができる。
【0034】
請求項12に係る本発明によると、ダンパ部材は、油圧振動により油圧が増した際に、側壁及び底壁の外側面に有する凹部がダンパ室の側壁及び底壁に押圧されて略々平滑な面となり、内側面に凹部が形成されてダンパ部材の油室の体積が増加するので、同じ大きさのダンパ部材であっても油圧変動に対する吸収量が増加させて、更に大きい油圧変動を吸収し、ダンパ性能を向上させることができる。それにより、弾性限界ひずみを越えるような場合の油圧応力によるダンパ部材の破壊及び塑性変形を防ぐことができる。また、ダンパ性能が向上するので、ダンパ部材を適用するダンパ装置を小型化することもできる。
【0035】
【発明の実施の形態】
以下、図面に沿って本発明の実施の形態について説明する。図1は、自動変速機の油圧回路の一部を示すもので、図中、1はプライマリレギュレータバルブ、2はリニアソレノイドバルブ、3はソレノイドモジュレータバルブ、4は油圧ポンプ、5はアキュムレータコントロールバルブ、6はアキュムレータ、7はクラッチ用油圧サーボである。
【0036】
油圧ポンプ4からの油圧はプライマリレギュレータバルブ1により油路aにライン圧(出力トルクに対応するクラッチ作動圧)Plとして調圧され、該ライン圧は、油路b(シフトバルブ等の切換えバルブを省略)を介して油圧サーボ7及びアキュムレータ6のアキュムレータ室6bに供給され、また油路cを介してソレノイドモジュレータバルブ3の入力ポート3aに供給されると共に、油路gを介してアキュムレータコントロールバルブ5の入力ポート5aに供給される。更に、ソレノイドモジュレータバルブ3にて所定割合に減圧されたモジュレータ圧Pmがその出力ポート3bから出力されて油路dを介してリニアソレノイドバルブ2の入力ポート2aに供給される。
【0037】
そして、リニアソレノイドバルブ2は、制御部からの電気信号による圧力指令に基づき、上記モジュレータ圧Pmが所定信号圧Psとしてその出力ポート2bから出力する。該信号圧Psは油路fを介してアキュムレータコントロールバルブ5の制御油室5bに供給され、該コントロールバルブ5は、上記制御油室5bの信号圧Psに基づき入力ポート5aに入力されているライン圧Plを所定コントロール圧Pcとして出力ポート5cから出力する。該コントロール圧Pcは、油路eを介してアキュムレータ6の背圧室6aに供給され、該アキュムレータ6は、背圧室6aをコントロール圧Pcにより制御されることにより、クラッチ用油圧サーボ7の油圧上昇(又は下降)を所定特性に制御する。
【0038】
前記リニアソレノイドバルブ2の出力ポート2bからの信号圧は、電気信号に基づく電磁力とスプリングとのバランスにて制御されるため、油圧変動(脈動)を伴う場合が多い。なお、信号圧は、上記リニアソレノイドバルブに限らず、デューティソレノイドバルブによっても設定することができ、この場合、1サイクルのオン時間とオフ時間の割合(デューティ比)で制御するため、油圧変動(脈動)を生じ易い。このため、上記信号圧用の油路fには、分岐油路f1 を介して本発明に係るダンパ装置10が連通・配置されている。
【0039】
上記ダンパ装置10は、図2(a)に示すように、合成樹脂又はゴム等の弾性材料からなるダンパ部材11と、該ダンパ部材を収納する室12を有して本体を構成するバルブボディ本体13と、該ダンパ部材に密着して蓋部材となるアッパプレート15と、を有する。
【0040】
ダンパ部材11は、図3(a)に詳示するように、円筒状の側壁11a、該側壁の下部に連続する半球状の底壁11b、該側壁の上部に形成された開口部11cを有しており、これら側壁11a及び底壁11bにて油室11pが構成される。更に、前記開口部分には、外径方向に延出して鍔部11dが形成されていると共に、上方に突出して円環状のリップ部11eが形成されている。該リップ部11eは、その先端が内径側に傾斜するように形成されている。また、図2(b)に詳示するように、前記鍔部11dの外周にはその全周に亘って、連続的に又は周方向等間隔に突起11fが形成されている。
【0041】
一方、バルブボディ本体13は、図3(b)に詳示するように、アルミダイカスト等の鋳造品からなり、上記ダンパ部材11を収納する室12も上記鋳造により一体成形されている。該室12は、円筒状の側面12aと、該側面の下方に連続する半球状の底面12bと、該側面の上方にて外径方向に膨出してなる環状凹面12cと、前記底面12bの側方にて側面12aに連続する位置にあけられているエア抜き孔12dと、を有しており、前記ダンパ部材鍔部11dの座面となる上記凹面12cを含めて、該室12全体は、切削等の機械加工を行うことのない鋳造状態のままで形成されている。
【0042】
前記室12内に前記ダンパ部材11が収納された状態、即ち図3(b)に示すように、ダンパ部材の鍔部11dが環状凹面12cに嵌合・載置された状態で、ダンパ部材の底壁11bが室12の底面12bと比較的広い面積にて接触し、かつダンパ部材の側壁11aと室の側面12aとの間に略々均一の空隙dを有するように設定されている。また、アッパプレート15は、図2に示すように、アルミ合金等の金属板からなり、アッパボディ(図示せず)の前記油路f1 及び前記ダンパ部材の油室11pに連通する油孔16が形成されている。
【0043】
そして、図2に示すように、バルブボディ本体13の室12にダンパ部材11が収納される。この際、バルブボディ本体13が、鋳造品のままであることに起因して、ダンパ部材座面となる環状凹面12cの寸法精度が機械加工を施したもののように充分でなくても、ダンパ部材の鍔部11dが該凹面12cに嵌合する際に、その外周面に形成された突起11fが圧縮して、該ダンパ部材11の中心線0−0が、室12の中心線0−0に一致するように調芯される。
【0044】
更に、図2に示すように、バルブボディ本体13の上方からアッパプレート15が押付けられて固定される。この際、バルブボディ本体が鋳造品のままであることに起因して、環状凹面12cの深さ精度が機械加工を施したもののように充分でなくとも、リップ部11eが内径側に倒れるようにしてダンパ部材11がアッパプレート15に油密状に密着する。また、リップ部11eは、図3に示すように、自然状態において内径側に傾斜しているため、上記アッパプレート15の取付けに際し、リップ部11eが外径方向に倒れて、バルブボディ本体13とアッパプレート15との間に噛込まれることはない。
【0045】
そして、前述したように、リニアソレノイドバルブ2からの信号圧Psが振動すると、油路f1 を介して油路f中の油圧振動がダンパ装置10に伝播される。即ち、上記信号圧Psは、油路f1 、油孔16を介してダンパ部材11の油室11pに導かれ、弾性材料からなるダンパ部材11は、上記信号圧の変動に応じて膨縮し、該信号圧の振動が吸収・減衰される。この際、ダンパ部材11は、その球状の底壁11bの中央近傍は室12の球状の底面12bに比較的広い面積で当接しており、上記油圧変動によるダンパ部材の膨縮は、専らその側壁11aが外径方向に伸縮することにより行われる。従って、ダンパ部材11は、底壁方向(即ち縦方向)の変形は規制され、専ら側壁方向(即ち横方向)に変形し、該2次元(平面的)な変形は、ダンパ部材を構成する合成樹脂、ゴム等の弾性材料の耐久性に対する悪影響(へたり、弾性力減少)が少なく、ダンパ部材の耐久性上望ましい。
【0046】
更に、ダンパ部材の側壁11aと室12の側面12aとの空隙dは、その全周に亘って略々均一からなり、ダンパ部材11は、室12の壁面に当接するまで略々均等に変形し、かつ所定量以上の変形は、室12の壁面に当接することにより阻止されて、ダンパ部材に極部的又は過度の変形(ダメージ)を与えることが防止され、該ダンパ部材の耐久性が好ましい構成になっている。
【0047】
また、前記油路f1 及び油孔16を経てダンパ部材11の油室11p内に供給される油圧は、内径側に倒されているリップ部11eを外径側に拡げる方向に作用するが、これによりリップ部11eの先端は、自動的にアッパプレート15に押付けられる形となり、リップ部11eのシール機能が油室11pに供給される油圧に応じて自動的に高められる。
【0048】
次に、図4に沿って、更に一部変更した実施例について説明する。前記実施例では、ダンパ部材11が専ら側壁11aを伸縮することにより油圧変動を吸収する構成となっているが、本実施例は、ダンパ部材が底壁11b方向に伸縮するものである。
【0049】
ダンパ部材11は、先の実施例によるものと同様なものが用いられ、同一符号を付して説明を省略する。なお、本実施例のダンパ部材の大きさは、油圧変動量により設定されるものであって、油圧変動量に応じて選択される。バルブボディ本体13の室12’は、上述実施例と同様に、円筒状の側面12’a、半球状の底面12’b及び環状凹面12’cを有しているが、図4に示す自然状態において、ダンパ部材11の側壁11aと12”aとが接触し、底壁11bと上記底面12’bとの間に略々均一の空隙dが設けられている点で相違している。そして、先の実施例と同様に、鍔部11dの外周面の突起により、ダンパ部材11は、室12”にそれらの中心線0−0が調芯されて収納され、かつリップ部11eが内径側に倒れるように密着してアッパプレートがバルブボディ本体13に固定される。
【0050】
本実施例にあっては、油路fからの信号圧Psがダンパ部材11の油室11pに供給され、該信号圧Psの変動により、ダンパ部材11は、その底壁11bが伸縮し、上記油圧変動が吸収される。従って、油室11pの油圧変動は、底壁11b(縦方向)に変形され、該2次元的なダンパ部材11の変形により、油圧変動を吸収し得る。
【0051】
また、ダンパ部材の底壁11aと室12”の底面12”aとの空隙dは略々均一からなり、ダンパ部材11は、室12”の壁面に当接するまで略々均等に変形し、かつ所定量以上の変形は、室12”の壁面に当接することにより阻止されて、ダンパ部材に極部的又は過度の変形(ダメージ)を与えることが防止され、該ダンパ部材の耐久性が好ましい構成になっている。従って、本実施例のダンパ部材11も、極部的にまた過度に変形することが阻止されて、耐久性上好ましい構成になっている。
【0052】
ついで、図5に沿って、一部変更した実施例について説明する。前記実施例では、ダンパ部材11が専ら側壁11a又は底壁11bを伸縮することにより油圧変動を吸収し、ダンパ部材の耐久性上望ましい構成となっているが、その分ダンパ部材11全体の変形量が制限されて、ダンパ部材容積に対する油圧変動の吸収域が制限される。本実施例は、ダンパ部材が側壁11a又は底壁11bに限らず、側壁11a及び底壁11b方向にも変形可能としたものである。
【0053】
ダンパ部材11は、先の実施例によるものと同様なものが用いられ、同一符号を付して説明を省略する。なお、本実施例のダンパ部材は、先の実施例のものに比し、同じ油圧変動の吸収域であれば、小型のもので足り、その大きさは、油圧変動量により設定されるものであって、油圧変動量に応じて選択される。バルブボディ本体13の室12’は、上述実施例と同様に、円筒状の側面12’a、半球状の底面12’b及び環状凹面12’cを有しているが、図5に示す自然状態において、ダンパ部材11の側壁11aと側面12’aとの間、及び底壁11bと上記底面12’bとの間が、同じ量の空隙dが設けられている点で相違している。即ち、本実施例のダンパ装置は、ダンパ部材11とバルブボディ本体13の室12’との間に略々均一な空隙dが設けられている。
【0054】
そして、先の実施例と同様に、鍔部11dの外周面の突起により、ダンパ部材11は、室12’にそれらの中心線0−0が調芯されて収納され、かつリップ部11eが内径側に倒れるように密着してアッパプレートがバルブボディ本体13に固定される。
【0055】
本実施例にあっては、油路fからの信号圧Psがダンパ部材11の油室11pに供給され、該信号圧Psの変動により、ダンパ部材11は、その側壁11a及び底壁11bが略々均等に伸縮し、上記油圧変動が吸収される。従って、油室11pの油圧変動は、側壁11a(横方向)と共に底壁11b(縦方向)に変形され、該3次元的なダンパ部材11の変形により、油室11pの容積に対して、比較的大きな範囲の油圧変動を吸収し得る。
【0056】
また、ダンパ部材11と室12’との間は、略々その全部に亘って略々均一な空隙からなり、油室11pへ過大な油圧が作用すると、ダンパ部材11は、その側壁11a及び半球状の底壁11bが略々均等に伸長し、そして室12’の側面12’a及び半球状の底面12’bに略々同時かつ均等に接触して、それ以上の変形は規制される。従って、本実施例のダンパ部材11も、極部的にまた過度に変形することが阻止されて、耐久性上好ましい構成になっている。
【0057】
更に、図6、図7に沿って、ダンパ部材を一部変更した実施例について説明する。前記実施例では、弾性材料からなるダンパ部材11の側壁11a、又は側壁11a及び底壁11bが伸縮することにより油圧変動を吸収する構成であり、該ダンパ部材11の側壁11a及び底壁11bの外側面は略々平滑である。本実施例では、ダンパ部材11’の側壁11’a及び底壁11’bの少なくとも一部の外側面に凹部11’gを形成し、上述の油圧変動を更に吸収するものである。なお、上記自動変速機の油圧回路及びそのダンパ装置10は同様なものであり、油圧変動の発生についても同様であるので、その説明を省略する。また、ダンパ部材11’についてもその構成はダンパ部材11とほぼ同様であるので、一部変更を除き説明を省略する。
【0058】
図6は側壁及び底壁に凹部を有するダンパ部材を示す図で、(a)は正面図、(b)はA−A矢視断面図である。図6に示すように、ダンパ部材11’の側壁11’a及び底壁11’bには、所定寸法で略々半球形状の凹部11’gが略々均一に多数個配置されている。該凹部11’gの寸法と配置される位置は、ダンパ部材11’の耐久性、ダンパ性能の向上効果、加工性、等より決定される。
【0059】
上述のように、油圧回路により油圧変動が発生すると、ダンパ部材11’の油室11’pが変圧し、該ダンパ部材11’の側壁11’a及び底壁11’bが伸縮する。該油圧変動によりダンパ部材11’の側壁11’a及び底壁11’bが伸長すると、該側壁11’a及び底壁11’bはバルブボディ本体13の室12の側壁12a及び底壁12bに圧着される。すると、外側面Xに有する凹部11’gは略々半球形状であるので、側壁12a及び底壁12bに押圧されて略々平滑となり、更に、反対側の内側面Yに凹部が形成される。それにより、油室11’pの体積が更に増加され、バルブボディ本体13の室12が同じ大きさであっても油圧変動に対する吸収量が増大する。また、収縮するときには、外径面Xに凹部11’gが形成されて内側面Yは平滑な面を形成し、油圧変動前の形状に復元する。なお、ダンパ部材11’は、凹部11’gが略々半球形状であるので、側壁12a及び底壁12bに押圧された際に、外側面Xは平滑となり易く、かつ反対側の内側面Yに凹部が形成され易い。更に、ダンパ部材11’は、略々半球形状である複数の凹部11’gが略々均一に配置されているので、略々均一に伸縮を行うことができる。
【0060】
以上のように本実施例では油圧変動に対する吸収量が、上記実施例と同様のバルブボディ本体13の室12であっても増加するので、更に大きい油圧変動を吸収し、ダンパ性能を向上することができる。それにより、弾性限界ひずみを越えるような場合の油圧応力によるダンパ部材の破壊及び塑性変形を防ぐことができる。また、ダンパ性能が向上するので、バルブボディ13の室12を小型化しても同等のダンパ性能を得ることができ、即ち、油圧回路におけるダンパ装置を小型化することができる。
【0061】
なお、本実施例では、略々半球形状の凹部11’gを略々均一に複数個配置した構成であるが、これに限らず、例えば図7(a)に示すような丸溝形状からなるリング状凹部、図7(b)に示すような丸溝形状からなる螺旋状凹部、図7(c)に示すような丸溝形状からなる格子状凹部、などを側壁11’a及び底壁11’bの少なくとも一部に配置したダンパ部材であってもよく、同様な効果が得られる形状であればよい。
【0062】
また、凹部を有するダンパ部材11’は、上記実施例の自然状態で底壁11’bが当接しているバルブボディ本体13の室12に限らず、自然状態で底壁11bと室底面12”bとの間に略々均一の空隙dが設けられた室12”、及び自然状態で側壁11a及び底壁11bに略々均一の空隙dが設けられた室12’にも適用することができ、更に、バルブボディ本体13の室12の形状は、同様な効果が得られる形状であればよい。
【0063】
なお、上述の実施例においては、アキュムレータの背圧制御用の信号油圧が作用する油路fに適用したが、これに限らず、スロットル圧用等の他の信号油圧が作用する油路にも同様に適用できることは勿論、スロットル圧、ライン圧等の他の油圧が作用する油路又は自動変速機以外の油圧回路にも適用してよい。
【図面の簡単な説明】
【図1】本発明を適用した自動変速機の油圧回路の一部を示す図。
【図2】本発明に係るダンパ装置を示す図で、(a)は断面図、(b)は(a)のA部分の拡大図。
【図3】ダンパ装置の部分を示す図で、(a)はダンパ部材の正面断面図、(b)はダンパ部材及び本体の室を示す正面断面図。
【図4】本発明に係る一部変更した実施例による(底壁と室底面との間に空隙を有する)ダンパ部材及び本体の室を示す正面断面図。
【図5】本発明に係る一部変更した実施例による(側壁及び底壁と室側面及び室底面との間に空隙を有する)ダンパ部材及び本体の室を示す正面断面図。
【図6】側壁及び底壁に凹部を有するダンパ部材を示す図で、(a)は正面図、(b)はA−A矢視断面図。
【図7】側壁及び底壁に凹部を有するダンパ部材の他の実施例を示す図で、(a)はリング溝状凹部を示す概略図、(b)は螺旋溝状凹部を示す概略図、(c)は格子溝状凹部を示す概略図。
【符号の説明】
2 (リニア)ソレノイドバルブ
f 油路
1 (分岐)油路
10 ダンパ装置
11,11’ ダンパ部材
11a,11’a 側壁
11b,11’b 底壁
11c 開口部
11d 鍔部
11e リップ部
11f 突起
11’g 凹部
11p 油室
12,12’,12” 室
12a,12a’,12a” 側面
12b,12b’,12b” 底面
12c,12c’,12c” 環状凹面
13 本体(バルブボディ本体)
15 蓋部材(アッパプレート)
16 孔
d 空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a damper device that absorbs hydraulic vibrations in a hydraulic circuit, and is particularly suitable for communicating with an oil passage to which a signal hydraulic pressure from a solenoid valve is supplied in a hydraulic circuit of an automatic transmission. The present invention relates to a damper device using a damper member.
[0002]
[Prior art]
Conventionally, as a device for absorbing pulsation of output (signal) hydraulic pressure from a solenoid valve, there is one disclosed in Japanese Utility Model Laid-Open No. 63-142488. In this type, a spiral conduit made of brass or the like is interposed in an oil passage that communicates with the signal hydraulic pressure from the solenoid valve, and the pulsation of the signal hydraulic pressure based on the duty control of the solenoid valve is generated. Absorbs by elastic deformation in the direction.
[0003]
[Problems to be solved by the invention]
The pulsation prevention device is composed of a large number of spirally wound conduits, becomes a large-scale device, and is difficult to apply to a device having a limited installation space such as a valve body of an automatic transmission. In addition, the absorption of hydraulic pressure fluctuation due to elastic deformation in the radial direction of a spiral conduit such as brass does not have a sufficient damping effect, and the metal deformation such as brass fatigues due to repeated elastic deformation of the conduit, resulting in durability. Is not enough.
[0004]
Accordingly, an object of the present invention is to provide a damper device in a hydraulic circuit that absorbs hydraulic vibration with high accuracy and has sufficient durability with a small-sized device.
[0005]
[Means for Solving the Problems]
  The present invention according to claim 1 (see, for example, FIGS. 1 to 5) is a damper device (10) that communicates with an oil passage (f) of a hydraulic circuit and absorbs hydraulic vibration of the oil passage.
  A cylindrical side wall (11a) made of an elastic material, a bottom wall (11b) formed at one end of the side wall, an opening (11c) formed at the other end of the side wall, the side wall and the bottom wall And a damper member (11) having an oil chamber (11p) constituted by an opening,
  A body (13) having a chamber (12) (12 ') (12 ") for accommodating the damper member;
  The oil passage (f, f1) Has an oil hole (16) communicating with the oil chamber (11p) of the damper member (11), and the chamber (12) (12 ') (12 ") of the main body (13) A lid member (15) that houses the damper member (11) and is fixed to the main body so as to closely contact the opening of the damper member;
The vicinity of the center of the bottom wall (11b) of the damper member (11) is in contact with the chamber bottom surface (12b) of the main body, and a substantially uniform gap is formed between the side wall (11a) and the chamber side surface (12a). (D) the damper member (11) is disposed in the body chamber (12),
  Based on the oil pressure change of the oil chamber (11p) communicating with the oil passage, the damper member (11) is moved into the chamber (12) (12 ') (12 ") of the main body.It is characterized in that it expands and contracts exclusively by expansion and contraction of the side wall (11a).
  It is in a damper device in a hydraulic circuit.
The invention according to claim 2 (see, for example, FIGS. 1 to 5) is a damper device (10) that communicates with an oil passage (f) of a hydraulic circuit and absorbs hydraulic vibration of the oil passage.
A cylindrical side wall (11a) made of an elastic material, a bottom wall (11b) formed at one end of the side wall, an opening (11c) formed at the other end of the side wall, the side wall and the bottom wall And a damper member (11) having an oil chamber (11p) constituted by an opening,
A body (13) having a chamber (12) (12 ′) (12 ″) for accommodating the damper member;
The oil passage (f, f 1 ) Has an oil hole (16) communicating with the oil chamber (11p) of the damper member (11), and the chamber (12) (12 ') (12 ") of the main body (13) A lid member (15) that houses the damper member (11) and is fixed to the main body so as to closely contact the opening of the damper member;
The side wall (11a) of the damper member (11) is in contact with the chamber side surface (12 ″ a) of the main body and is substantially uniform between the bottom wall (11b) and the chamber bottom surface (12 ″ b). The damper member (11) is disposed in the main body chamber (12 ″) so as to have a gap (d),
Based on a change in hydraulic pressure of the oil chamber (11p) communicating with the oil passage, the damper member (11) is disposed on the bottom wall (11b) exclusively within the chamber (12) (12 ′) (12 ″) of the main body. It is characterized by being deformed by expansion and contraction,
It is in a damper device in a hydraulic circuit.
The invention according to claim 3 (see, for example, FIGS. 1 to 5) is a damper device (10) that communicates with an oil passage (f) of a hydraulic circuit and absorbs hydraulic vibration of the oil passage.
A cylindrical side wall (11a) made of an elastic material, a bottom wall (11b) formed at one end of the side wall, an opening (11c) formed at the other end of the side wall, the side wall and the bottom wall And a damper member (11) having an oil chamber (11p) constituted by an opening,
A body (13) having a chamber (12) (12 ′) (12 ″) for accommodating the damper member;
The oil passage (f, f 1 ) Has an oil hole (16) communicating with the oil chamber (11p) of the damper member (11), and the chamber (12) (12 ') (12 ") of the main body (13) A lid member (15) that houses the damper member (11) and is fixed to the main body so as to closely contact the opening of the damper member;
The chamber (12 ′) of the main body (13) is formed to have a substantially uniform gap (d) between the side wall (11a) and the bottom wall (11b) of the damper member (11),
Based on the oil pressure change in the oil chamber (11p) communicating with the oil passage, the damper member (11) is moved into the side wall (11a) and the bottom wall in the chamber (12) (12 ′) (12 ″) of the main body. (11b) It is characterized by elastic deformation due to the expansion and contraction of
It is in a damper device in a hydraulic circuit.
[0006]
  Claim4According to the present invention (see, for example, FIG. 6 and FIG. 7), a recess (11′g) is formed on at least a part of the outer surface of the side wall (11′a) and the bottom wall (11′b) of the damper member (11 ′). ),
  Claim1 to 3It exists in the damper apparatus in the hydraulic circuit of description.
[0007]
  Claim5According to the present invention (see, for example, FIG. 6), the concave portion (11'g) has a substantially hemispherical shape, and a plurality of the concave portions (11'g) are substantially uniformly arranged.
  Claim4It exists in the damper apparatus in the hydraulic circuit of description.
[0011]
  Claim6According to the present invention (see, for example, FIGS. 2 to 5), the bottom wall (11b) of the damper member (11) has a hemispherical shape, and the bottom surfaces (12b) (12b ′) of the chamber have a hemispherical shape. Consist of,
  Claim1 to 5It exists in the damper apparatus in the hydraulic circuit of description.
[0012]
  Claim7According to the present invention (see, for example, FIGS. 2 to 5), the damper member (11) has a lip portion (11e) around the opening (11c),
  When the lid member (15) is fixed to the main body (13), the lip part seals between the lid member.
  ClaimAny one of 1 to 6It exists in the damper apparatus in the hydraulic circuit of description.
[0013]
  Claim8According to the present invention (see, for example, FIG. 2), the lip portion (11e) is formed such that a tip thereof is inclined toward the inner diameter side, and the lip portion is fixed when the lid member (15) is fixed to the main body. (11e) falls into the inner diameter direction,
  Claim7It exists in the damper apparatus in the hydraulic circuit of description.
[0014]
  Claim9According to the present invention (see, for example, FIG. 2), the damper member (11) has a protrusion (11f) protruding in the outer diameter direction on the flange (11d) on the outer periphery of the opening (11c). And
  ClaimAny one of 1 to 8It exists in the damper apparatus in the hydraulic circuit of description.
[0015]
  Claim10In the present invention (see, for example, FIG. 1), the hydraulic circuit is an automatic transmission hydraulic circuit, and the oil passage (f) is supplied with a signal hydraulic pressure (Ps) from a solenoid valve (2). And an oil passage (f) branched from the oil passage (f)1), The signal hydraulic pressure (Ps) communicates with the oil chamber (11p) of the damper member (11).
  ClaimAny one of 1 to 9It exists in the damper apparatus in the hydraulic circuit of description.
[0016]
  Claim11The present invention relates to a damper member disposed in a damper chamber (12) (12 ′) (12 ″) that communicates with an oil passage (f) of a hydraulic circuit and absorbs hydraulic vibration of the oil passage (f). There,
  Made of elastic material,
  A side wall (11a) formed in a cylindrical shape and having a gap (d) between the damper chamber (12) (12 ') (12' ');
  A bottom wall (11b) formed at one end of the side wall (11a);
  An opening (11c) formed at the other end of the side wall (11a);
  An oil chamber (11p) composed of the side wall (11a), the bottom wall (11b) and the opening (11c),
  It protrudes in the axial direction around the opening (11c) and is inclined inward in the radial direction so as to contact the lid member (15) covering the opening of the damper chamber (12) (12 ′) (12 ″). Lip part (11e)And a protrusion (11f) protruding in the outer diameter direction on the flange (11d) on the outer periphery of the opening (11c),It is characterized by providing
  Located on the damper member (11).
[0018]
  Claim12According to the present invention, the damper member (11) has a recess (11'g) on at least a part of the outer surface of the side wall (11a) and the bottom wall (11b).
  Claim11It is in the damper member (11 ') described.
[0019]
[Action]
Based on the above configuration, for example, the signal oil pressure (Ps) from the solenoid valve (2) is changed to the oil passage (f, f1) To the oil chamber (11p) of the damper member (11), and the hydraulic vibration of the oil passage is absorbed by expansion and deformation of the damper member made of an elastic material.
[0020]
In addition, although the code | symbol in the said parenthesis is for contrast with drawing, it has no influence on the structure of a claim.
[0021]
【The invention's effect】
  According to the first aspect of the present invention, the hydraulic vibration of the oil passage of the hydraulic circuit is absorbed with high accuracy by the expansion and contraction of the damper member made of an elastic material, and the damper member includes the side wall, the bottom wall, and the opening. In addition to having an oil chamber composed of a closed space constituted by the above, it is housed in a chamber of the main body and sealed by a lid member, so that a small device is sufficient and sufficient durability is provided.Further, since the deformation of the damper member is performed exclusively by expansion and contraction of the side wall, the elastic deformation is mainly planar (two-dimensional) deformation, and has little influence on fatigue of the elastic material constituting the damper member, In addition, since the gap between the side wall of the damper member and the chamber side surface of the main body is substantially uniform, the expansion and contraction of the side wall is substantially uniform over the entire circumference and the maximum extension amount is regulated substantially uniformly. In addition, the damper member can be prevented from being deformed excessively and at the pole part, and in combination, the durability of the damper member can be improved.
According to the second aspect of the present invention, the hydraulic vibration of the oil passage of the hydraulic circuit is absorbed with high accuracy by expansion and contraction of the damper member made of an elastic material, and the damper member includes the side wall, the bottom wall, and the opening. In addition to having an oil chamber composed of a closed space constituted by the above, it is housed in a chamber of the main body and sealed by a lid member, so that a small device is sufficient and sufficient durability is provided. Further, since the deformation of the damper member is performed exclusively by expansion and contraction of the bottom wall, the elastic deformation is mainly a planar (two-dimensional) deformation and has little influence on the fatigue of the elastic material constituting the damper member. In addition, since the gap between the bottom wall of the damper member and the chamber bottom surface of the main body is substantially uniform, the expansion and contraction of the side wall is substantially uniform over the entire circumference and the maximum extension amount is regulated almost uniformly. Thus, the damper member can be prevented from being deformed excessively and excessively, and in combination, the durability of the damper member can be improved.
According to the third aspect of the present invention, the hydraulic vibration of the oil passage of the hydraulic circuit is absorbed with high accuracy by expansion and contraction of the damper member made of an elastic material, and the damper member includes the side wall, the bottom wall, and the opening. In addition to having an oil chamber composed of a closed space constituted by the above, it is housed in a chamber of the main body and sealed by a lid member, so that a small device is sufficient and sufficient durability is provided. Further, since the deformation of the damper member is performed by the expansion and contraction of the side wall and the bottom wall, the amount of deformation of the damper member with respect to the capacity of the oil chamber is increased, the damper device can be made compact with respect to the absorbed energy of the hydraulic vibration, and the damper Since the gaps between the side wall and bottom wall of the member and the chamber of the main body are substantially uniform, the expansion / contraction deformation of the damper member is substantially uniform, and the maximum extension amount is regulated substantially evenly. The durability of can also be maintained.
[0022]
  Claim4According to the present invention, when the hydraulic pressure is increased by the hydraulic vibration, the concave portions on the outer surface of the side wall and the bottom wall of the damper member are pressed by the side wall and the bottom wall of the valve body main body to become a substantially smooth surface, Since the volume of the oil chamber of the damper member is increased by forming a recess on the inner surface, the amount of absorption with respect to hydraulic pressure fluctuation increases even with a damper device of the same size. Can be improved. As a result, it is possible to prevent the damper member from being broken and plastically deformed by hydraulic stress when exceeding the elastic limit strain. Further, since the damper performance is improved, the damper device in the hydraulic circuit can be downsized.
[0023]
  Claim5According to the present invention, since the recess has a substantially hemispherical shape, the outer surface of the damper member tends to be smooth when pressed against the side wall and the bottom wall of the valve body main body, and the inner side of the damper member on the opposite side Concave portions are easily formed on the side surfaces, and the amount of absorption due to hydraulic pressure fluctuations can be further increased while preventing plastic deformation of the damper member. The ability to stretchTogetherFurther, the damper device can be further downsized.
[0027]
  Claim6According to the present invention, since the bottom wall and the chamber bottom of the damper member are formed in a hemispherical shape, the amount of elastic deformation of the damper member can be made substantially uniform, and extreme deformation can be eliminated.
[0028]
  Claim7According to the present invention, since the lip portion is provided around the opening of the damper member and the gap between the lid member and the lid member is sealed, the damper member and the lid member are sealed even if the processing accuracy of the chamber of the main body is not high. For example, it is not necessary to machine the main body in the cast state, and the cost can be reduced while maintaining high-accuracy absorption of hydraulic vibration.
[0029]
  Claim8According to the present invention, since the lip portion is formed so as to fall in the inner diameter direction when the lid member is fixed to the main body, the lip portion is sandwiched between the main body and the lid member when fixing the lid member to the main body. Can be reliably prevented, and the lip portion is automatically pressed against the lid member in accordance with the hydraulic pressure acting on the oil chamber of the damper member, so that the sealing effect can be reliably maintained.
[0030]
  Claim9According to the present invention, since the projection that protrudes in the outer diameter direction is provided in the flange portion, the chamber and the damper member can be formed even if the processing accuracy of the annular concave surface serving as the seating surface of the flange portion in the chamber of the main body is not high. For example, it is not necessary to machine the main body in a cast state, and it is possible to reduce costs while maintaining high-accuracy absorption of hydraulic vibration.
[0031]
  Claim10According to the present invention, it is applied to an oil passage to which signal hydraulic pressure from a solenoid valve is supplied in a hydraulic circuit of an automatic transmission, and by absorbing hydraulic vibration caused by the solenoid valve with a small device, While maintaining the hydraulic circuit of the transmission compact, it is possible to improve the performance of the automatic transmission by absorbing the vibration of the signal hydraulic pressure.
[0032]
  Claim11According to the present invention, the damper member absorbs the hydraulic vibration of the oil passage of the hydraulic circuit with high accuracy by the expansion and contraction of the damper member made of an elastic material, and at the side wall, the bottom wall, and the opening. Since it has an oil chamber composed of a closed space and is housed in a damper chamber, it can be applied to, for example, a small damper device and has sufficient durability. Moreover, since the damper member seals between the lid member, the lid member can be reliably kept hermetically sealed even if the processing accuracy of the damper chamber or the like is not high.Further, since the damper member has a protrusion protruding in the outer diameter direction at the flange portion, even if the processing accuracy of the annular concave surface serving as the seat surface of the flange portion in the damper chamber is not high, the chamber and the damper member The shaft core can be aligned.Accordingly, for example, a damper device to which a damper member is applied does not need to be machined in a cast state, and the cost can be reduced while maintaining absorption with high accuracy of hydraulic vibration.
[0034]
  Claim12According to the present invention, when the hydraulic pressure is increased by the hydraulic vibration, the damper member has a concave portion on the outer surface of the side wall and the bottom wall that is pressed by the side wall and the bottom wall of the damper chamber to become a substantially smooth surface, A recess is formed on the inner surface to increase the volume of the oil chamber of the damper member, so even if the damper member is the same size, the amount of absorption against hydraulic pressure fluctuation is increased, and even larger hydraulic pressure fluctuation is absorbed, and damper performance Can be improved. As a result, it is possible to prevent the damper member from being broken and plastically deformed by hydraulic stress when exceeding the elastic limit strain. In addition, since the damper performance is improved, the damper device to which the damper member is applied can be downsized.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a part of a hydraulic circuit of an automatic transmission. In the figure, 1 is a primary regulator valve, 2 is a linear solenoid valve, 3 is a solenoid modulator valve, 4 is a hydraulic pump, 5 is an accumulator control valve, 6 is an accumulator, and 7 is a hydraulic servo for clutch.
[0036]
The hydraulic pressure from the hydraulic pump 4 is regulated as a line pressure (clutch operating pressure corresponding to output torque) Pl to the oil passage a by the primary regulator valve 1, and the line pressure is supplied to the oil passage b (a switching valve such as a shift valve). Is supplied to the hydraulic servo 7 and the accumulator chamber 6b of the accumulator 6 through the oil path c, and to the input port 3a of the solenoid modulator valve 3 through the oil path c, and to the accumulator control valve 5 through the oil path g. To the input port 5a. Further, the modulator pressure Pm reduced by the solenoid modulator valve 3 to a predetermined ratio is output from the output port 3b and supplied to the input port 2a of the linear solenoid valve 2 through the oil passage d.
[0037]
The linear solenoid valve 2 outputs the modulator pressure Pm as a predetermined signal pressure Ps from the output port 2b based on a pressure command by an electric signal from the control unit. The signal pressure Ps is supplied to the control oil chamber 5b of the accumulator control valve 5 through the oil passage f, and the control valve 5 is a line that is input to the input port 5a based on the signal pressure Ps of the control oil chamber 5b. The pressure Pl is output from the output port 5c as the predetermined control pressure Pc. The control pressure Pc is supplied to the back pressure chamber 6a of the accumulator 6 through the oil passage e, and the accumulator 6 controls the hydraulic pressure of the clutch hydraulic servo 7 by controlling the back pressure chamber 6a with the control pressure Pc. The ascending (or descending) is controlled to a predetermined characteristic.
[0038]
Since the signal pressure from the output port 2b of the linear solenoid valve 2 is controlled by the balance between the electromagnetic force based on the electrical signal and the spring, it often involves hydraulic pressure fluctuation (pulsation). The signal pressure can be set not only by the linear solenoid valve but also by a duty solenoid valve. In this case, since the control is performed by the ratio (duty ratio) between the ON time and the OFF time of one cycle, the hydraulic pressure fluctuation ( Pulsation). For this reason, the oil passage f for signal pressure has a branch oil passage f.1The damper device 10 according to the present invention is communicated and arranged through the above.
[0039]
As shown in FIG. 2A, the damper device 10 includes a damper member 11 made of an elastic material such as a synthetic resin or rubber, and a valve body main body constituting a main body having a chamber 12 for storing the damper member. 13 and an upper plate 15 that is in close contact with the damper member and serves as a lid member.
[0040]
As shown in detail in FIG. 3A, the damper member 11 has a cylindrical side wall 11a, a hemispherical bottom wall 11b continuous to the lower part of the side wall, and an opening 11c formed at the upper part of the side wall. The side wall 11a and the bottom wall 11b constitute an oil chamber 11p. Further, the opening portion is formed with a flange portion 11d extending in the outer diameter direction, and an annular lip portion 11e protruding upward. The lip portion 11e is formed so that the tip thereof is inclined toward the inner diameter side. As shown in detail in FIG. 2B, protrusions 11f are formed on the outer periphery of the flange portion 11d continuously or at equal intervals in the circumferential direction over the entire periphery.
[0041]
On the other hand, as shown in detail in FIG. 3B, the valve body 13 is made of a cast product such as an aluminum die cast, and the chamber 12 that houses the damper member 11 is also integrally formed by the casting. The chamber 12 includes a cylindrical side surface 12a, a hemispherical bottom surface 12b continuous below the side surface, an annular concave surface 12c bulging in an outer diameter direction above the side surface, and a side of the bottom surface 12b. And the air vent hole 12d opened at a position continuous with the side surface 12a, including the concave surface 12c serving as a seating surface of the damper member flange portion 11d, It is formed in a cast state without performing machining such as cutting.
[0042]
In the state where the damper member 11 is housed in the chamber 12, that is, as shown in FIG. 3B, the flange member 11d is fitted and placed on the annular concave surface 12c. The bottom wall 11b is set so as to be in contact with the bottom surface 12b of the chamber 12 over a relatively wide area and to have a substantially uniform gap d between the side wall 11a of the damper member and the side surface 12a of the chamber. Further, as shown in FIG. 2, the upper plate 15 is made of a metal plate such as an aluminum alloy, and the oil passage f of the upper body (not shown).1An oil hole 16 communicating with the oil chamber 11p of the damper member is formed.
[0043]
As shown in FIG. 2, the damper member 11 is accommodated in the chamber 12 of the valve body main body 13. At this time, because the valve body 13 remains a cast product, even if the dimensional accuracy of the annular concave surface 12c serving as the damper member seating surface is not sufficient as in the case of machining, the damper member When the flange portion 11d of the damper member 11 is fitted into the concave surface 12c, the projection 11f formed on the outer peripheral surface thereof is compressed, and the center line 0 of the damper member 11 is compressed.1-01But the center line of room 12 is 02-02Is aligned to match.
[0044]
Further, as shown in FIG. 2, the upper plate 15 is pressed and fixed from above the valve body main body 13. At this time, the valve body itself remains a cast product, so that the lip portion 11e is tilted toward the inner diameter side even if the depth accuracy of the annular concave surface 12c is not sufficient as in the case of machining. Thus, the damper member 11 is in oil tight contact with the upper plate 15. Further, as shown in FIG. 3, since the lip portion 11e is inclined toward the inner diameter side in a natural state, when the upper plate 15 is attached, the lip portion 11e falls in the outer diameter direction, and the valve body main body 13 and It is not caught between the upper plate 15.
[0045]
As described above, when the signal pressure Ps from the linear solenoid valve 2 vibrates, the oil passage f1The hydraulic vibration in the oil passage f is propagated to the damper device 10 via. That is, the signal pressure Ps is equal to the oil passage f.1The damper member 11 made of an elastic material is led to the oil chamber 11p of the damper member 11 through the oil hole 16 and expands and contracts in response to the fluctuation of the signal pressure, and the vibration of the signal pressure is absorbed and attenuated. . At this time, the damper member 11 is in contact with the spherical bottom surface 12b of the chamber 12 in a relatively wide area in the vicinity of the center of the spherical bottom wall 11b. 11a is performed by expanding and contracting in the outer diameter direction. Accordingly, the damper member 11 is restricted from deforming in the bottom wall direction (that is, the vertical direction) and is exclusively deformed in the side wall direction (that is, the horizontal direction), and the two-dimensional (planar) deformation is a composite constituting the damper member. There is little adverse effect on the durability of elastic materials such as resin and rubber (sagging, reduction in elastic force), which is desirable in terms of durability of the damper member.
[0046]
Further, the gap d between the side wall 11a of the damper member and the side surface 12a of the chamber 12 is substantially uniform over the entire circumference, and the damper member 11 is deformed substantially evenly until it contacts the wall surface of the chamber 12. In addition, the deformation of a predetermined amount or more is prevented by abutting against the wall surface of the chamber 12 to prevent the damper member from being subjected to extreme or excessive deformation (damage), and the durability of the damper member is preferable. It is configured.
[0047]
The oil passage f1The hydraulic pressure supplied into the oil chamber 11p of the damper member 11 through the oil hole 16 acts in a direction to expand the lip portion 11e tilted toward the inner diameter side toward the outer diameter side. Is automatically pressed against the upper plate 15, and the sealing function of the lip portion 11e is automatically enhanced according to the hydraulic pressure supplied to the oil chamber 11p.
[0048]
Next, a further modified embodiment will be described with reference to FIG. In the above-described embodiment, the damper member 11 is configured to absorb hydraulic pressure fluctuations by extending and contracting the side wall 11a exclusively, but in this embodiment, the damper member extends and contracts in the direction of the bottom wall 11b.
[0049]
The damper member 11 is the same as that according to the previous embodiment. Note that the size of the damper member of the present embodiment is set according to the hydraulic pressure fluctuation amount, and is selected according to the hydraulic pressure fluctuation amount. The chamber 12 'of the valve body 13 has a cylindrical side surface 12'a, a hemispherical bottom surface 12'b, and an annular concave surface 12'c, as in the above embodiment. In this state, the side walls 11a and 12 "a of the damper member 11 are in contact with each other, and a substantially uniform gap d is provided between the bottom wall 11b and the bottom surface 12'b. As in the previous embodiment, the damper member 11 is housed in the chamber 12 ″ with its center line 0-0 aligned by the protrusion on the outer peripheral surface of the flange portion 11d, and the lip portion 11e is on the inner diameter side. The upper plate is fixed to the valve body main body 13 so as to fall down.
[0050]
In the present embodiment, the signal pressure Ps from the oil passage f is supplied to the oil chamber 11p of the damper member 11, and the fluctuation of the signal pressure Ps causes the damper member 11 to expand and contract its bottom wall 11b. Hydraulic pressure fluctuation is absorbed. Therefore, the oil pressure fluctuation in the oil chamber 11p is deformed to the bottom wall 11b (vertical direction), and the oil pressure fluctuation can be absorbed by the deformation of the two-dimensional damper member 11.
[0051]
Further, the gap d between the bottom wall 11a of the damper member and the bottom surface 12 "a of the chamber 12" is substantially uniform, and the damper member 11 is deformed substantially uniformly until it abuts against the wall surface of the chamber 12 ", and Deformation of a predetermined amount or more is prevented by coming into contact with the wall surface of the chamber 12 ″, and the damper member is prevented from being subjected to extreme or excessive deformation (damage), and the durability of the damper member is preferable. It has become. Therefore, the damper member 11 of the present embodiment is also prevented from being deformed extremely and extremely, and has a preferable configuration in terms of durability.
[0052]
Next, a partially modified embodiment will be described with reference to FIG. In the above-described embodiment, the damper member 11 exclusively absorbs fluctuations in the hydraulic pressure by expanding and contracting the side wall 11a or the bottom wall 11b, and the damper member 11 has a desirable configuration in terms of durability. Is limited, and the absorption range of the hydraulic pressure fluctuation with respect to the damper member volume is limited. In this embodiment, the damper member is not limited to the side wall 11a or the bottom wall 11b, but can be deformed in the direction of the side wall 11a and the bottom wall 11b.
[0053]
The damper member 11 is the same as that according to the previous embodiment. It should be noted that the damper member of this embodiment is smaller than that of the previous embodiment as long as it has the same oil pressure fluctuation absorption range, and its size is set by the amount of oil pressure fluctuation. Therefore, it is selected according to the hydraulic pressure fluctuation amount. The chamber 12 'of the valve body 13 has a cylindrical side surface 12'a, a hemispherical bottom surface 12'b, and an annular concave surface 12'c, as in the above embodiment. In the state, there is a difference in that the same amount of the gap d is provided between the side wall 11a and the side surface 12′a of the damper member 11 and between the bottom wall 11b and the bottom surface 12′b. That is, in the damper device of this embodiment, a substantially uniform gap d is provided between the damper member 11 and the chamber 12 ′ of the valve body main body 13.
[0054]
Similarly to the previous embodiment, the damper member 11 is housed in the chamber 12 'with the center line 0-0 aligned in the chamber 12' by the protrusion on the outer peripheral surface of the flange portion 11d, and the lip portion 11e has an inner diameter. The upper plate is fixed to the valve body main body 13 so as to fall down to the side.
[0055]
In the present embodiment, the signal pressure Ps from the oil passage f is supplied to the oil chamber 11p of the damper member 11, and due to the fluctuation of the signal pressure Ps, the side wall 11a and the bottom wall 11b of the damper member 11 are substantially omitted. It expands and contracts evenly, and the hydraulic pressure fluctuation is absorbed. Accordingly, the hydraulic pressure fluctuation of the oil chamber 11p is deformed to the bottom wall 11b (vertical direction) together with the side wall 11a (lateral direction), and the volume of the oil chamber 11p is compared with the deformation of the three-dimensional damper member 11. A large range of hydraulic fluctuations can be absorbed.
[0056]
Further, the damper member 11 and the chamber 12 'are formed with a substantially uniform gap over substantially all of them, and when excessive hydraulic pressure is applied to the oil chamber 11p, the damper member 11 has its side wall 11a and hemisphere. The shape-shaped bottom wall 11b extends substantially uniformly and contacts the side surface 12'a and the hemispherical bottom surface 12'b of the chamber 12 'almost simultaneously and equally, so that further deformation is restricted. Therefore, the damper member 11 of the present embodiment is also prevented from being deformed extremely and extremely, and has a preferable configuration in terms of durability.
[0057]
Furthermore, the Example which changed the damper member partially is described along FIG. 6, FIG. In the above-described embodiment, the side wall 11a of the damper member 11 made of an elastic material, or the side wall 11a and the bottom wall 11b expands and contracts to absorb hydraulic pressure fluctuations, and the outside of the side wall 11a and the bottom wall 11b of the damper member 11 is absorbed. The sides are almost smooth. In this embodiment, a recess 11'g is formed on at least a part of the outer surface of the side wall 11'a and the bottom wall 11'b of the damper member 11 'to further absorb the above-described hydraulic pressure fluctuation. The hydraulic circuit of the automatic transmission and the damper device 10 thereof are the same, and the same applies to the occurrence of hydraulic pressure fluctuations, and the description thereof is omitted. Further, the configuration of the damper member 11 ′ is substantially the same as that of the damper member 11, and thus description thereof will be omitted except for some changes.
[0058]
6A and 6B are views showing a damper member having a recess on the side wall and the bottom wall, where FIG. 6A is a front view, and FIG. 6B is a cross-sectional view taken along line AA. As shown in FIG. 6, a large number of substantially hemispherical concave portions 11 ′ g having a predetermined size are arranged substantially uniformly on the side wall 11 ′ a and the bottom wall 11 ′ b of the damper member 11 ′. The size and the position of the recess 11'g are determined by the durability of the damper member 11 ', the effect of improving the damper performance, workability, and the like.
[0059]
As described above, when a hydraulic pressure fluctuation is generated by the hydraulic circuit, the oil chamber 11'p of the damper member 11 'is transformed, and the side wall 11'a and the bottom wall 11'b of the damper member 11' expand and contract. When the side wall 11 ′ a and the bottom wall 11 ′ b of the damper member 11 ′ extend due to the hydraulic pressure fluctuation, the side wall 11 ′ a and the bottom wall 11 ′ b become the side wall 12 a and the bottom wall 12 b of the chamber 12 of the valve body body 13. Crimped. Then, since the recess 11'g on the outer surface X is substantially hemispherical, it is pressed by the side wall 12a and the bottom wall 12b to become substantially smooth, and a recess is formed on the inner surface Y on the opposite side. As a result, the volume of the oil chamber 11'p is further increased, and the amount of absorption with respect to oil pressure fluctuation increases even if the chamber 12 of the valve body 13 is the same size. Further, when contracting, the recess 11'g is formed in the outer diameter surface X, and the inner side surface Y forms a smooth surface, and is restored to the shape before the hydraulic pressure change. The damper member 11 ′ has a substantially hemispherical concave portion 11′g. Therefore, when pressed against the side wall 12a and the bottom wall 12b, the outer surface X tends to be smooth, and the opposite inner surface Y is formed on the opposite side surface Y. A recess is easily formed. Further, since the damper member 11 'has a plurality of concave portions 11'g each having a substantially hemispherical shape, the damper member 11' can be expanded and contracted substantially uniformly.
[0060]
As described above, in the present embodiment, the amount of absorption with respect to the hydraulic pressure fluctuation increases even in the chamber 12 of the valve body main body 13 similar to the above-described embodiment, so that the larger hydraulic pressure fluctuation is absorbed and the damper performance is improved. Can do. As a result, it is possible to prevent the damper member from being broken and plastically deformed by hydraulic stress when exceeding the elastic limit strain. Further, since the damper performance is improved, even if the chamber 12 of the valve body 13 is downsized, the same damper performance can be obtained, that is, the damper device in the hydraulic circuit can be downsized.
[0061]
In the present embodiment, the substantially hemispherical concave portions 11′g are arranged in a substantially uniform manner. However, the present invention is not limited to this. For example, the groove 11 has a round groove shape as shown in FIG. A ring-shaped recess, a spiral recess having a round groove shape as shown in FIG. 7B, a lattice-like recess having a round groove shape as shown in FIG. It may be a damper member arranged on at least a part of 'b, as long as it has a shape that can obtain the same effect.
[0062]
Further, the damper member 11 ′ having a recess is not limited to the chamber 12 of the valve body body 13 with which the bottom wall 11′b is in contact with the bottom wall 11′b in the natural state of the above embodiment, but the bottom wall 11b and the bottom surface 12 ″ in the natural state. It can also be applied to a chamber 12 ″ provided with a substantially uniform gap d between them and b, and a chamber 12 ′ provided with a substantially uniform gap d in the side wall 11a and the bottom wall 11b in a natural state. Furthermore, the shape of the chamber 12 of the valve body main body 13 may be a shape that can obtain the same effect.
[0063]
In the above-described embodiment, the present invention is applied to the oil passage f on which the signal hydraulic pressure for back pressure control of the accumulator acts. However, the present invention is not limited to this, and the same applies to the oil passage on which other signal hydraulic pressures such as a throttle pressure act. Of course, the present invention may be applied to an oil passage in which other oil pressure such as a throttle pressure and a line pressure acts or a hydraulic circuit other than the automatic transmission.
[Brief description of the drawings]
FIG. 1 is a diagram showing a part of a hydraulic circuit of an automatic transmission to which the present invention is applied.
2A and 2B show a damper device according to the present invention, in which FIG. 2A is a cross-sectional view, and FIG. 2B is an enlarged view of a portion A in FIG.
3A and 3B are views showing a portion of the damper device, in which FIG. 3A is a front sectional view of a damper member, and FIG. 3B is a front sectional view showing a damper member and a chamber of a main body.
FIG. 4 is a front cross-sectional view showing a damper member and a chamber of a main body (having a gap between the bottom wall and the chamber bottom) according to a partially modified embodiment according to the present invention.
FIG. 5 is a front cross-sectional view showing a damper member and a chamber of a main body (having a gap between the side wall and the bottom wall and the chamber side surface and the chamber bottom surface) according to a partially modified embodiment according to the present invention.
6A and 6B are diagrams showing a damper member having a recess on a side wall and a bottom wall, where FIG. 6A is a front view, and FIG. 6B is a cross-sectional view taken along line AA.
7A and 7B are diagrams showing another embodiment of a damper member having recesses on the side wall and the bottom wall, wherein FIG. 7A is a schematic view showing a ring groove-like recess, and FIG. 7B is a schematic view showing a spiral groove-like recess; (C) is the schematic which shows a lattice groove-shaped recessed part.
[Explanation of symbols]
2 (Linear) solenoid valve
f Oil passage
f1      (Branch) oil passage
10 Damper device
11, 11 'damper member
11a, 11'a side wall
11b, 11'b Bottom wall
11c opening
11d buttock
11e Lip part
11f protrusion
11'g recess
11p Oil chamber
12, 12 ', 12 "room
12a, 12a ', 12a "side
12b, 12b ', 12b "bottom surface
12c, 12c ', 12c "annular concave surface
13 Body (Valve body)
15 Lid member (upper plate)
16 holes
d Air gap

Claims (12)

油圧回路の油路に連通し、該油路の油圧振動を吸収するダンパ装置において、
弾性材料からなり、円筒状の側壁と、該側壁の一端に形成される底壁と、前記側壁の他端に形成される開口部と、前記側壁、底壁及び開口部にて構成される油室と、を有するダンパ部材と、
前記ダンパ部材を収納する室を有する本体と、
前記油路からの油圧を前記ダンパ部材の油室に連通する油孔を有し、前記本体の室内に前記ダンパ部材を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材と、を備え、
前記ダンパ部材の底壁中心部近傍が前記本体の室底面に接触すると共に、前記側壁と前記室側面との間に略々均一な空隙を有するように、該ダンパ部材が前記本体室内に配置され、
前記油路に連通する油室の油圧変化に基づき、前記ダンパ部材が、前記本体の室内で専ら前記側壁の伸縮にて伸縮変形することを特徴とする、
油圧回路におけるダンパ装置。
In a damper device communicating with an oil passage of a hydraulic circuit and absorbing hydraulic vibration of the oil passage,
An oil made of an elastic material and configured by a cylindrical side wall, a bottom wall formed at one end of the side wall, an opening formed at the other end of the side wall, and the side wall, the bottom wall, and the opening. A damper member having a chamber;
A main body having a chamber for storing the damper member;
It has an oil hole for communicating hydraulic pressure from the oil passage to the oil chamber of the damper member, and the damper member is housed in the chamber of the main body, and is fixed to the main body so as to closely contact the opening portion of the damper member. A lid member,
The damper member is disposed in the main body chamber so that the vicinity of the center of the bottom wall of the damper member is in contact with the bottom surface of the main body and has a substantially uniform gap between the side wall and the side surface of the chamber. ,
Based on a change in hydraulic pressure of an oil chamber communicating with the oil passage, the damper member is elastically deformed by expansion and contraction of the side wall in the interior of the main body.
A damper device in a hydraulic circuit.
油圧回路の油路に連通し、該油路の油圧振動を吸収するダンパ装置において、In a damper device communicating with an oil passage of a hydraulic circuit and absorbing hydraulic vibration of the oil passage,
弾性材料からなり、円筒状の側壁と、該側壁の一端に形成される底壁と、前記側壁の他端に形成される開口部と、前記側壁、底壁及び開口部にて構成される油室と、を有するダンパ部材と、  An oil made of an elastic material and configured by a cylindrical side wall, a bottom wall formed at one end of the side wall, an opening formed at the other end of the side wall, and the side wall, the bottom wall, and the opening. A damper member having a chamber;
前記ダンパ部材を収納する室を有する本体と、  A main body having a chamber for storing the damper member;
前記油路からの油圧を前記ダンパ部材の油室に連通する油孔を有し、前記本体の室内に前記ダンパ部材を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材と、を備え、  It has an oil hole for communicating hydraulic pressure from the oil passage to the oil chamber of the damper member, and the damper member is housed in the chamber of the main body, and is fixed to the main body so as to closely contact the opening portion of the damper member. A lid member,
前記ダンパ部材の側壁が前記本体の室側面に接触すると共に、前記底壁と前記室底面との間に略々均一な空隙を有するように、該ダンパ部材が前記本体室内に配置され、  The damper member is disposed in the main body chamber so that the side wall of the damper member is in contact with the chamber side surface of the main body and has a substantially uniform gap between the bottom wall and the chamber bottom surface,
前記油路に連通する油室の油圧変化に基づき、前記ダンパ部材が、前記本体の室内で専ら前記底壁の伸縮にて伸縮変形することを特徴とする、  Based on a change in hydraulic pressure of an oil chamber communicating with the oil passage, the damper member is elastically deformed by expansion and contraction of the bottom wall exclusively in the chamber of the main body.
油圧回路におけるダンパ装置。  A damper device in a hydraulic circuit.
油圧回路の油路に連通し、該油路の油圧振動を吸収するダンパ装置において、In a damper device communicating with an oil passage of a hydraulic circuit and absorbing hydraulic vibration of the oil passage,
弾性材料からなり、円筒状の側壁と、該側壁の一端に形成される底壁と、前記側壁の他端に形成される開口部と、前記側壁、底壁及び開口部にて構成される油室と、を有するダンパ部材と、  An oil made of an elastic material and configured by a cylindrical side wall, a bottom wall formed at one end of the side wall, an opening formed at the other end of the side wall, and the side wall, the bottom wall, and the opening. A damper member having a chamber;
前記ダンパ部材を収納する室を有する本体と、  A main body having a chamber for storing the damper member;
前記油路からの油圧を前記ダンパ部材の油室に連通する油孔を有し、前記本体の室内に前記ダンパ部材を収納して、前記ダンパ部材の開口部分を密接すべく前記本体に固定される蓋部材と、を備え、  It has an oil hole for communicating hydraulic pressure from the oil passage to the oil chamber of the damper member, and the damper member is housed in the chamber of the main body, and is fixed to the main body so as to closely contact the opening portion of the damper member. A lid member,
前記本体の室が、前記ダンパ部材の側壁及び底壁との間に略々均一な空隙を有するように形成され、  The chamber of the main body is formed to have a substantially uniform gap between the side wall and the bottom wall of the damper member;
前記油路に連通する油室の油圧変化に基づき、前記ダンパ部材が、前記本体の室内で前記側壁及び底壁の伸縮にて伸縮変形することを特徴とする、  Based on a change in hydraulic pressure of an oil chamber communicating with the oil passage, the damper member is elastically deformed by expansion and contraction of the side wall and the bottom wall in the chamber of the main body.
油圧回路におけるダンパ装置。  A damper device in a hydraulic circuit.
前記ダンパ部材の側壁及び底壁の少なくとも一部の外側面に凹部を有することを特徴とする、
請求項1ないし3のいずれか記載の油圧回路におけるダンパ装置。
It has a recess in the outer surface of at least a part of the side wall and the bottom wall of the damper member,
The damper apparatus in the hydraulic circuit in any one of Claim 1 thru | or 3 .
前記凹部は、略々半球形状からなり、複数個を略々均一に配置されることを特徴とする、
請求項記載の油圧回路におけるダンパ装置。
The concave portion has a substantially hemispherical shape, and a plurality of the concave portions are arranged substantially uniformly.
The damper device in the hydraulic circuit according to claim 4 .
前記ダンパ部材の底壁が、半球形状からなり、かつ前記室の底面が、半球形状からなる、
請求項1ないし5のいずれか記載の油圧回路におけるダンパ装置。
The bottom wall of the damper member has a hemispherical shape, and the bottom surface of the chamber has a hemispherical shape,
The damper apparatus in the hydraulic circuit in any one of Claim 1 thru | or 5 .
前記ダンパ部材は、前記開口部の周囲にリップ部を有し、
前記蓋部材を前記本体に固定した際に、前記リップ部が該蓋部材との間をシールすることを特徴とする、
請求項1ないし6のいずれか記載の油圧回路におけるダンパ装置。
The damper member has a lip portion around the opening,
When the lid member is fixed to the main body, the lip portion seals between the lid member,
The damper device in the hydraulic circuit according to any one of claims 1 to 6 .
前記リップ部は、その先端が内径側に傾斜するように形成され、前記蓋部材を前記本体に固定する際、該リップ部が内径方向に倒れた状態になる、
請求項記載の油圧回路におけるダンパ装置。
The lip portion is formed such that a tip thereof is inclined toward the inner diameter side, and when the lid member is fixed to the main body, the lip portion is in a state of falling in the inner diameter direction.
The damper device in the hydraulic circuit according to claim 7 .
前記ダンパ部材は、前記開口部の外周の鍔部に外径方向に突出する突起を有することを特徴とする、
請求項1ないし8のいずれか記載の油圧回路におけるダンパ装置。
The damper member has a protrusion protruding in an outer diameter direction on a flange portion of the outer periphery of the opening,
A damper device in a hydraulic circuit according to any one of claims 1 to 8 .
前記油圧回路は、自動変速機用油圧回路であり、かつ前記油路は、ソレノイドバルブからの信号油圧が供給され、かつ前記油路から分岐された油路を介して前記ダンパ部材の油室に前記信号油圧が連通することを特徴とする、
請求項1ないし9のいずれか記載の油圧回路におけるダンパ装置。
The hydraulic circuit is a hydraulic circuit for an automatic transmission, and the oil passage is supplied with a signal oil pressure from a solenoid valve and enters an oil chamber of the damper member via an oil passage branched from the oil passage. The signal oil pressure communicates,
The damper apparatus in the hydraulic circuit in any one of Claim 1 thru | or 9 .
油圧回路の油路に連通し、該油路の油圧振動を吸収するダンパ室に配置されるダンパ部材であって、
弾性材料からなり、
円筒状に形成されて前記ダンパ室との間に空隙を有する側壁と、
前記側壁の一端に形成される底壁と、
前記側壁の他端に形成される開口部と、
前記側壁、底壁及び開口部にて構成される油室と、を備え、
前記開口部の周囲に軸方向に突出するとともに径方向内方に傾斜して、前記ダンパ室の開口を覆う蓋部材と当接するリップ部と、前記開口部の外周の鍔部に外径方向に突出する突起と、を設けたことを特徴とする、
ダンパ部材。
A damper member that communicates with an oil passage of a hydraulic circuit and is disposed in a damper chamber that absorbs hydraulic vibration of the oil passage;
Made of elastic material,
A side wall formed in a cylindrical shape and having a gap between the damper chamber;
A bottom wall formed at one end of the side wall;
An opening formed at the other end of the side wall;
An oil chamber composed of the side wall, the bottom wall, and the opening,
A lip portion that protrudes in the axial direction around the opening portion and is inclined inward in the radial direction, abuts against a lid member that covers the opening of the damper chamber, and a flange portion on the outer periphery of the opening portion in the outer diameter direction. Protruding protrusions are provided,
Damper member.
前記ダンパ部材は、前記側壁及び前記底壁の少なくとも一部の外側面に凹部を有することを特徴とする、
請求項11記載のダンパ部材。
The damper member has a recess on an outer surface of at least a part of the side wall and the bottom wall,
The damper member according to claim 11 .
JP2000327693A 2000-06-15 2000-10-26 Damper device in hydraulic circuit and damper member used therefor Expired - Fee Related JP3920019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327693A JP3920019B2 (en) 2000-06-15 2000-10-26 Damper device in hydraulic circuit and damper member used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-180390 2000-06-15
JP2000180390 2000-06-15
JP2000327693A JP3920019B2 (en) 2000-06-15 2000-10-26 Damper device in hydraulic circuit and damper member used therefor

Publications (2)

Publication Number Publication Date
JP2002071083A JP2002071083A (en) 2002-03-08
JP3920019B2 true JP3920019B2 (en) 2007-05-30

Family

ID=26594022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327693A Expired - Fee Related JP3920019B2 (en) 2000-06-15 2000-10-26 Damper device in hydraulic circuit and damper member used therefor

Country Status (1)

Country Link
JP (1) JP3920019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916861B2 (en) * 2006-12-13 2012-04-18 日本電産トーソク株式会社 Pulsation prevention structure

Also Published As

Publication number Publication date
JP2002071083A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US8096324B2 (en) Accumulator
US7770599B2 (en) Accumulator
US8770560B2 (en) Electromagnetic actuator and fluid-filled active vibration damping device using the same
KR20140122251A (en) Pump unit driven by an electric motor
JP2018105378A (en) Damper
US8616535B2 (en) Active vibration isolation support system
JP2008232436A (en) Vibration damper having amplitude-selective damping force
US7159856B2 (en) Fluid sealed antivibration device
JP7142114B2 (en) brake system damper
JP3920019B2 (en) Damper device in hydraulic circuit and damper member used therefor
JP2001003976A (en) Hydraulic damping bearing
JP5003677B2 (en) Hydraulic accumulator
JP4119201B2 (en) Active liquid seal vibration isolator
JP2019183921A (en) Liquid pressure device
WO2019008837A1 (en) Fluid-filled vibration-damping device
JP2007085399A (en) Electromagnetic actuator
JP2004232784A (en) Accumulator
JP5080472B2 (en) Pressure control valve with built-in buffer member
EP4257825A1 (en) Diaphragm
JP4084122B2 (en) Active liquid seal vibration isolator
US3059665A (en) Two-way check valve for pumps and the like
CN109210208B (en) Expansion valve
JPH09222148A (en) Liquid sealing type mount
JP2011149447A (en) Valve structure for shock absorber
JP6836422B2 (en) shock absorber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees