JP3919317B2 - Optical element shape measurement method - Google Patents

Optical element shape measurement method Download PDF

Info

Publication number
JP3919317B2
JP3919317B2 JP02277498A JP2277498A JP3919317B2 JP 3919317 B2 JP3919317 B2 JP 3919317B2 JP 02277498 A JP02277498 A JP 02277498A JP 2277498 A JP2277498 A JP 2277498A JP 3919317 B2 JP3919317 B2 JP 3919317B2
Authority
JP
Japan
Prior art keywords
optical element
shape
shape measurement
measuring
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02277498A
Other languages
Japanese (ja)
Other versions
JPH11211428A (en
Inventor
兼資 川野
司 上原
誠二 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP02277498A priority Critical patent/JP3919317B2/en
Publication of JPH11211428A publication Critical patent/JPH11211428A/en
Application granted granted Critical
Publication of JP3919317B2 publication Critical patent/JP3919317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラやスチールビデオカメラ、及び複写機等において使用する光学素子であって、特に曲率を有した複数の反射面を持つ光学素子の形状測定方法に関するものである。
【0002】
【従来の技術】
近年、マルチメデイアが社会に浸透するに連れて、音声、文字情報だけでなく画像情報のデータを扱うようになってきている。この際、画像を取り込むのに用いられるのは一般的にはビデオカメラ又はデジタルカメラが広く利用されている。又、最近は携帯電話やハンディコンピュータ等の携帯端末機器にも撮影手段としての小型のカメラが組み込まれ、撮影後即時に取り込んだ画像データを電話回線を利用して送信する事も可能になってきている。
【0003】
これらの画像入力機器のカメラ部は、一般的に各撮像素子サイズに適した共軸系のレンズから構成された単焦点レンズ群又はズームレンズ群で構成されている。これらのレンズ群は従来、ガラスを加工して製作されてきたが、近年になって成型技術の進歩と共にプラスチツクモールドやガラスモールドに置き換わりつつあり、それによりカメラ部の低価格化が図られてきている。
【0004】
このレンズ群の成型時に要求される成型精度は数μm程度を必要とし、そのレンズ単体の形状測定時には、図10に示す様にレンズ単体をレンズ保持治具に取り付けて、両面の形状を高精度な3次元測定器により測定するのが一般的である。
【0005】
図10は従来の光学素子(レンズ)の形状測定状態を示す図であり、図10(a)はレンズ103の凸面側を測定する概要図、図10(b)はレンズ103の凹面側を測定する概要図である。
【0006】
図10において、101はレンズを保持する保持治具であり、レンズ保持構成としては一般的な鏡筒に用いられる構成を取っており、レンズ103が保持治具101から脱落しないように、レンズ103の鍔部103(a)を保持治具101のネジ部101aに螺合した押さえ環102により押圧している。
【0007】
又、保持治具101のA面及びB面の面精度及び平行度は数μm以下に研磨加工が施されており、図の様にレンズ保持治具本体101を反転させてもレンズ形状を測定する際に支障が無い範囲に高精度に加工されている。
【0008】
次に測定動作について説明する。
【0009】
測定は図10(a)に示す様に、まずレンズ103の片面側を3次元測定器の接触子104に当接させて形状測定を行った後、図10(b)に示す様に保持治具101を反転させ凹面側の形状測定を同様に行う。
【0010】
共軸系レンズの場合はレンズ光軸を中心として点対称な形状である為に、形状測定を行う事で光軸中心を求める事ができる。よって両側(凹凸面)面の相対位置関係を比較的容易に求める事ができ、その結果により金型補正を行い高精度なレンズを成型する事ができる。
【0011】
【発明が解決しようとする課題】
最近になり、前述した様な携帯端末機器の小型化の要望が更に強まっており、複数の曲率を有する反射面を光学素子上に一体的に形成させ、反射を利用して所望の光学特性を得る様な非共軸系のレンズ開発も進められ、例えば特開平8−292372号公報等で開示されている光学素子も研究されつつある。この様な形態の光学素子では、共軸系レンズに比較して前玉径が小さくでき、厚み方向に薄くなるという長所があり、今後有望な技術として早急な開発/研究が進められている。
【0012】
しかし、この様な光学素子においては、自由曲面を各方向に多く形成している為に成型及び計測技術として非常に高度な技術を必要とし、光学素子の量産性の観点からは未だ課題を有している。特に、自由曲面が各方向に構成されている為に、従来の共軸系レンズを測定していた手法では、光学素子の各自由曲面の形状測定に関して、保持治具の形状が複雑になり、保持治具の反転時の精度を十分に得る事ができなかった。
【0013】
そこで、金型補正データを蓄積する為には、レンズ形状測定回数を増して信頼性を向上させる手段が取られていたが、非常に時間と手間がかかり金型コストアップにつながり、低価格のレンズを提供する事が困難であった。又、前述した様に保持治具の形状も複雑になる為に、製作費用が多くなる事によって、レンズのコストが高くなるという課題もあった。
【0014】
本発明は上記のような課題を解消するためになされたもので、複数の反射面が一体的に形成された非共軸系のレンズにおいて、レンズの形状測定を簡単かつ高精度に行うことができ、高精度なレンズを安価に得ることのできる形状測定方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は下記の構成を有することを特徴とする光学素子の形状測定方法である。
【0016】
請求項1の発明の光学素子の形状測定方法は、透明体に光束が入射する屈折面と、曲率を有した複数の反射面と、前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子と、
前記光学素子を保持する光学素子保持手段とを備え、
前記光学素子保持手段には形状測定基準部が少なくとも3カ所形成されており、且つ前記少なくとも3カ所の形状測定基準部により規定される平面に対して、前記光学素子の光学基準軸を含む平面が平行にならない様に前記形状測定基準部が配置されており、この形状測定基準部を測定する事によって前記光学素子の絶対座標系を規定し前記屈折面及び反射面を測定することを特徴としている。
【0017】
請求項2の発明は請求項1の発明において、前記形状測定基準部は球形状で構成される事を特徴としている。
【0018】
請求項3の発明の光学素子の形状測定方法は、透明体に光束が入射する屈折面と、曲率を有した複数の反射面と、前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子と、
前記光学素子には形状測定基準部が少なくとも3カ所形成されており、且つ前記少なくとも3カ所の形状測定基準部により規定される平面に対して、前記光学素子の光学基準軸を含む平面が平行にならない様に前記形状測定基準部が配置されており、前記形状測定基準部を測定する事によって前記光学素子の絶対座標系を規定し前記屈折面及び反射面を測定することを特徴としている。
【0019】
請求項4の発明は請求項3の発明において、前記形状測定基準部は球形状で構成される事を特徴としている。
【0020】
請求項5の発明は請求項4の発明において、前記形状測定基準部はインサート成形により前記光学素子に一体成形されている事を特徴としている。
【0025】
【発明の実施の形態】
以下、この発明の実施の一形態を図面について説明する。
【0026】
実施の形態1.
図1は本発明の形状測定手法における被測定物としての光学素子の一例を示す光路断面図である。図1において、1は曲率を有した複数の反射面が一体に形成された光学素子の一例であり、この光学素子1は物体側より順に凸レンズR1、平面鏡R2、凹面鏡R3、凸面鏡R4、凹面鏡R5、凸面鏡R6、凹面鏡R7、凹レンズR8より構成されている。
【0027】
上記反射面は図中斜線部で示すと共に、平面鏡R2については後述する様に光学基準軸を90度傾斜させる構成を取っているが、光路断面図では光学基準軸5(b)と同一平面に配置している。
【0028】
ここで、凸レンズR1は図2の斜視図に示す様に、後述する凹凸面鏡R3〜R7、凹レンズR8の光学基準軸5(b)に対し平面鏡R2により90度傾斜(直交)した構成を取っている。2は赤外カットフイルタ2aの両側にそれぞれ水平及び垂直方向に複屈折を生じさせる水晶ローパフィルタ2b、2cを設けて構成され光学補正板、3はCCD等の撮像素子面、4は光学素子1の物体側に配置された絞り、5は撮影光学系の光学基準軸であり、5(a)は凸レンズR1、平面鏡R2の光学基準軸、5(b)は凹凸面鏡R3〜R7、凹レンズR8の光学基準軸であって、互いの光学基準軸は図2(b)に示す如く直交している。
【0029】
次に上記光学素子における結像動作を説明する。物体(図示せず)からの光6は絞り4により入射光量を規制された後に光学素子1の凸レンズR1に入射する。凸レンズR1に入射された物体光6は次に平面鏡R2で反射して、90度折り曲げられて凹面鏡R3に到達する。凹面鏡R3により反射された物体光6は凸レンズR1のパワーにより中間結像面N1上に物体像を1次結像する。この様に早い段階にて光学素子1内に物体像を結像する事により、絞り4より撮像側に配置された面の光線有効径の増大を抑制している。
【0030】
中間結像面N1に1次結像された物体光6は、凸面鏡R4、凹面鏡R5、凸面鏡R6、凹面鏡R7、凹レンズR8にて反射及び屈折を繰り返しながら、それぞれの凹凸面鏡及び凹レンズの持つパワーによる影響を受けつつ物体光6を撮像素子面3上に結像させる。
【0031】
この様に光学素子1は、入射及び射出位置での屈折と曲率を有する複数の凹凸面鏡による反射を繰り返しながら所望の光学性能と、全体として正のパワーを有するレンズユニットとしての機能を果たしている。
【0032】
図2は被測定物としての光学素子1を各方向から見た斜視図であり、図2(a)は入射面及び凹面鏡R3,R5,R7の反射面が観察できる方向から見た斜視図、図2(b)は入射面及び凸面鏡R4,R6の反射面が観察できる方向から見た斜視図、図2(c)は射出面及び物体光6を90度折り曲げる平面鏡R2が観察できる方向から見た斜視図である。
【0033】
図2(a)、(b)、(c)に示す光学素子1は成型加工にて形成されており、光路である内部には樹脂が充填されていると共に、各反射面には乾式成膜法である蒸着或いはスパッタ又は湿式成膜法であるメッキ等にて、アルミ又は銀の反射膜が形成されている。又、入射及び射出面の屈折レンズ表面にはSiO2 やMgF2 等の材料からなり透過効率を向上させる為の増透膜(反射防止膜)が形成されている。
【0034】
形状的には光学素子1は全体が弓形形状をなしており、この光学素子1の射出面側の凹レンズR8面近傍には光学素子1全体の形状測定基準面として鍔部7が設けられている。この鍔部7は光学基準軸5(b)を含む平面に対し平行な平面部7(c)と垂直な平面部7(a)、7(b)、7(d)を有し、本実施の形態1では前記平面部の内、7(a)、7(c)、7(d)を形状測定時の保持治具8光学素子保持手段)に対しての取り付け基準面としている。この鍔部7の各基準面は形状測定だけでなく、光学素子1の図示しない鏡筒への保持時にも利用されるものである。
【0035】
又、入射面側の凸レンズR1近傍にも鍔部8が形成されており、この鍔部8は光学基準軸5(b)を含む平面に対し平行な平面部8(c)と、垂直な平面部8(a)、8(b)を有し、本実施の形態1では前記平面部の内、8(a)、8(c)を形状測定時の保持治具に対しての取り付け基準面としている。この基準面は鍔部7と同様に形状測定時の基準面及び図示しない鏡筒への保持時に利用されるものである。
【0036】
次に、特に説明は省略するが、図1に示した光学素子1を各面から見た図を図3〜図5に示す。図3は屈折面R1から観察した図、図4は凹凸面鏡R4、R6、凹レンズR8側から観察した図、図5は凹面鏡R3,R5,R7側から観察した図である。
【0037】
次に本発明の形状測定方法により図1に示す光学素子1の形状を測定する形状測定手順を図6を用いて説明する。
【0038】
図6は光学素子1を保持治具16に取り付けた様子を示すもので、図6(a)は凸面鏡R4及びR6が観察できる方向から見た図、図6(b)は凸レンズR1が観察できる方向から見た図、図6(c)は光学素子1の光学基準軸5(a)及び5(b)が観察できる方向から見た図である。
【0039】
図6において、保持治具16は前述した光学素子1の形状測定時の各基準面7(a)、7(c)、7(d)、8(a)、8(c)に対応した保持治具の基準面16(a)、16(b)、16(c)、16(d)、16(e)を有している。又、保持治具16の外周部には該保持治具の基準としての鋼球17(17(a)、17(b)、17(c))が3カ所に取り付けられており、鋼球の形状を測定する事によって仮想的に球の中心位置を算出して基準平面及び絶対座標系の原点を設定するものである。
【0040】
一般的に3次元測定器は、水平方向に接触子を移動させながら垂直方向の測定を行うものが主流であり、この時、自由曲面を各方向に有する光学素子1の各面を測定する為には、光学素子1を取り付けた保持治具を反転させ被測定面を垂直方向上面に露出させなければならない。
【0041】
本発明においては、凹凸面鏡R3〜R7及び凹レンズR8は保持治具16に対し接触子が当接できる露出面になっていると共に、保持治具16には切り欠き部18及び19が設けられており、3次元測定器の接触子が凸レンズR1及び平面鏡R2にも当接できる様になっている。
【0042】
又、一般的に保持治具16の外形の一部に測定基準面を設け、光学素子1の形状測定時に前記測定基準面を3次元測定器により測定して基準平面及び絶対座標系の原点を設定するが、保持治具16の反転による取り付け誤差が加工限界の範囲で微少ながら生じてしまう為に、反転によって各自由曲面の測定データの信頼性を低下させてしまう事がある。
【0043】
そこで、本実施の形態1では図6に示す様に、保持治具16の外周部に接着等により鋼球17を取り付けて、光学素子1の被測定面に対し常に鋼球3点が3次元測定器の接触子に接触できる様に配置している。言い換えれば、鋼球3点で設定される基準平面に対し、光学素子1の光学基準軸を含む平面を平行に配置しない構成を取ると言う事である。
【0044】
この時、被測定面が平面の場合は平面に対しての垂直な方向(法線方向)は1つに定まる為に、鋼球3点の位置は単純な関係になるが、被測定面が自由曲面又は共軸系の場合には有効領域全域で法線方向が多数存在する為に、その全ての法線方向に対して基準平面が平行にならない様に鋼球3点の位置を都合良く配置する必要がある。
【0045】
又、鋼球は一般的に研磨工程をへて真球度及び直径を非常に高精度に加工できる為に絶対座標系の信頼性を非常に高くする事ができると共に、鋼球は量産性の観点からも良好で比較的安価に保持治具を製作する事ができる。
【0046】
本実施の形態1でも、使用している鋼球の真球度はO.05μm、直径は1μmの精度のものを用いている。この様にする事で、保持治具16を反転又は移動させても常に3点の鋼球を測定する事で、測定基準面及び絶対座標系の原点を高精度に設定する事ができる。
【0047】
本実施の形態1では図6に於いて、鋼球17(a)の中心が絶対座標系の原点であり、図に示す如く絶対座標系を設定しており、この絶対座標系で光学素子1の各屈折面及び反射面の相対位置関係を測定するものである。
【0048】
次に、光学素子1の成型加工及び測定データ取り扱いについて説明する。
【0049】
本発明の被測定物としての光学素子1は射出成型にて加工を行っており、成型材料としては光学的特性及び耐環境性に優れる変性PMMAを用いている。この変性PMMAは低吸湿性に非常に優れた材料で、例えば日立化成のオプトレッツOZ−1000や三菱レイヨンのアクリペットWF−100などが代表される。その他、オレフィン系の樹脂である日本ゼオンのZEONEX480Sや三井石油化学のAPEL5014DOなども非常に低吸湿性に優れた材料でモールドのレンズ材料としては好適である。
【0050】
この光学素子1の各反射面は自由曲面で構成されており、その成型精度は通常の共軸系レンズ同様に形状精度では数ミクロン、面精度ではサブミクロンの高精度まで要求される。この様な高精度の成型精度を得る為には、金型加工として当然サブミクロン以下の加工を行う必要があると共に、形状測定技術として更にそれ以上の精度が要求される。
【0051】
又、光学素子1の各自由曲面は上述した様に面精度としてサブミクロンが要求される為に研磨加工を行っており、研磨加工の加工容易性向上の為に金型は各自由曲面の金型駒を分割して製作している。
【0052】
その為に、金型組込み時に各金型駒間の位置ずれが数ミクロン程度は生じ、各自由曲面を形成する基準面間で相対的な傾きが生じてしまう。そこで、金型若しくは成型品を測定して各自由曲面の傾き量を算出し、金型を補正する場合が生じる。
【0053】
金型若しくは成型品の測定には、各自由曲面の必要とされる面精度から考えても分解能がサブミクロン以下の3次元測定器を用いるが、測定時に被測定面に付着した異物或いは傷、打痕及び表面粗さ等により測定データは必ずしも連続的なデータが得られるとは言えない場合が多い。
【0054】
ここで連続的なデータと言っているのは、あくまでもマクロ的な意味あいであって、測定時にはデータサンプリングはデジタル的に抽出している為に基本的には点データの集合であり、不連続である。この様な成分があると、一般的には自由曲面の連続データに対し高周波成分となって測定データにのってくる。
【0055】
そこで、まず測定データをローパスフィルタに通して上述した不要な高周波成分を除去して精製されたデータを作成する。次に、精製されたデータは点データの集合であるので、連続した面データに展開補間する必要があり、精製されたデータを最小2剰法を用いてデータ補間し、設計データ(連統的な面データ)に合致する様に面の傾き補正量を算出する。以下、この作業をフィッテイングと称する事にする。
【0056】
この時、図7に示す様に例えば、自由曲面形状の曲率変化が極端に小さく球形状に近い場合は、疑似球形状の中心であるA点を中心に回転しても変位量δが微少な為に、傾き補正量(角度θ)の信頼性が非常に低くなってしまう事がある。又、上述した様に測定データはローパスフィルタを通して、不要な高周波成分は除去されるが、測定環境時の部屋の振動等により発生する低周波成分が混入し、実際の自由曲面データと異なった成分が含まれる事もある。この様な時も、フィッテイングを行っても傾き補正を適正に行う事ができず、自由曲面の面形状を算出する事が困難になってくる。
【0057】
そこで、本発明では上述してきた様に、光学素子1と該光学素子を保持する保持手段16から構成され、且つ保持手段16の外周部に少なくとも3カ所に形状測定基準部としての鋼球を設け、この鋼球17を測定する事によって前記光学素子1の絶対座標系を規定して、前記光学素子1の屈折面及び反射面を測定するようにしたもので、各自由曲面間の形状測定精度を飛躍的に向上させ、上記問題点を解決してフィッテイングを精度良く行う事ができる。
【0058】
本実施の形態1は保持治具16の外周部に鋼球17を形成して説明をしてきたが、鋼球17に拘る事はなく真円度及び絶対径が高精度に確保されているものであれば問題はなく、例えばセラミックやガラス等の材料でも構わない。又、形状的にも完全な球形状である必要はなく、球形状の一部であっても、3次元測定器の接触子が必要な方向から当接できる構成であればよい。
【0059】
一方、本実施の形態1での被測定物としての光学素子1は、樹脂の射出成型により成型を行っているが、光学素子としての材料はPMMA等に代表される光学的特性に優れた樹脂だけでなく、光学的特性に優れたガラス材料を用いたガラスモールド成型で行ってもよい。
【0060】
実施の形態2.
図8、図9は本発明の実施の形態2を示す図である。図8は光学素子51を各方向から見た斜視図であり、図8(a)は凸レンズR1の入射面及び凹面鏡R3,R5,R7の反射面が観察できる方向から見た斜視図、図8(b)は凸レンズR1の入射面及び凸面鏡R4,R6の反射面が観察できる方向から見た斜視図、図8(c)は凹レンズR8の射出面及び90度に物体光6を折り曲げる平面鏡R2が観察できる方向から見た斜視図である。
【0061】
尚、光学素子51は実施の形態1での光学素子1と自由曲面形状及び位置は同一であり、鍔部の形状が異なるのみである。よって、光路断面図は図1で示した内容と同一であり、説明は省略する。
【0062】
光学素子51は図8(a)、(b)、(c)に示す様に、全体が弓形形状をなしており、光学素子51の射出面側の凹レンズR8面近傍には光学素子51全体の形状測定基準面として鍔部52が設けられている。
【0063】
この鍔部52は光学基準軸5(b)を含む平面に対し平行な平面部52(c)と、垂直な平面部52(a)、52(b)を有し、更に先端部には凸部53(図中53(a)、53(b))を2カ所に有した平面部52(d)を有している。本実施の形態2では平面部52(d)は52(a)及び平面部52(b)に対して45度傾斜している構成を取っている。この平面部52(d)に形成された凸部53(a)及び53(b)は先端部が球形状で、屈折面及び反射面の相対位置関係を測定する時の光学素子51の絶対座標系の基準となるものである。
【0064】
又、平面部52(d)の裏側である平面部52(e)にも同様に2カ所の球形状の凸部53(c)及び53(d)を有している。この凸部53(c)及び53(d)も屈折面及び反射面の相対位置関係を測定する際の絶対座標系の基準となるもので、前述した凸部53(a)及び53(b)とそれぞれ中心位置を一致させており、対向する反射面での基準位置を一致させ反射面間の相対位置を測定する為のものである。
【0065】
又、入射面側の凸レンズR1近傍にも実施の形態1とは形状が異なるが、鍔部54が形成されており、この鍔部54は光学基準軸5(b)を含む平面に対し平行な平面部54(c)、54(d)と垂直な平面部54(a)、54(b)を有し、平面部54(a)には凸部55(a)を有している。
【0066】
この凸部55(a)は凸部53と同様に先端部が球形状で、屈折面及び反射面の相対位置関係を測定する時の光学素子51の絶対座標系の基準となるものである。又、平面部54(a)の裏側である平面部54(b)にも同様に球形状55(b)を有している。この凸部55(b)も同様に屈折面及び反射面の相対位置関係を測定する際の絶対座標系の基準となるもので、前述した凸部55(a)と中心位置を一致させており、対向する反射面での基準位置を一致させ反射面間の相対位置を測定する為のものである。
【0067】
図9は光学素子51を保持治具56に取り付けて3次元測定器により形状測定を行う様子を示すもので、図9(a)は凹面鏡R3,R5,R7の反射面側から観察した図、図9(b)はその側面図である。
【0068】
ここで、基本的には各反射面及び屈折面の測定方法は同様なので反射面R5を代表して説明する。まず、保持治具56に取り付けられた光学素子51の凸部53(a)を3次元測定器の接触子57により形状測定を行い、仮想中心位置を求める。次に凸部53(b)及び凸部53(a)も同様に測定し、仮想中心位置を求める。
【0069】
上記、3点で形成される平面を基準平面、且つ、凸部53(a)の仮想中心位置を絶対座標系の原点に設定する。絶対座標系の原点が設定された状態で接触子57を移動して反射面R5の形状測定を行う。以上の手順により、反射面R5の絶対位置測定が行われた事になる。以下、同様に、他の各反射面及び屈折面を測定すれば良い。
【0070】
この様に、光学素子51の外形の一部に測定用の基準部(絶対座標系)を設ける事によって、保持治具56の加工精度に依存せずに各反射面及び屈折面の形状を高精度に測定する事ができる。
【0071】
又、測定基準部である凸部53(b)及び凸部53(a)は、本実施の形態2では光学素子51に一体成型しているが、光学素子51の成型加工時に真球度及び直径精度に関して高精度な鋼球をインサートするインサート成型によって、非常に簡単な型構成で測定基準部を構成する事もできる。
【0072】
この時にインサートする材料としては測定信頼性の観点から、3次元測定器の接触子57の硬度よりも硬度が高い材料である事が望ましく、一般的には金属材料が適当と考えられるが、金属に拘る事はなく高硬度を有し且つ軟化点が母体材料(本実施の形態2では低吸湿PMMA)よりも高いガラスやセラミック、エンジニアリングプラスチック等の材料でも構わない。
【0073】
【発明の効果】
以上説明した様に、本発明によれば、透明体に光束が入射する屈折面と曲率を有した複数の反射面と前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子と、前記光学素子を保持する光学素子保持手段とを備え、前記光学素子保持手段に形成された形状測定基準部を測定するように構成したので、前記光学素子の絶対座標系を規定し屈折面及び反射面の相対位置関係を高精度に測定する事ができる効果がある。
【0074】
また、本発明によれば、前記形状測定基準部を少なくとも3カ所形成し、且つ前記少なくとも3カ所の前記形状測定基準部から規定される平面と光学素子の光学基準軸を含む平面とが平行にならない様に前記形状測定基準部を配置するように構成したので、全ての被測定面を測定する事が可能となり、屈折面及び反射面の相対位置関係を高精度に測定する事ができる効果がある。
【0075】
また、本発明によれば、前記形状測定基準部を球形状で構成するように構成したので、屈折面及び反射面の相対位置関係を高精度に測定する事ができると共に、簡単な構成で測定を行う事ができる効果がある。
【0076】
また、本発明によれば、前記形状測定基準部を鋼球又はガラス、セラミック等の高硬度を有する材料で構成したので、高信頼性を有する安価な測定システムを提供する事ができる効果がある。
【0077】
また、本発明によれば、透明体に光束が入射する屈折面と曲率を有した複数の反射面と前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子において、前記光学素子に形成された形状測定基準部を測定するように構成したので、前記光学素子の絶対座標系を規定し前記光学素子の屈折面及び反射面を高精度に測定する事ができると共に安価な測定システムを提供する事ができる効果がある。
【0078】
また、本発明によれば、前記形状測定基準部を少なくとも3カ所形成し、且つ前記少なくとも3カ所の前記形状測定基準部から規定される平面と光学素子の光学基準軸を含む平面とが平行にならない様に前記形状測定基準部を配置するように構成したので、全ての被測定面を測定する事が可能となり、屈折面及び反射面の相対位置関係を高精度に測定する事ができる効果がある。
【0079】
また、本発明によれば、前記形状測定基準部を球形状で構成したので、屈折面及び反射面の相対位置関係を高精度に測定する事ができると共に、簡単な構成で測定を行う事ができる効果がある。
【0080】
また、本発明によれば、前記形状測定基準部をインサート成形により前記光学素子に一体成形するように構成したので、安価な測定システムを提供する事ができる効果がある。
【0081】
また、本発明によれば、前記球形状のインサート部材を鋼球又はガラス、セラミック等の高硬度を有し、軟化点の高い材料で構成したので、高信頼性を有する安価な測定システムを提供する事ができる効果がある。
【0082】
以上の結果、本発明によれば、複数の反射面が一体的に形成された非共軸系の光学素子の形状を高精度に測定する事ができると共に、その測定に要する治具関係も非常に簡単な構成にでき、高精度な光学素子を安価に提供する事ができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による光学素子の光路断面図である。
【図2】 光学素子を各方面から見た斜視図である。
【図3】 光学素子を屈折面側から見た図である。
【図4】 光学素子を凹凸面鏡、凹レンズ側から見た図である。
【図5】 光学素子を凹面鏡側から見た図である。
【図6】 本発明の実施の形態1による光学素子の形状測定方法を説明するために光学素子を保持治具に取り付け、各方向から見た概略断図面である。
【図7】 曲率変化の概要説明図である。
【図8】 本発明の実施の形態2による光学素子の斜視図である。
【図9】 図8の光学素子を保持治具に取り付けた状態を示す正面図及び側面図である。
【図10】 従来の光電素子の形状測定状態を示す図であり、図10(a)は光電素子の凸面側を測定する概要図、図10(b)は光電素子の凹面側を測定する概要図である。
【符号の説明】
R1 凸レンズ(屈折面)
R2 平面鏡(反射面)
R3 凹面鏡(反射面)
R4 凸面鏡(反射鏡)
R5 凹面鏡(反射面)
R6 凸面鏡(反射面)
R7 凹面鏡(反射面)
R8 凹レンズ(屈折面)
1、51 光学素子
16。56 保持治具(光学素子保持治具)
17 鋼球(形状測定基準部)
53(53a、53b) 凸部(形状測定基準部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element used in a video camera, a still video camera, a copying machine, and the like, and more particularly to a method for measuring the shape of an optical element having a plurality of reflective surfaces having a curvature.
[0002]
[Prior art]
In recent years, as multimedia has penetrated society, not only voice and text information but also image information data has been handled. At this time, a video camera or a digital camera is generally widely used for capturing an image. Recently, a small camera as a photographing means has also been incorporated in portable terminal devices such as mobile phones and handy computers, and it has become possible to transmit image data captured immediately after photographing using a telephone line. ing.
[0003]
The camera section of these image input devices is generally composed of a single focus lens group or a zoom lens group composed of a coaxial lens suitable for each image sensor size. These lens groups have been manufactured by processing glass in the past, but in recent years, plastic molds and glass molds are being replaced with the advancement of molding technology, thereby reducing the cost of the camera unit. Yes.
[0004]
The molding accuracy required for molding this lens group requires several micrometers, and when measuring the shape of the lens unit, attach the lens unit to the lens holding jig as shown in FIG. In general, the measurement is performed by a three-dimensional measuring instrument.
[0005]
10A and 10B are diagrams showing a shape measurement state of a conventional optical element (lens). FIG. 10A is a schematic diagram for measuring the convex side of the lens 103, and FIG. FIG.
[0006]
In FIG. 10, reference numeral 101 denotes a holding jig for holding a lens. The lens holding structure is a structure used for a general lens barrel, and the lens 103 is prevented from falling off the holding jig 101. The pressing portion 102 (a) of the holding jig 101 is pressed by a holding ring 102 that is screwed into the holding portion 101.
[0007]
Also, the surface accuracy and parallelism of the A surface and B surface of the holding jig 101 are polished to several μm or less, and the lens shape is measured even when the lens holding jig body 101 is inverted as shown in the figure. It is processed with high accuracy in a range that does not hinder the operation.
[0008]
Next, the measurement operation will be described.
[0009]
As shown in FIG. 10A, first, the shape of the lens 103 is measured by bringing one side of the lens 103 into contact with the contact 104 of the three-dimensional measuring instrument, and then the holding treatment is performed as shown in FIG. 10B. The shape of the concave surface side is similarly measured by reversing the tool 101.
[0010]
In the case of a coaxial lens, the center of the optical axis can be obtained by measuring the shape because it has a point-symmetric shape with respect to the optical axis of the lens. Therefore, the relative positional relationship between the both surfaces (uneven surfaces) can be determined relatively easily, and a high-precision lens can be molded by correcting the mold based on the result.
[0011]
[Problems to be solved by the invention]
Recently, there has been an increasing demand for miniaturization of portable terminal devices as described above, and a reflective surface having a plurality of curvatures is formed integrally on an optical element, and desired optical characteristics are obtained using reflection. Development of such non-coaxial lenses is also underway, and optical elements disclosed in, for example, Japanese Patent Application Laid-Open No. 8-292372 are being studied. Such an optical element has the advantages that the diameter of the front lens can be made smaller and thinner in the thickness direction than a coaxial lens, and rapid development / research is being promoted as a promising technology in the future.
[0012]
However, in such an optical element, since many free-form surfaces are formed in each direction, a very advanced technique is required as a molding and measurement technique, and there are still problems from the viewpoint of mass production of optical elements. is doing. In particular, since the free-form surface is configured in each direction, the method of measuring a conventional coaxial lens has a complicated shape of the holding jig for measuring the shape of each free-form surface of the optical element. It was not possible to obtain sufficient accuracy when reversing the holding jig.
[0013]
Therefore, in order to accumulate mold correction data, measures were taken to improve the reliability by increasing the number of lens shape measurements, but it took a lot of time and effort, leading to an increase in mold costs, and low costs. It was difficult to provide a lens. In addition, since the shape of the holding jig is complicated as described above, there is a problem that the cost of the lens increases due to an increase in manufacturing cost.
[0014]
The present invention has been made to solve the above-described problems. In a non-coaxial lens in which a plurality of reflecting surfaces are integrally formed, it is possible to easily and accurately measure the lens shape. An object of the present invention is to provide a shape measuring method capable of obtaining a highly accurate lens at low cost.
[0015]
[Means for Solving the Problems]
The present invention is a method for measuring the shape of an optical element having the following configuration.
[0016]
According to a first aspect of the present invention, there is provided a method for measuring a shape of an optical element, comprising: a refracting surface on which a light beam is incident on a transparent body; a plurality of reflecting surfaces having a curvature; An optical element integrally formed with the surface;
An optical element holding means for holding the optical element,
In the optical element holding means The shape measurement reference portions are formed at least at three places, and the plane including the optical reference axis of the optical element is not parallel to the plane defined by the at least three shape measurement reference portions. The shape measurement standard part is arranged, By measuring the shape measurement reference portion, an absolute coordinate system of the optical element is defined, and the refractive surface and the reflective surface are measured.
[0017]
The invention of claim 2 is characterized in that, in the invention of claim 1, the shape measurement reference portion is formed in a spherical shape.
[0018]
According to a third aspect of the present invention, there is provided a method for measuring a shape of an optical element, comprising: a refracting surface on which a light beam is incident on a transparent body; a plurality of reflecting surfaces having a curvature; An optical element integrally formed with the surface;
In the optical element The shape measurement reference portions are formed at least at three places, and the plane including the optical reference axis of the optical element is not parallel to the plane defined by the at least three shape measurement reference portions. The shape measurement standard part is arranged. By measuring the shape measurement reference part, the absolute coordinate system of the optical element is defined, and the refractive surface and the reflective surface are measured.
[0019]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the shape measurement reference portion is formed in a spherical shape.
[0020]
According to a fifth aspect of the present invention, in the fourth aspect of the invention, the shape measurement reference portion is integrally formed with the optical element by insert molding.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0026]
Embodiment 1 FIG.
FIG. 1 is an optical path cross-sectional view showing an example of an optical element as an object to be measured in the shape measuring method of the present invention. In FIG. 1, 1 is an example of an optical element in which a plurality of reflecting surfaces having a curvature are integrally formed. The optical element 1 is a convex lens R1, a plane mirror R2, a concave mirror R3, a convex mirror R4, and a concave mirror R5 in order from the object side. Convex mirror R6, concave mirror R7, and concave lens R8.
[0027]
The reflection surface is indicated by a hatched portion in the drawing, and the plane mirror R2 is configured to incline the optical reference axis by 90 degrees as will be described later. However, in the optical path sectional view, it is in the same plane as the optical reference axis 5 (b). It is arranged.
[0028]
Here, as shown in the perspective view of FIG. 2, the convex lens R1 includes concave and convex surface mirrors R3 to R7, which will be described later, and a concave lens. R8 The optical reference axis 5 (b) is inclined 90 degrees (perpendicular) by the plane mirror R2. Reference numeral 2 denotes an optical correction plate provided on both sides of the infrared cut filter 2a with crystal low-pass filters 2b and 2c for generating birefringence in the horizontal and vertical directions, 3 denotes an image pickup element surface such as a CCD, and 4 denotes an optical element 1. 5 is an optical reference axis of the photographic optical system, 5 (a) is the convex lens R1, the optical reference axis of the plane mirror R2, and 5 (b) is the concave / convex surface mirrors R3 to R7 and the concave lens R8. The optical reference axes are orthogonal to each other as shown in FIG.
[0029]
Next, an image forming operation in the optical element will be described. Light 6 from an object (not shown) is incident on the convex lens R1 of the optical element 1 after the amount of incident light is regulated by the diaphragm 4. The object beam 6 incident on the convex lens R1 is then reflected by the plane mirror R2, bent 90 degrees, and reaches the concave mirror R3. The object light 6 reflected by the concave mirror R3 primarily forms an object image on the intermediate imaging plane N1 by the power of the convex lens R1. Thus, by forming an object image in the optical element 1 at an early stage, an increase in the effective beam diameter of the surface disposed on the imaging side from the stop 4 is suppressed.
[0030]
The object light 6 primarily imaged on the intermediate imaging surface N1 is reflected and refracted by the convex mirror R4, concave mirror R5, convex mirror R6, concave mirror R7, and concave lens R8, and depends on the power of each concave and convex surface mirror and concave lens. The object light 6 is imaged on the image sensor surface 3 while being influenced.
[0031]
As described above, the optical element 1 functions as a lens unit having desired optical performance and positive power as a whole while repeating reflection by a plurality of concave and convex surface mirrors having refraction and curvature at the entrance and exit positions.
[0032]
FIG. 2 is a perspective view of the optical element 1 as an object to be measured as viewed from each direction, and FIG. 2A is a perspective view of the incident surface and the reflecting surfaces of the concave mirrors R3, R5, and R7 as viewed from the direction. 2B is a perspective view seen from the direction in which the entrance surface and the reflecting surfaces of the convex mirrors R4 and R6 can be observed, and FIG. 2C is a view from the direction in which the plane mirror R2 that bends the exit surface and the object light 6 by 90 degrees can be observed. FIG.
[0033]
The optical element 1 shown in FIGS. 2 (a), 2 (b), and 2 (c) is formed by molding, the inside of the optical path is filled with resin, and the dry film is formed on each reflecting surface. A reflective film made of aluminum or silver is formed by vapor deposition, sputtering, or plating, which is a wet film formation method. Also, the refractive lens surface on the entrance and exit surfaces is made of SiO. 2 And MgF 2 A permeable film (antireflection film) is formed to improve the transmission efficiency.
[0034]
In terms of shape, the entire optical element 1 has an arcuate shape, and a flange 7 is provided as a shape measurement reference surface of the entire optical element 1 in the vicinity of the concave lens R8 surface on the exit surface side of the optical element 1. . The flange portion 7 has a plane portion 7 (c) parallel to a plane including the optical reference axis 5 (b) and a plane portion 7 (a), 7 (b), 7 (d) perpendicular to the plane including the optical reference axis 5 (b). In the first embodiment, 7 (a), 7 (c), and 7 (d) out of the flat surface portions are held jigs 8 during shape measurement. ( It is a reference mounting surface for the optical element holding means). Each reference surface of the flange 7 is used not only for shape measurement but also for holding the optical element 1 in a lens barrel (not shown).
[0035]
Also, a flange 8 is formed in the vicinity of the convex lens R1 on the incident surface side, and this flange 8 is a plane perpendicular to the plane 8 (c) parallel to the plane including the optical reference axis 5 (b). In the first embodiment, 8 (a) and 8 (c) of the plane portions are attached to the holding jig when measuring the shape. It is said. This reference surface is used in the same manner as the flange portion 7 when holding the shape on a reference surface for shape measurement and a lens barrel (not shown).
[0036]
Next, although not particularly described, FIGS. 3 to 5 are views of the optical element 1 shown in FIG. 3 is a view observed from the refractive surface R1, FIG. 4 is a view observed from the concave and convex surface mirrors R4 and R6, and the concave lens R8 side, and FIG. 5 is a view observed from the concave mirrors R3, R5, and R7 side.
[0037]
Next, a shape measuring procedure for measuring the shape of the optical element 1 shown in FIG. 1 by the shape measuring method of the present invention will be described with reference to FIG.
[0038]
FIG. 6 shows a state in which the optical element 1 is attached to the holding jig 16, FIG. 6 (a) is a view seen from the direction in which the convex mirrors R4 and R6 can be observed, and FIG. 6 (b) can see the convex lens R1. FIG. 6C is a view seen from the direction, and FIG. 6C is a view seen from the direction in which the optical reference axes 5 (a) and 5 (b) of the optical element 1 can be observed.
[0039]
In FIG. 6, the holding jig 16 holds the reference surfaces 7 (a), 7 (c), 7 (d), 8 (a), and 8 (c) at the time of measuring the shape of the optical element 1 described above. The jig has reference surfaces 16 (a), 16 (b), 16 (c), 16 (d), and 16 (e). Further, steel balls 17 (17 (a), 17 (b), 17 (c)) as a reference of the holding jig are attached to the outer peripheral portion of the holding jig 16 at three locations. By measuring the shape, the center position of the sphere is virtually calculated to set the reference plane and the origin of the absolute coordinate system.
[0040]
In general, three-dimensional measuring instruments are mainly used for measuring in the vertical direction while moving the contact in the horizontal direction. At this time, in order to measure each surface of the optical element 1 having a free-form surface in each direction. For this, the holding jig to which the optical element 1 is attached must be reversed so that the surface to be measured is exposed on the upper surface in the vertical direction.
[0041]
In the present invention, the concave and convex surface mirrors R3 to R7 and the concave lens R8 are exposed surfaces on which the contact can come into contact with the holding jig 16, and the holding jig 16 is provided with notches 18 and 19. In addition, the contact of the three-dimensional measuring device can come into contact with the convex lens R1 and the plane mirror R2.
[0042]
In general, a measurement reference plane is provided on a part of the outer shape of the holding jig 16, and when measuring the shape of the optical element 1, the measurement reference plane is measured by a three-dimensional measuring instrument to set the reference plane and the origin of the absolute coordinate system. However, since the mounting error due to the reversal of the holding jig 16 is slightly generated within the processing limit range, the reversal may reduce the reliability of the measurement data of each free-form surface.
[0043]
Therefore, in the first embodiment, as shown in FIG. 6, a steel ball 17 is attached to the outer peripheral portion of the holding jig 16 by adhesion or the like, and three steel balls are always three-dimensionally with respect to the surface to be measured of the optical element 1. It is arranged so that it can contact the contact of the measuring instrument. In other words, the plane including the optical reference axis of the optical element 1 is not arranged parallel to the reference plane set by three steel balls.
[0044]
At this time, when the surface to be measured is a plane, the direction perpendicular to the plane (normal direction) is determined to be one, so the positions of the three steel balls have a simple relationship. In the case of a free-form surface or a coaxial system, since there are many normal directions in the entire effective area, the position of the three steel balls is conveniently set so that the reference plane is not parallel to all normal directions. Need to be placed.
[0045]
In addition, since steel balls can be processed with a very high accuracy in sphericity and diameter in general through the polishing process, the reliability of the absolute coordinate system can be made extremely high, and the steel balls can be mass-produced. The holding jig can be manufactured at a relatively low cost, which is favorable from the viewpoint.
[0046]
Also in the first embodiment, the sphericity of the steel balls used is O.D. The one having an accuracy of 05 μm and a diameter of 1 μm is used. By doing in this way, even if the holding jig 16 is reversed or moved, the measurement reference plane and the origin of the absolute coordinate system can be set with high accuracy by always measuring three steel balls.
[0047]
In the first embodiment, in FIG. 6, the center of the steel ball 17 (a) is the origin of the absolute coordinate system, and an absolute coordinate system is set as shown in the figure. In this absolute coordinate system, the optical element 1 The relative positional relationship between each refracting surface and reflecting surface is measured.
[0048]
Next, molding processing of the optical element 1 and measurement data handling will be described.
[0049]
The optical element 1 as an object to be measured according to the present invention is processed by injection molding, and a modified PMMA having excellent optical characteristics and environmental resistance is used as a molding material. This modified PMMA is a material having a very low hygroscopic property, such as Hitachi Chemical's Optrez OZ-1000 and Mitsubishi Rayon's Acrypet WF-100. In addition, Nippon Zeon's ZEONEX480S and Mitsui Petrochemical's APEL5014DO, which are olefin-based resins, are extremely excellent in hygroscopicity and are suitable as lens materials for molds.
[0050]
Each reflecting surface of the optical element 1 is composed of a free-form surface, and its molding accuracy is required to be as high as several microns in terms of shape accuracy and sub-micron in terms of surface accuracy in the same manner as a normal coaxial lens. In order to obtain such a high molding accuracy, it is naturally necessary to perform sub-micron processing as mold processing, and higher accuracy is required as a shape measurement technique.
[0051]
Further, each free-form surface of the optical element 1 is polished because sub-micron is required as the surface accuracy as described above, and the mold is a mold for each free-form surface to improve the processability of the polishing process. The mold pieces are divided and produced.
[0052]
Therefore, when the mold is assembled, the positional deviation between the mold pieces is about several microns, and a relative inclination occurs between the reference planes forming the free-form curved surfaces. Therefore, there is a case where the mold or molded product is measured to calculate the amount of inclination of each free-form surface, and the mold is corrected.
[0053]
For measuring molds or molded products, a 3D measuring instrument with a resolution of submicron or less is used in consideration of the required surface accuracy of each free-form surface. In many cases, continuous measurement data cannot always be obtained due to dents and surface roughness.
[0054]
The term “continuous data” here means only macroscopic meaning, and since data sampling is digitally extracted during measurement, it is basically a set of point data, and is discontinuous. It is. When such a component exists, generally, it becomes a high frequency component for continuous data of a free-form surface and is included in measurement data.
[0055]
Therefore, firstly, the measurement data is passed through a low-pass filter, and the above-described unnecessary high-frequency components are removed to create purified data. Next, since the refined data is a collection of point data, it is necessary to interpolate into continuous surface data, and the refined data is interpolated using a least-two-modulus method to obtain design data (sequential The surface tilt correction amount is calculated so as to match the correct surface data. Hereinafter, this operation is referred to as fitting.
[0056]
At this time, as shown in FIG. 7, for example, when the curvature change of the free-form surface is extremely small and close to a spherical shape, the displacement amount δ is very small even when rotating around the point A which is the center of the pseudo-spherical shape. For this reason, the reliability of the tilt correction amount (angle θ) may be very low. In addition, as described above, unnecessary high-frequency components are removed from the measurement data through a low-pass filter, as described above, but low-frequency components generated by room vibrations in the measurement environment are mixed, and components that differ from actual free-form surface data May be included. Even in such a case, even if fitting is performed, tilt correction cannot be performed properly, and it becomes difficult to calculate the surface shape of the free-form surface.
[0057]
Therefore, in the present invention, as described above, the optical element 1 and the holding means 16 for holding the optical element are configured, and steel balls as shape measurement reference parts are provided at least at three locations on the outer periphery of the holding means 16. By measuring the steel ball 17, the absolute coordinate system of the optical element 1 is defined, and the refractive surface and the reflective surface of the optical element 1 are measured. Can be improved dramatically, and the above-mentioned problems can be solved and fitting can be performed with high accuracy.
[0058]
In the first embodiment, the steel ball 17 is formed on the outer peripheral portion of the holding jig 16, but the steel ball 17 is not concerned and the roundness and the absolute diameter are ensured with high accuracy. If there is no problem, for example, a material such as ceramic or glass may be used. Further, the shape does not need to be a perfect spherical shape, and even a part of the spherical shape may be a configuration that allows the contact of the three-dimensional measuring device to contact from a necessary direction.
[0059]
On the other hand, the optical element 1 as the object to be measured in the first embodiment is molded by resin injection molding, but the material as the optical element is a resin excellent in optical characteristics represented by PMMA or the like. Not only that, but glass molding using a glass material having excellent optical properties may be used.
[0060]
Embodiment 2. FIG.
8 and 9 are diagrams showing Embodiment 2 of the present invention. FIG. 8 is a perspective view of the optical element 51 as viewed from each direction, and FIG. 8A is a perspective view of the incident surface of the convex lens R1 and the reflective surfaces of the concave mirrors R3, R5, and R7 as viewed from the direction. FIG. 8B is a perspective view seen from the direction in which the incident surface of the convex lens R1 and the reflecting surfaces of the convex mirrors R4 and R6 can be observed. FIG. 8C shows the exit surface of the concave lens R8 and the plane mirror R2 that bends the object light 6 at 90 degrees. It is the perspective view seen from the direction which can be observed.
[0061]
The optical element 51 has the same free-form surface shape and position as the optical element 1 in the first embodiment, and only the shape of the collar portion is different. Therefore, the optical path cross-sectional view is the same as that shown in FIG.
[0062]
As shown in FIGS. 8A, 8B, and 8C, the entire optical element 51 has an arcuate shape, and the entire optical element 51 is located near the concave lens R8 surface on the exit surface side of the optical element 51. A collar portion 52 is provided as a shape measurement reference surface.
[0063]
The flange portion 52 has a plane portion 52 (c) parallel to the plane including the optical reference axis 5 (b) and perpendicular plane portions 52 (a) and 52 (b). A flat portion 52 (d) having two portions 53 (53 (a) and 53 (b) in the figure) is provided. In the second embodiment, the plane portion 52 (d) is inclined at 45 degrees with respect to the plane portion 52 (a) and the plane portion 52 (b). The convex portions 53 (a) and 53 (b) formed on the flat portion 52 (d) have a spherical tip, and the absolute coordinates of the optical element 51 when measuring the relative positional relationship between the refractive surface and the reflective surface. It is the standard of the system.
[0064]
Similarly, the planar portion 52 (e), which is the back side of the planar portion 52 (d), also has two spherical convex portions 53 (c) and 53 (d). The convex portions 53 (c) and 53 (d) are also used as a reference for the absolute coordinate system when measuring the relative positional relationship between the refracting surface and the reflecting surface, and the convex portions 53 (a) and 53 (b) described above. And the center positions are made to coincide with each other, the reference positions on the opposite reflecting surfaces are made to coincide, and the relative positions between the reflecting surfaces are measured.
[0065]
Further, although the shape is different from the first embodiment in the vicinity of the convex lens R1 on the incident surface side, a flange portion 54 is formed, and this flange portion 54 is parallel to a plane including the optical reference axis 5 (b). The plane portions 54 (c) and 54 (d) are perpendicular to the plane portions 54 (a) and 54 (b), and the plane portion 54 (a) has a convex portion 55 (a).
[0066]
The convex portion 55 (a) has a spherical tip as in the convex portion 53 and serves as a reference for the absolute coordinate system of the optical element 51 when measuring the relative positional relationship between the refractive surface and the reflective surface. Similarly, the flat surface portion 54 (b) on the back side of the flat surface portion 54 (a) has a spherical shape 55 (b). Similarly, the convex portion 55 (b) serves as a reference for the absolute coordinate system when measuring the relative positional relationship between the refracting surface and the reflecting surface, and the central position coincides with the convex portion 55 (a) described above. This is for measuring the relative position between the reflecting surfaces by matching the reference positions on the reflecting surfaces facing each other.
[0067]
FIG. 9 shows a state in which the optical element 51 is attached to the holding jig 56 and the shape is measured by a three-dimensional measuring instrument. FIG. 9A is a diagram observed from the reflecting surface side of the concave mirrors R3, R5, R7. FIG. 9B is a side view thereof.
[0068]
Here, basically, since the measuring method of each reflecting surface and the refracting surface is the same, the reflecting surface R5 will be described as a representative. First, the shape of the convex portion 53 (a) of the optical element 51 attached to the holding jig 56 is measured by the contact 57 of the three-dimensional measuring device to obtain the virtual center position. Next, the convex portion 53 (b) and the convex portion 53 (a) are measured in the same manner to obtain a virtual center position.
[0069]
The plane formed by the three points is set as a reference plane, and the virtual center position of the convex portion 53 (a) is set as the origin of the absolute coordinate system. With the origin of the absolute coordinate system set, the contactor 57 is moved to measure the shape of the reflecting surface R5. The absolute position of the reflecting surface R5 is measured by the above procedure. Hereinafter, similarly, each other reflecting surface and refracting surface may be measured.
[0070]
In this way, by providing a measurement reference portion (absolute coordinate system) on a part of the outer shape of the optical element 51, the shape of each reflecting surface and refracting surface can be increased without depending on the processing accuracy of the holding jig 56. It can be measured accurately.
[0071]
Further, the convex portion 53 (b) and the convex portion 53 (a), which are measurement reference portions, are integrally formed with the optical element 51 in the second embodiment, but when the optical element 51 is molded, The measurement reference part can be configured with a very simple mold configuration by insert molding in which a steel ball with high accuracy in terms of diameter accuracy is inserted.
[0072]
The material to be inserted at this time is preferably a material whose hardness is higher than the hardness of the contact 57 of the three-dimensional measuring instrument from the viewpoint of measurement reliability. Generally, a metal material is considered suitable. However, it may be a material such as glass, ceramic, or engineering plastic that has a high hardness and a softening point higher than that of the base material (low moisture absorption PMMA in the second embodiment).
[0073]
【The invention's effect】
As described above, according to the present invention, the refracting surface on which the light beam enters the transparent body, the plurality of reflecting surfaces having a curvature, and the refracting surface that emits the light beam reflected by the plurality of reflecting surfaces are integrated. Since the optical element formed in the optical element and the optical element holding means for holding the optical element are configured to measure the shape measurement reference portion formed in the optical element holding means, the absolute coordinates of the optical element The system is defined, and the relative positional relationship between the refractive surface and the reflective surface can be measured with high accuracy.
[0074]
According to the present invention, at least three shape measurement reference portions are formed, and a plane defined by the at least three shape measurement reference portions and a plane including the optical reference axis of the optical element are parallel to each other. Since the shape measurement reference part is arranged so that it does not become necessary, it becomes possible to measure all measured surfaces, and the relative positional relationship between the refracting surface and the reflecting surface can be measured with high accuracy. is there.
[0075]
In addition, according to the present invention, since the shape measurement reference portion is configured to have a spherical shape, the relative positional relationship between the refracting surface and the reflecting surface can be measured with high accuracy, and measurement can be performed with a simple configuration. There is an effect that can be performed.
[0076]
In addition, according to the present invention, since the shape measurement reference portion is made of a material having high hardness such as a steel ball, glass, ceramic, etc., there is an effect that an inexpensive measurement system having high reliability can be provided. .
[0077]
Further, according to the present invention, the refractive surface on which the light beam is incident on the transparent body, the plurality of reflecting surfaces having curvature, and the refractive surface that emits the light beam reflected by the plurality of reflecting surfaces are integrally formed. Since the optical element is configured to measure the shape measurement reference portion formed on the optical element, the absolute coordinate system of the optical element is defined and the refractive surface and the reflective surface of the optical element are measured with high accuracy. As a result, an inexpensive measurement system can be provided.
[0078]
According to the present invention, at least three shape measurement reference portions are formed, and a plane defined by the at least three shape measurement reference portions and a plane including the optical reference axis of the optical element are parallel to each other. Since the shape measurement reference part is arranged so that it does not become necessary, it becomes possible to measure all measured surfaces, and the relative positional relationship between the refracting surface and the reflecting surface can be measured with high accuracy. is there.
[0079]
In addition, according to the present invention, since the shape measurement reference portion is configured in a spherical shape, the relative positional relationship between the refractive surface and the reflective surface can be measured with high accuracy, and measurement can be performed with a simple configuration. There is an effect that can be done.
[0080]
In addition, according to the present invention, since the shape measurement reference portion is integrally formed with the optical element by insert molding, there is an effect that an inexpensive measurement system can be provided.
[0081]
In addition, according to the present invention, since the spherical insert member is made of a material having a high hardness such as a steel ball, glass, or ceramic and a high softening point, an inexpensive measurement system having high reliability is provided. There is an effect that can be done.
[0082]
As a result of the above, according to the present invention, the shape of a non-coaxial optical element in which a plurality of reflecting surfaces are integrally formed can be measured with high accuracy, and the jig relationship required for the measurement is also extremely high. It is possible to provide a simple configuration and to provide a highly accurate optical element at a low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an optical path of an optical element according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view of an optical element viewed from various directions.
FIG. 3 is a diagram of an optical element as viewed from the refractive surface side.
FIG. 4 is a diagram of the optical element as viewed from the concave-convex surface mirror and the concave lens side.
FIG. 5 is a view of an optical element as viewed from the concave mirror side.
6 is a schematic sectional view of an optical element attached to a holding jig and viewed from each direction in order to explain a method for measuring the shape of the optical element according to Embodiment 1 of the present invention. FIG.
FIG. 7 is a schematic explanatory diagram of curvature change.
FIG. 8 is a perspective view of an optical element according to Embodiment 2 of the present invention.
FIGS. 9A and 9B are a front view and a side view showing a state where the optical element of FIG. 8 is attached to a holding jig.
FIGS. 10A and 10B are diagrams showing a state measurement state of a conventional photoelectric element, in which FIG. 10A is a schematic diagram for measuring the convex surface side of the photoelectric element, and FIG. 10B is a schematic diagram for measuring the concave surface side of the photoelectric element; FIG.
[Explanation of symbols]
R1 Convex lens (refractive surface)
R2 plane mirror (reflective surface)
R3 concave mirror (reflective surface)
R4 Convex mirror (reflecting mirror)
R5 concave mirror (reflective surface)
R6 Convex mirror (reflection surface)
R7 concave mirror (reflective surface)
R8 concave lens (refractive surface)
1, 51 Optical element
16.56 Holding jig (optical element holding jig)
17 Steel ball (shape measurement standard part)
53 (53a, 53b) Convex part (shape measurement reference part)

Claims (5)

透明体に光束が入射する屈折面と、曲率を有した複数の反射面と、前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子と、
前記光学素子を保持する光学素子保持手段とを備え、
前記光学素子保持手段には形状測定基準部が少なくとも3カ所形成されており、且つ前記少なくとも3カ所の形状測定基準部により規定される平面に対して、前記光学素子の光学基準軸を含む平面が平行にならない様に前記形状測定基準部が配置されており、この形状測定基準部を測定する事によって前記光学素子の絶対座標系を規定し前記屈折面及び反射面を測定することを特徴とする光学素子の形状測定方法。
An optical element integrally formed with a refracting surface on which a light beam is incident on a transparent body, a plurality of reflecting surfaces having a curvature, and a refracting surface that emits a light beam reflected by the plurality of reflecting surfaces;
An optical element holding means for holding the optical element,
The optical element holding means has at least three shape measurement reference portions, and a plane including the optical reference axis of the optical element with respect to the plane defined by the at least three shape measurement reference portions. The shape measurement reference portion is arranged so as not to be parallel, and by measuring the shape measurement reference portion, the absolute coordinate system of the optical element is defined and the refractive surface and the reflection surface are measured. A method for measuring the shape of an optical element.
前記形状測定基準部は球形状で構成される事を特徴とする請求項1記載の光学素子の形状測定方法。  The method for measuring a shape of an optical element according to claim 1, wherein the shape measurement reference portion is formed in a spherical shape. 透明体に光束が入射する屈折面と、曲率を有した複数の反射面と、前記複数の反射面にて反射された光束を射出する屈折面とを一体的に形成した光学素子と、
前記光学素子には形状測定基準部が少なくとも3カ所形成されており、且つ前記少なくとも3カ所の形状測定基準部により規定される平面に対して、前記光学素子の光学基準軸を含む平面が平行にならない様に前記形状測定基準部が配置されており、前記形状測定基準部を測定する事によって前記光学素子の絶対座標系を規定し前記屈折面及び反射面を測定することを特徴とする光学素子の形状測定方法。
An optical element integrally formed with a refracting surface on which a light beam is incident on a transparent body, a plurality of reflecting surfaces having a curvature, and a refracting surface that emits a light beam reflected by the plurality of reflecting surfaces;
The optical element has at least three shape measurement reference portions, and a plane including the optical reference axis of the optical element is parallel to a plane defined by the at least three shape measurement reference portions. An optical element characterized in that the shape measurement reference portion is arranged so as not to be defined, and the refractive coordinate surface and the reflection surface are measured by defining the absolute coordinate system of the optical element by measuring the shape measurement reference portion. Shape measurement method.
前記形状測定基準部は球形状で構成される事を特徴とする請求項記載の光学素子の形状測定方法。4. The optical element shape measuring method according to claim 3, wherein the shape measuring reference portion is formed in a spherical shape. 前記形状測定基準部はインサート成形により前記光学素子に一体成形されている事を特徴とする請求項記載の光学素子の形状測定方法。The shape measurement reference portion shape measurement of an optical element according to claim 4, characterized in that integrally formed on the optical element by insert molding.
JP02277498A 1998-01-20 1998-01-20 Optical element shape measurement method Expired - Fee Related JP3919317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02277498A JP3919317B2 (en) 1998-01-20 1998-01-20 Optical element shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02277498A JP3919317B2 (en) 1998-01-20 1998-01-20 Optical element shape measurement method

Publications (2)

Publication Number Publication Date
JPH11211428A JPH11211428A (en) 1999-08-06
JP3919317B2 true JP3919317B2 (en) 2007-05-23

Family

ID=12092022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02277498A Expired - Fee Related JP3919317B2 (en) 1998-01-20 1998-01-20 Optical element shape measurement method

Country Status (1)

Country Link
JP (1) JP3919317B2 (en)

Also Published As

Publication number Publication date
JPH11211428A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
US7830610B2 (en) Lens, lens unit, and imaging device using the same
TWI411812B (en) Camera lens assembly
TWI768696B (en) Light-folding element for camera module, camera module and electronic device
TWI578019B (en) Low-profile hybrid lens systems and methods for manufacturing the same
JP2004029554A (en) Image pickup lens unit and image pickup device
JP2001350075A (en) Image pickup lens
US8665425B2 (en) Eccentricity measuring method
JP2004333640A (en) Variable optical element, optical unit, and imaging device
JP2007047792A (en) Super-slim mobile camera optical lens system and image forming method using same
JPWO2011040136A1 (en) Lens assembly method, lens assembly, and imaging apparatus including lens assembly
WO2001040863A1 (en) Omnidirectional vision camera
CN217484665U (en) Imaging lens and electronic device
JP3710260B2 (en) Optical element, holding jig for holding the same, and imaging apparatus using the optical element
JP2007086149A (en) Optical lens, optical system using the same, metallic mold for molding optical lens and manufacturing method of optical lens
JP2003004922A (en) Reflective optical element, method for manufacturing the same, optical system, optical apparatus
JP4032291B2 (en) Imaging lens and imaging apparatus
Heinisch et al. Novel technique for measurement of centration errors of complex completely mounted multi-element objective lenses
JP2007047131A (en) Method, device and program for measuring aspheric lens, manufacturing method of aspheric lens, and aspheric lens
JP3919317B2 (en) Optical element shape measurement method
JP2007163798A (en) Lens and imaging apparatus using the same
US11485665B2 (en) Mould pair having alignment surfaces
JP2006208928A (en) Plastic lens, lens unit, and assembling method of lens unit
JP4729395B2 (en) Lens and imaging apparatus using the same
JPH0520725B2 (en)
CN220381363U (en) Optical image capturing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees