JP3919269B2 - Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide - Google Patents

Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide Download PDF

Info

Publication number
JP3919269B2
JP3919269B2 JP31295396A JP31295396A JP3919269B2 JP 3919269 B2 JP3919269 B2 JP 3919269B2 JP 31295396 A JP31295396 A JP 31295396A JP 31295396 A JP31295396 A JP 31295396A JP 3919269 B2 JP3919269 B2 JP 3919269B2
Authority
JP
Japan
Prior art keywords
film
polymer
acrylamide
cumulative
polyfluoroalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31295396A
Other languages
Japanese (ja)
Other versions
JPH10139747A (en
Inventor
徳治 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP31295396A priority Critical patent/JP3919269B2/en
Publication of JPH10139747A publication Critical patent/JPH10139747A/en
Application granted granted Critical
Publication of JP3919269B2 publication Critical patent/JP3919269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、N−ポリフロロアルキル置換アクリルアミドおよびN−ポリフロロアルキル置換メタアクリルアミド(以下N−ポリフロロアルキル置換(メタ)アクリルアミドと略記する)を用いた単分子膜、累積膜および高分子膜に関する。
【従来の技術】
【0002】
ステアリン酸等に代表される高級脂肪酸等の両親媒性の化合物が水面上で分子一つの厚さを有する単分子膜を形成することは知られており、その単分子膜を固体基板に移し取ることにより形成される分子累積膜はラングミュア−ブロジェット膜(以下LB膜と略称することがある。)と呼ばれ分子レベルの膜厚の制御や分子を規則的に並べた有機超薄膜の製造法として注目されている。
【0003】
従来、LB膜形成材料は、1)ステアリン酸等の高級脂肪酸およびフッソ含有高級脂肪酸等の低分子化合物、2)ω−トリコセン酸等の高級不飽和脂肪酸,長鎖アルキルジアセチレン誘導体および長鎖アルキルアクリルアミド等の重合性化合物、3)ペルフロロアルキル基含有アリルアミンおよび長鎖フロロアルキル側鎖とオキシランラジカルとを含むポリマ−等の高分子化合物等が知られているが,機能材料として用いる場合次のような問題があった。
【0004】
低分子化合物から得られた膜,例えば比較的良好な累積膜が形成されるとされているオクダデシルメタクリレ−トで得られた単分子膜でも,その表面圧は25dyne/cmと低く,膜の安定性が問題である。このように従来知られている低分子化合物から得られた単分子膜を累積した累積膜には物理的強度,安定性,均一性に問題があった。また,重合性化合物を累積して膜とした後重合を行い高分子膜とする場合は収縮が起こることが問題である。
【0005】
物理的強度,安定性等が良好なLB膜を得るためには高分子化合物を累積膜とする方が好ましいと考えられるが,一般的に高分子化合物は水面上に単分子膜を形成し難く,分子が凝集した多分子膜となるため分子累積による薄膜形成が困難である。
【0006】
低分子化合物でLB膜を形成したのち重合しても収縮を起こさない高分子LB膜を形成する方法については、公開昭62−260140号に記載されているが、高分子を累積する方法ではなくかつ2次元的に架橋可能なものではなかった。また、潤滑性、撥水性の機能については明かにされていなかった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、物理的強度、安定性、均一性の改良された累積膜および高分子累積膜を提供すること、これらの改良された特性を持ちかつ潤滑性、撥水性に優れた高分子膜を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは水面上にて安定な単分子膜を形成する化合物の分子設計に基づき研究した結果、(i)N−ポリフロロアルキル置換(メタ)アクリルアミドおよび該化合物の重合体が良好な単分子膜を形成すること,(ii)該単分子膜を固体基板に累積することにより良好な累積膜が形成されること、(iii)N−ポリフロロアルキル置換(メタ)アクリルアミドおよびこの重合体を用いることを特徴とする高分子薄膜は優れた機械的強度,耐溶剤性,撥水撥油性,潤滑性,防食性,耐プラズマ性を有すること、さらに(iv)N−ポリフロロアルキル置換(メタ)アクリルアミドからなる単分子膜および累積膜に光を照射することにより溶媒不溶性高分子薄膜を形成することができ、この不溶性を利用することにより微細パターン形成が可能であることを見いだし、本発明を完成するにいたった。
【0009】
すなわち、この発明は以下の構成を有する。
(1)式(1)で表されるN−ポリフロロアルキル置換(メタ)アクリルアミドを用いた単分子膜
【0010】
【化2】

Figure 0003919269
【0011】
(式中nは0〜2を表し,RはHまたはメチル基を表し、Rは炭素数1〜14のペルフロロアルキル基を表す。)
(2)Rが炭素数5〜14のペルフルオロアルキル基である前記(1)項記載の単分子膜。
)前記(1)項または(2)項記載の単分子膜を累積して得られるラングミュア−ブロジェット膜。
(4)前記(3)項に記載のラングミュア−ブロジェット膜に紫外線光を照射することにより形成される溶媒不溶性高分子薄膜
)前記(4)項に記載の溶媒不溶性高分子薄膜よりなるレジスト
【0012】
【発明の実施の形態】
以下に本発明の実施態様を示す。
【0013】
(N−ポリフロロアルキル置換(メタ)アクリルアミドの合成)
本発明で用いる化合物であるN−ポリフロロアルキル置換(メタ)アクリルアミドの合成は下記の2工程、即ち(a)ポリフロロアルキルアミンの合成、(b)N−ポリフロロアルキル置換アクリルアミドの合成からなる。次に各工程について詳しく説明する。
【0014】
工程(a)のポリフロロアルキルアミンの合成は次のように行うことができる。
式(1)で示されるN−ポリフロロアルキル置換(メタ)アクリルアミドのうち、n=1およびn=2であるものは次の方法により合成することができる。n=0のものは市販されているものを用いることができる。
【0015】
2−(ペルフロロアルキル)アルキルアイオダイドとソジウムアジドより対応する2−(ペルフロロアルキル)アルキルアジドを得たのち,リチウムアルミニュウハイドライドで還元し対応するアミン化合物を得ることができる。
【0016】
工程(b)のN−ポリフロロアルキル置換アクリルアミドの合成は次のように行うことができる。
工程(a)で得られたポリフロロアルキルアミンとアクリル酸クロリドとを触媒の存在下反応させて対応するN−ポリフロロアルキル置換アクリルアミドを得ることができる。さらに得られた化合物をヘキサンを用いて再結晶することにより高純度品を得ることができる。
【0017】
(N−ポリフロロアルキル置換(メタ)アクリルアミドを用いた単分子膜および累積膜の作製)
N−ポリフロロアルキル置換(メタ)アクリルアミドをフロン系溶剤に溶解した溶液を水槽の水面上に必要量滴下し、テフロンバリア−を用い一定速度で圧縮し単分子膜を形成させる。溶解するN−ポリフロロアルキル置換(メタ)アクリルアミドは単一の化合物であることが望ましい。
の炭素数が4以下であると膨張膜を形成しやすくなるので、Rは5以上であることが好ましい。
【0018】
単分子膜が形成されているか否かは,膜面積より算出される一分子当たりの占有面積と表面圧を測定することで判る。この関係は後述の実施例に示すが本化合物から得られた膜は崩壊圧の高い、分子が密に充填した単分子膜である。ここで用いられる溶剤としてはフロンR113,フロンR112,フロンR114B2等のフロン系溶剤が挙げられるが、膜作製時の溶剤蒸発速度の観点から言って特にフロンR113(CClF2−CCl2F)が好適である。
【0019】
次いで固体基板(ガラス板、石英、シリコンウェハ−、金、等)を繰り返し上昇、下降することにより基板の両面に該単分子膜を累積しLB膜を形成する。
【0020】
(N−ポリフロロアルキル置換(メタ)アクリルアミドの累積膜を用いたレジストの作成)
上記操作で得られる累積膜は光等を照射することにより重合体累積膜を形成するので光架橋レジスト材料として用いることができる。該累積膜は紫外線領域にUV吸収があることから光源としては紫外線,遠紫外線を好適に用いることができる。具体的には高圧水銀灯やキセノンランプを用いることができる。
【0021】
光露光によりレジストを作成する場合は直接或いはフォトマスクを用いて,所定の面積(パターン)を照射し、次いで露光を行った累積膜をフロン系溶剤等に浸漬し現像する。必要が有ればこの後リンス液で溶剤を洗い、チッソガス或いは乾燥空気で乾燥する。未露光部分は溶解し、露光部分は架橋が進行しパターンが得られ、ネガレジストを得ることができる。ここで用いる溶剤にはフロンR113,フロンR113,テトラヒドロフラン,トリフロロ酢酸,およびこれら溶剤とフロン系アルコ−ル(例えばヘキサフロロイソプロピルアルコ−ル)との混合溶剤が好適である。混合溶剤の混合比率は容積%でフロン系アルコ−ル5〜20%が好適である。現像時間は用いる現像液によって異なるが数10秒〜数分間を要する。
【0022】
本累積膜は露光による未露光部と露光部との溶剤に対する溶解性が大きく異なり鮮明なパターンを描かせる事ができる。且つ膨潤や基板との剥離は起こらないので良好なレジストとなる。
【0023】
本発明の累積膜は分子が一定方向に規則的に配列しているので本累積膜に紫外線光を照射することにより本化合物中の架橋グル−プが2次元的に且つ定量的に架橋し溶剤不溶性の高分子超薄膜が形成される点で従来の化合物にない優れた特性を有する。この優れた性能を活かす用途としてフロン不溶性の撥水性高分子薄膜、紫外線光レジスト等を挙げることができる。
【0024】
(N−ポリフロロアルキル置換(メタ)アクリルアミド重合体の合成)
α,α-アゾビスイソブチロニトリル(以下AIBNと略記することがある。)を開始剤とし、60℃のテトラヒドロフラン溶剤中においてN−ポリフロロアルキル置換(メタ)アクリルアミドをラジカル重合することによりN−ポリフロロアルキル置換(メタ)アクリルアミド重合体を合成することができる。得られる重合体をフロンR113に溶解したのち大過剰のベンゼン中に投入し再沈澱して精製し、その後室温で減圧乾燥することにより高純度品を得ることができる。
【0025】
(N−ポリフロロアルキル置換(メタ)アクリルアミド重合体を用いた単分子膜および累積膜の作製。)
前記のN−ポリフロロアルキル置換(メタ)アクリルアミドの累積膜の作成と同様にしてN−ポリフロロアルキル置換(メタ)アクリルアミド重合体の累積膜を作成することができる。本発明のN−ポリフロロアルキル置換(メタ)アクリルアミド重合体を用いて作成した単分子膜は崩壊圧が高く、該重合体が密に充填した単分子膜である。
重合体は5〜1000の分子が重合したものが好ましい。5分子以下であると耐溶解性が低下する等好ましくなく、1000分子以上になると良好な膜が作成できなくなることがある。
2が4以下になると膨張膜を形成するので、N−ポリフロロアルキル置換(メタ)アクリルアミドとしてR2が5以上のものがより好ましい。
【0026】
該重合体を溶解する溶剤としてはフロンR113,フロンR112,フロンR114B2等のフロン系溶剤が挙げられるが、このうち膜作製時の溶剤蒸発速度の観点から言って特にフロンR113が好適である。上記の操作で得られた単分子膜を固体基板(ガラス板、石英、シリコンウェハ−、金、等)に累積する即ち固体基板を上昇、下降を繰り返し基板の両面に累積することによりLB膜が形成する。
【0027】
本発明の重合体を用いると、固体基板の上昇、下降のいずれの時にも膜が基板に付着するY膜を形成することができ、この結果優れた安定性を示す。また累積比は約1であり理想的な状態で累積できる。且つ累積を繰り返しても累積比は殆ど変化せず安定に累積できる。
【0028】
本発明の重合体から得られた膜はフッソ含有アルキル基を有するので良好な耐食性と特に優れた撥水性および潤滑性を有している。これらの特性を発揮させる用途として種々の機能素子、磁気ヘッド等の保護膜、潤滑膜、表面改質膜、種々の材料への表面コーティング剤、等が可能である。
また、本発明の重合体の溶液を塗布することによっても、機械的強度、潤滑特性にすぐれた潤滑膜、高撥水性高分子膜を作成することができる。
【0029】
【実施例】
以下実施例により本発明を説明する。
【0030】
合成例1
N−1H,1H−ヘプタフロロブチルアクリルアミド(以下C37AAと略記することがある。)の合成:
2gの1H,1H−ヘプタフロロブチルアミンと1.5mlのトリエチルアミンを脱水ジクロロメタン50mlに溶解し、撹拌しながら0.89mlのアクロイルクロリドを滴下した。反応の進行は薄層クロマトグラフィ−にて追跡した。反応終了後、有機相を分液ロ−トに入れ、希塩酸、希炭酸ナトリウム水溶液および蒸留水の順で洗浄後、有機相を無水硫酸ナトリウムで脱水乾燥した後、溶剤を減圧下溜去し、得られた固体をヘキサンで再結晶した。得られた結晶はN−1H,1H−ヘプタフロロブチルアクリルアミド(C37AA)を得た。収率は77%であった。
【0031】
合成例2
N−1H,1H−ペンタデカフロロオクチルアクリルアミド(以下C715AAと略記することがある。)の合成:
実施例1中の1H,1H−ヘプタフロロブチルアミンを1H,1H−ペンタデカフロロオクチルアミンに置き換えた以外は実施例1と同様の条件での反応および後処理を行いN−1H,1H−ペンタデカフロロオクチルアクリルアミド(C715AA)を得た。収率は70%であった。
【0032】
合成例3
N−2−(ペルフロロデシル)エチルアクリルアミド(以下C1021AA)と略記することがある。)の合成:
6gの2−(ペルフロロデシル)エチルアイオダイドに対して8.6gのソジウムアジドをN−ジメチルホルムアミド溶媒100ml中にて混合し、懸濁のまま5時間還流した。反応生成物を分液ロ−トに入れ、蒸留水で洗浄後分液し、有機相を無水硫酸ナトリウムで脱水乾燥した後、溶剤を減圧下留去し2−(ペルフロロデシル)エチルアジド5gを得た。次いで得られたアジド化合物5gを脱水エ−テル200ml中、リチウムアルミニウムハイドライド0.64gで還元して2−(ペルフロロデシル)エチルアミン(C1021AA)を得た。
次に上記操作で得られた2−(ペルフロロデシル)エチルアミン1.6gと0.64mlのトリエチルアミンを脱水ジクロロメタン50mlに溶解し、撹拌しながら0.35mlのアクロイルクロリドを滴下した。反応の進行は薄層クロマトグラフィ−にて追跡した。反応終了後、有機相を分液ロ−トに入れ、希塩酸、希炭酸ナトリウム水溶液および蒸留水の順で洗浄した後、有機相を無水硫酸ナトリウムで脱水乾燥し、減圧下溶媒を溜去したのち、得られた固体をヘキサンで再結晶した。得られた結晶はN−2−(ペルフロロデシル)エチルアクリルアミドであり、収率は40%であった。またこの結晶の融点は93.4℃であった。本化合物の赤外線吸収(IR)スペクトルを図1に示す。
【0033】
合成例4
N−2−(ペルフロロオクチル)エチルアクリルアミドの合成(以下C8F17AAと略記することがある。):
実施例3中の2−(ペルフロロデシル)エチルアイオダイドを2−(ペルフロロオクチル)エチルアイオダイドに置き換えた以外は実施例3と同様の条件で反応および後処理を行いN−2−(ペルフロロオクチル)エチルアクリルアミド(C817AA)を収率45%で得た。
【0034】
実施例
累積膜の作成:
N−ポリフロロアルキル置換(メタ)アクリルアミドを用いた累積膜を下記のように作成した。
・N−2−(ペルフロロデシル)エチルアクリルアミド(C1021AA)の累積膜の作成
測定に(株)USI製のFilm Balance Controller FSD−110を使用し、20℃に保持した水槽上に本発明のN−2−(ペルフロロデシル)エチルアクリルアミドを95%のフロンR113と5%のヘキサフロロイソプロピルアルコ−ルとの混合溶剤に溶解した溶液(濃度10-3mol/l)を200μl滴下し,テフロンバリア−を用い一定速度(14cm2/min.)で圧縮し、膜面積より算出される一分子当たりの占有面積と表面圧を測定した。その関係を図2に示す。図中においてN−2−(ペルフロロデシル)エチルアクリルアミドはC1021AAと略記して示した。図2より崩壊圧の高い、分子が密に充填した一分子の膜(単分子膜)が形成しているのが判る。次に膜の表面圧が35mN/mになるようにテフロンバリア−で圧縮しながら、ジクロロジメチルシランで疎水処理を行ったスライドガラスを10mm/min.の速度で上下して累積を行った。上昇時、下降時ともおよそ1.0の累積比でガラス基板上に単分子膜を移し取ることができ累積膜が得られた。このような条件を保ちつつ上昇、下降を繰り返すことで基板の両面に片面40層の累積膜を作製した。
【0035】
・N−1H,1H−ペンタデカフロロオクチルアクリルアミドを用いた累積膜を下記のように作成した。
上記操作と同様の操作によりN−1H,1H−ペンタデカフロロオクチルアクリルアミド(C715AA)を用い40層の累積膜を作成し、占有面積と表面圧を測定した。その関係を図2に示した。図中においてN−1H,1H−ペンタデカフロロオクチルアクリルアミドはC715AAと略記して示した。
・N−2−(ペルフロロオクチル)エチルアクリルアミドを用いた累積膜を下記のように作成した。
上記操作と同様の操作によりN−2−(ペルフロロデシル)エチルアクリルアミド(C817AA)を用い片面40層の累積膜を作成し、占有面積と表面圧を測定した。その関係を図2に示した。図中においてN−2−(ペルフロロオクチル)エチルアクリルアミドはC817AAと略記して示した。
【0036】
実施例
N−2−(ペルフロロデシル)エチルアクリルアミド(C1021AA)を用い、上記実施例5と条件を同じくして作成した石英基板上の累積膜(40層)にウシオ(株)製/500Wのキセノンランプを用い、15分,30分,45分,60分と時間を変えて密着露光を行った。次いでこの露光を行った累積膜をフロン113溶剤に1分間浸漬した所、未露光部分は溶解していたが30分間以上露光した累積膜は溶解せずに膜が残っていた。即ち累積膜中の架橋グル−プが架橋し、溶剤不溶性の高分子超薄膜が形成されていた。次いで上記と同様,石英基板上の累積膜にキセノンランプを用い、15分,30分,45分,60分と時間を変えて露光を行い、それぞれの露光後の累積膜の可視−紫外線吸収スペクトルを測定した。その結果を図3に示す。炭素−炭素二重結合に帰属される230nm付近の吸収が露光時間に比例して減少していることがわかる。
【0037】
実施例
N−2−(ペルフロロデシル)エチルアクリルアミド(C1021AA)を用い、上記実施例5と条件を同じくして、疎水処理を行ったシリコンウェハ−上に40層の累積した累積膜を作製した。次いでキセノンランプを用い、この累積膜にフォトマスクを通して20分間密着露光した。次いでフォトマスクを取り外しフロン113で1分間その表面を洗浄した。未露光部は溶解し、露光部は高分子化が進行し、シリコンウェハ−上に微細パタ−ンが転写されていた。このパタ−ンの光学顕微鏡観察より本累積膜がレジスト材料として充分実用し得ることを認めた。
【0038】
実施例
N−2−(ペルフロロデシル)エチルアクリルアミド(C1021AA)を用い、上記実施例5と条件を同じくして、疎水処理を行ったスライドガラス上に10層の累積膜を作製した。この膜上にマイクロシリンジを用いて微量の純水を滴下し接触角を測定した結果110度と高い値を示した。次いで臨界表面張力を求めるために、種々のn−アルカンに対する接触角を求めZismanプロットを行い、臨界表面張力を求めたところ9−10mN/mであった。通常のテフロンの表面張力が18mN/mであるのに比べかなり小さい値であることが明かであり、従来にない高撥水性であることがわかった。接触角の測定にはNakamura Work Co.LTD製の接触角測定器を使用した。
【0039】
実施例
N−2−(ペルフロロデシル)エチルアクリルアミド(C1021AA)を用い、上記実施例5と条件を同じくして、疎水処理を行ったガラス基板上に10層の累積膜を作製した。次いで往復動摩擦試験機(新東科学(株)製Heiden−14D)を用いてこの単分子膜の動摩擦係数を測定し、連続11回往復動を行い摺動が安定する10回目の摩擦力から動摩擦係数を求めた結果0.1の値が得られた。比較のため行ったガラス基板の動摩擦係数が0.7であったのに比べて著しく減少していることが判った。
【0040】
同様のテストを単分子膜(1層)および10層の累積膜重合体について実施した結果いずれについても動摩擦係数0.1の値が得られた。
【0041】
参考例1
N−1H、1H−ぺンタデカフロロオクチルアクリルアミド重合体(以下poly−C715AAと略記することがある。)の合成:
N−1H、1H−ペンタデカフロロオクチルアクリルアミド0.4gをTHF10mlに溶解し、開始剤としてAlBN0.014gを加え、凍結、排気、溶解のサイクルにより溶存酸素を除いた後、60℃の恒温槽にて8時間重合を行った。重合体は沈澱物として得られた。重合体はフロンR113に溶かし、ジクロロメタンに沈澱することにより精製した。濾過により重合体を分離したのち、二日間室温にて減圧乾燥し、0.2gのN−1H、1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)を得た。得られた重合体のIRスペクトルを図4に示した。重合することによりモノマーに見られる二重結合に相当する1632cm-1の吸収が減少している。
この重合体はTHF等の汎用溶剤に溶けないためGPC等による分子量測定が困難であったが、数十量体であると推定した。分子量はAIBN等の開始剤を増やしたり、ドデシルメルカプタン等を10-3mol/L程度使用することにより下げることができる。
【0042】
参考例2
N−1H、1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)の累積膜の調製:
N−2−(ペルフロロデシル)エチルアクリルアミドに代えてN−1H、1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)とし、累積膜を10層とした以外は実施例と同様にしてN−1H、1H−ペンタデカフロオオクチルアクリルアミド重合体の単分子膜および累積膜を作成した。膜面積より算出される一分子当たりの占有面積と表面圧の関係を図5に示す。図5より崩壊圧の高い、分子が密に充填した一分子の膜(単分子膜)が形成しているのが判る。累積比は上昇時、下降時ともおよそ1.0であった。
【0043】
参考例3
参考例1と同様にして重合した、N−1H,1H−ヘプタフロロブチルアクリルアミド重合体(以下poly−C37AAと略記することがある。)、N−2−(ペルフロロオクチル)エチルアクリルアミド重合体(以下poly−C817AAと略記することがある。)および2−(ペルフロロデシル)エチルアクリルアミド重合体(以下poly−C1021AAと略記することがある。)を用い、参考例2と同様に単分子膜および累積膜を作成し、一分子当りの占有面積と表面圧の関係を測定した。図5に占有面積と表面圧の関係を示した。
【0044】
参考例4
N−2−(ペルフロロオクチル)エチルアクリルアミド重合体(poly−C817AA)、N−1H,1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)およびN−1H,1H−ヘプタフロロブチルアクリルアミド重合体(poly−C37AA)を用い、累積回数を除き参考例2と同様にして、疎水処理を行ったスライドガラス上に1〜12層の累積膜を作製した。種々のn−アルカンに対する接触角を求めZismanプロットを行った。この結果、接触角はN−2−(ペルフロロオクチル)エチルアクリルアミド重合体(poly−C817AA)およびN−1H,1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)を用いた3層以上の累積膜で110度と高い値を示し、臨界表面張力はそれぞれ9、11mN/mであり従来に比べて著しく撥水性が大きいことがわかった。N−1H,1H−ヘプタフロロブチルアクリルアミド重合体(poly−C37AA)を用いた累積膜に対する接触角は95度であり、臨界表面張力は14mN/mであった。
【0045】
参考例5
N−1H,1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)、N−2−(ペルフロロオクチル)エチルアクリルアミド(poly−C817AA)を用い、累積回数を除き上記参考例2と同様にして、疎水処理を行ったガラス基板上に1,2,4,6層の累積膜を作製し、動摩擦係数を測定した。荷重で連続11回往復動を行い摺動が安定する10回目の摩擦力から動摩擦係数を求めた結果1層〜6層の累積膜で0.15の値が得られた。比較のため行ったガラス基板の動摩擦係数が0.7であったのに比べて著しく減少していることが判った。
【0046】
【発明の効果】
本発明の単分子膜およびLB膜は高分子累積膜の作成に好適である。特にレジスト材料として好適である。
【図面の簡単な説明】
【図1】N−2−(ペルフロロデシル)エチルアクリルアミド(poly−C1021AA)のIR吸収スペクトル。
【図2】N−ポリフロロアルキル置換アクリルアミドの表面圧−表面積曲線。
【図3】累積膜の光照射前後のUV吸収スペクトル。
【図4】N−1H,1H−ペンタデカフロロオクチルアクリルアミド重合体(poly−C715AA)のIR吸収スペクトル。
【図5】N−ポリフロロアルキル置換アクリルアミド重合体の表面積−表面圧曲線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a monomolecular film, a cumulative film, and a polymer film using N-polyfluoroalkyl-substituted acrylamide and N-polyfluoroalkyl-substituted methacrylamide (hereinafter abbreviated as N-polyfluoroalkyl-substituted (meth) acrylamide ). .
[Prior art]
[0002]
It is known that amphiphilic compounds such as higher fatty acids such as stearic acid form a monomolecular film having a thickness of one molecule on the water surface, and the monomolecular film is transferred to a solid substrate. The molecular accumulation film formed by this method is called a Langmuir-Blodgett film (hereinafter sometimes abbreviated as LB film), and is a method for producing an ultra-thin organic film in which molecular film thickness is controlled and molecules are regularly arranged. It is attracting attention as.
[0003]
Conventionally, LB film forming materials are: 1) low molecular weight compounds such as higher fatty acids such as stearic acid and fluorine-containing higher fatty acids, 2) higher unsaturated fatty acids such as ω-tricosenoic acid, long chain alkyl diacetylene derivatives and long chain alkyls. Polymeric compounds such as acrylamide, 3) polymer compounds such as polymers containing perfluoroalkyl group-containing allylamine and long-chain fluoroalkyl side chains and oxirane radicals are known. There was a problem like this.
[0004]
Even a film obtained from a low molecular compound, for example, a monomolecular film obtained from Okudadecyl methacrylate, which is supposed to form a relatively good cumulative film, has a low surface pressure of 25 dyne / cm. The stability is a problem. As described above, the accumulated film obtained by accumulating monomolecular films obtained from conventionally known low molecular compounds has problems in physical strength, stability, and uniformity. Another problem is that shrinkage occurs when a polymer film is formed by accumulating polymerizable compounds to form a film.
[0005]
In order to obtain an LB film having good physical strength, stability, etc., it is considered preferable to use a polymer compound as a cumulative film, but generally a polymer compound is difficult to form a monomolecular film on the water surface. Therefore, it is difficult to form a thin film by accumulating molecules because it is a multimolecular film in which molecules are aggregated.
[0006]
A method for forming a polymer LB film that does not cause shrinkage even after polymerization after forming an LB film with a low molecular weight compound is described in JP-A-62-260140, but is not a method for accumulating polymers. And it was not two-dimensionally crosslinkable. Further, the lubricity and water repellency functions were not disclosed.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a cumulative film and a polymer cumulative film having improved physical strength, stability and uniformity, and a polymer having these improved characteristics and excellent in lubricity and water repellency. It is to provide a membrane.
[0008]
[Means for Solving the Problems]
As a result of studies based on the molecular design of a compound that forms a stable monomolecular film on the water surface, the present inventors have found that (i) N-polyfluoroalkyl-substituted (meth) acrylamide and a polymer of the compound are excellent. Forming a molecular film; (ii) accumulating the monomolecular film on a solid substrate to form a good accumulated film; (iii) N-polyfluoroalkyl-substituted (meth) acrylamide and this polymer The polymer thin film is characterized by excellent mechanical strength, solvent resistance, water / oil repellency, lubricity, corrosion resistance, plasma resistance, and (iv) N-polyfluoroalkyl substitution (meta ) Solvent-insoluble polymer thin films can be formed by irradiating light to monomolecular films and cumulative films made of acrylamide. Found that it is a function, it has led to the completion of the present invention.
[0009]
That is, the present invention has the following configuration.
(1) A monomolecular film using N-polyfluoroalkyl-substituted (meth) acrylamide represented by the formula (1).
[0010]
[Chemical 2]
Figure 0003919269
[0011]
(In the formula, n represents 0 to 2, R 1 represents H or a methyl group, and R 2 represents a perfluoroalkyl group having 1 to 14 carbon atoms.)
(2) The monomolecular film according to (1), wherein R 2 is a C 5-14 perfluoroalkyl group .
(3) the (1) or (2) Langmuir obtained by accumulating monomolecular film according to claim - Blodgett film.
(4) A solvent-insoluble polymer thin film formed by irradiating the Langmuir-Blodgett film according to (3) with ultraviolet light .
( 5 ) A resist comprising the solvent-insoluble polymer thin film as described in (4 ) above.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are shown below.
[0013]
(Synthesis of N-polyfluoroalkyl-substituted (meth) acrylamide)
The synthesis of N-polyfluoroalkyl-substituted (meth) acrylamide, which is a compound used in the present invention , comprises the following two steps: (a) synthesis of polyfluoroalkylamine, and (b) synthesis of N-polyfluoroalkyl-substituted acrylamide. . Next, each step will be described in detail.
[0014]
The synthesis of the polyfluoroalkylamine in step (a) can be performed as follows.
Of the N-polyfluoroalkyl-substituted (meth) acrylamides represented by the formula (1), those in which n = 1 and n = 2 can be synthesized by the following method. The thing of n = 0 can use what is marketed.
[0015]
After the corresponding 2- (perfluoroalkyl) alkyl azide is obtained from 2- (perfluoroalkyl) alkyl iodide and sodium azide, the corresponding amine compound can be obtained by reduction with lithium aluminum hydride.
[0016]
The synthesis of the N-polyfluoroalkyl-substituted acrylamide in the step (b) can be performed as follows.
The corresponding N-polyfluoroalkyl-substituted acrylamide can be obtained by reacting the polyfluoroalkylamine obtained in step (a) with acrylic acid chloride in the presence of a catalyst. Furthermore, a high purity product can be obtained by recrystallizing the obtained compound using hexane.
[0017]
(Production of monomolecular film and cumulative film using N-polyfluoroalkyl-substituted (meth) acrylamide)
A required amount of a solution obtained by dissolving N-polyfluoroalkyl-substituted (meth) acrylamide in a fluorocarbon solvent is dropped on the water surface of a water tank, and compressed at a constant rate using a Teflon barrier to form a monomolecular film. The dissolved N-polyfluoroalkyl-substituted (meth) acrylamide is preferably a single compound.
If R 2 has 4 or less carbon atoms, it is easy to form an expanded film. Therefore, R 2 is preferably 5 or more.
[0018]
Whether or not a monomolecular film is formed can be determined by measuring the occupied area and surface pressure per molecule calculated from the film area. This relationship is shown in Example 1 described later, but the film obtained from this compound is a monomolecular film having a high collapse pressure and closely packed with molecules. Examples of the solvent used here include chlorofluorocarbon solvents such as chlorofluorocarbon R113, chlorofluorocarbon R112, and chlorofluorocarbon R114B2, but chlorofluorocarbon R113 (CClF 2 -CCl 2 F) is particularly preferable from the viewpoint of solvent evaporation rate during film production. It is.
[0019]
Next, the solid substrate (glass plate, quartz, silicon wafer, gold, etc.) is repeatedly raised and lowered to accumulate the monomolecular film on both surfaces of the substrate to form an LB film.
[0020]
(Preparation of resist using cumulative film of N-polyfluoroalkyl-substituted (meth) acrylamide)
The accumulated film obtained by the above operation forms a polymer accumulated film by irradiating light or the like, and therefore can be used as a photocrosslinking resist material. Since the cumulative film has UV absorption in the ultraviolet region, ultraviolet rays and far ultraviolet rays can be suitably used as the light source. Specifically, a high pressure mercury lamp or a xenon lamp can be used.
[0021]
When forming a resist by light exposure, a predetermined area (pattern) is irradiated directly or using a photomask, and then the exposed accumulated film is immersed in a fluorocarbon solvent and developed. If necessary, the solvent is then washed with a rinsing solution and dried with nitrogen gas or dry air. The unexposed portion is dissolved, and the exposed portion is cross-linked to obtain a pattern, whereby a negative resist can be obtained. As the solvent used here, Freon R113, Freon R113, tetrahydrofuran, trifluoroacetic acid, and mixed solvents of these solvents with Freon-based alcohols (for example, hexafluoroisopropyl alcohol) are preferable. The mixing ratio of the mixed solvent is preferably 5% by volume and a chlorofluorocarbon of 5 to 20%. The development time varies depending on the developer used, but it takes several tens of seconds to several minutes.
[0022]
This cumulative film has a large difference in solubility in the solvent between the unexposed and exposed areas by exposure, and can form a clear pattern. In addition, since swelling and peeling from the substrate do not occur, a good resist is obtained.
[0023]
In the cumulative film of the present invention, the molecules are regularly arranged in a certain direction, so that the cross-linking group in the compound is two-dimensionally and quantitatively cross-linked by irradiating the cumulative film with ultraviolet light. It has excellent characteristics not found in conventional compounds in that an insoluble ultra-thin polymer film is formed. Applications that make use of this excellent performance include chlorofluorocarbon-insoluble water-repellent polymer thin films, ultraviolet photoresists, and the like.
[0024]
(Synthesis of N-polyfluoroalkyl-substituted (meth) acrylamide polymer)
By radical polymerization of N-polyfluoroalkyl-substituted (meth) acrylamide in a tetrahydrofuran solvent at 60 ° C. using α, α-azobisisobutyronitrile (hereinafter sometimes abbreviated as AIBN) as an initiator. -Polyfluoroalkyl-substituted (meth) acrylamide polymers can be synthesized. The obtained polymer is dissolved in Freon R113, then poured into a large excess of benzene, reprecipitated and purified, and then dried under reduced pressure at room temperature to obtain a high purity product.
[0025]
(Production of monomolecular film and cumulative film using N-polyfluoroalkyl-substituted (meth) acrylamide polymer)
A cumulative film of an N-polyfluoroalkyl-substituted (meth) acrylamide polymer can be formed in the same manner as the above-described cumulative film of an N-polyfluoroalkyl-substituted (meth) acrylamide. A monomolecular film prepared using the N-polyfluoroalkyl-substituted (meth) acrylamide polymer of the present invention is a monomolecular film having a high collapse pressure and closely packed with the polymer.
The polymer is preferably a polymer of 5 to 1000 molecules. If it is 5 molecules or less, it is not preferable because the dissolution resistance is lowered. If it is 1000 molecules or more, a good film may not be formed.
When R 2 is 4 or less, an expanded membrane is formed. Therefore, N-polyfluoroalkyl-substituted (meth) acrylamide having R 2 of 5 or more is more preferable.
[0026]
Examples of the solvent for dissolving the polymer include Freon-based solvents such as Freon R113, Freon R112, and Freon R114B2. Of these, Freon R113 is particularly preferable from the viewpoint of the solvent evaporation rate during film formation. The monomolecular film obtained by the above operation is accumulated on a solid substrate (glass plate, quartz, silicon wafer, gold, etc.) . That is, the LB film is formed by repeatedly raising and lowering the solid substrate and accumulating on both surfaces of the substrate.
[0027]
When the polymer of the present invention is used, a Y film in which the film adheres to the substrate can be formed when the solid substrate is raised or lowered, and as a result, excellent stability is exhibited. In addition, the accumulation ratio is about 1, which can be accumulated in an ideal state. Even if the accumulation is repeated, the accumulation ratio hardly changes and can be accumulated stably.
[0028]
Since the film obtained from the polymer of the present invention has a fluorine-containing alkyl group, it has good corrosion resistance and particularly excellent water repellency and lubricity. Various functional elements, protective films for magnetic heads, lubricating films, surface modified films, surface coating agents for various materials, and the like can be used as applications for exhibiting these characteristics.
Also, by applying the polymer solution of the present invention, a lubricating film and a highly water-repellent polymer film having excellent mechanical strength and lubricating properties can be produced.
[0029]
【Example】
The following examples illustrate the invention.
[0030]
Synthesis example 1
Synthesis of N-1H, 1H-heptafluorobutylacrylamide (hereinafter sometimes abbreviated as C 3 F 7 AA):
2 g of 1H, 1H-heptafluorobutylamine and 1.5 ml of triethylamine were dissolved in 50 ml of dehydrated dichloromethane, and 0.89 ml of acroyl chloride was added dropwise with stirring. The progress of the reaction was followed by thin layer chromatography. After completion of the reaction, the organic phase was placed in a separatory funnel, washed in order with dilute hydrochloric acid, dilute sodium carbonate aqueous solution and distilled water, and then the organic phase was dehydrated and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was recrystallized from hexane. The obtained crystals obtained N-1H, 1H-heptafluorobutylacrylamide (C 3 F 7 AA). The yield was 77%.
[0031]
Synthesis example 2
Synthesis of N-1H, 1H-pentadecafluorooctylacrylamide (hereinafter sometimes abbreviated as C 7 H 15 AA):
N-1H, 1H-pentadeca was subjected to the reaction and post-treatment under the same conditions as in Example 1 except that 1H, 1H-heptafluorobutylamine in Example 1 was replaced with 1H, 1H-pentadecafluorooctylamine. Fluorooctylacrylamide (C 7 F 15 AA) was obtained. The yield was 70%.
[0032]
Synthesis example 3
N-2- (perfluorodecyl) ethyl acrylamide (hereinafter referred to as C 10 F 21 AA) may be abbreviated. ) Synthesis:
8.6 g of sodium azide was mixed with 6 g of 2- (perfluorodecyl) ethyl iodide in 100 ml of N-dimethylformamide solvent, and the mixture was refluxed for 5 hours. The reaction product was put into a separatory funnel, washed with distilled water and separated. The organic phase was dehydrated and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 5 g of 2- (perfluorodecyl) ethyl azide. . Subsequently, 5 g of the obtained azide compound was reduced with 0.64 g of lithium aluminum hydride in 200 ml of dehydrated ether to obtain 2- (perfluorodecyl) ethylamine (C 10 F 21 AA).
Next, 1.6 g of 2- (perfluorodecyl) ethylamine obtained by the above operation and 0.64 ml of triethylamine were dissolved in 50 ml of dehydrated dichloromethane, and 0.35 ml of acroyl chloride was added dropwise with stirring. The progress of the reaction was followed by thin layer chromatography. After completion of the reaction, the organic phase is put into a separatory funnel and washed with dilute hydrochloric acid, dilute sodium carbonate aqueous solution and distilled water in this order, and then the organic phase is dehydrated and dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure. The obtained solid was recrystallized from hexane. The obtained crystal was N-2- (perfluorodecyl) ethylacrylamide, and the yield was 40%. The melting point of this crystal was 93.4 ° C. The infrared absorption (IR) spectrum of this compound is shown in FIG.
[0033]
Synthesis example 4
Synthesis of N-2- (perfluorooctyl) ethylacrylamide (hereinafter sometimes abbreviated as C 8 F17AA):
The reaction and post-treatment were carried out under the same conditions as in Example 3 except that 2- (perfluorodecyl) ethyl iodide in Example 3 was replaced with 2- (perfluorooctyl) ethyl iodide. N-2- (Perfluoro Octyl) ethyl acrylamide (C 8 F 17 AA) was obtained in 45% yield.
[0034]
Example 1
Cumulative film creation:
A cumulative film using N-polyfluoroalkyl-substituted (meth) acrylamide was prepared as follows.
Preparation of N-2- (perfluorodecyl) ethylacrylamide (C 10 F 21 AA) Cumulative Membrane Using the Film Balance Controller FSD-110 manufactured by USI for measurement, the present invention on a water tank maintained at 20 ° C. 200 μl of a solution (concentration 10 −3 mol / l) of N-2- (perfluorodecyl) ethylacrylamide dissolved in a mixed solvent of 95% Freon R113 and 5% hexafluoroisopropyl alcohol was added dropwise to a Teflon barrier. -Was compressed at a constant speed (14 cm 2 / min.), And the occupied area and surface pressure per molecule calculated from the membrane area were measured. The relationship is shown in FIG. In the figure, N-2- (perfluorodecyl) ethylacrylamide was abbreviated as C 10 F 21 AA. It can be seen from FIG. 2 that a monomolecular film (monomolecular film) having a high collapse pressure and closely packed with molecules is formed. Next, a slide glass subjected to a hydrophobic treatment with dichlorodimethylsilane while compressing with a Teflon barrier so that the surface pressure of the film becomes 35 mN / m is 10 mm / min. Accumulated up and down at a speed of. The monomolecular film could be transferred onto the glass substrate at a cumulative ratio of about 1.0 both when rising and when falling, and a cumulative film was obtained. A cumulative film of 40 layers on one side was produced on both sides of the substrate by repeatedly raising and lowering while maintaining such conditions.
[0035]
A cumulative film using N-1H, 1H-pentadecafluorooctylacrylamide was prepared as follows.
A 40-layer cumulative film was prepared using N-1H, 1H-pentadecafluorooctylacrylamide (C 7 F 15 AA) by the same operation as described above, and the occupied area and the surface pressure were measured. The relationship is shown in FIG. In the figure, N-1H, 1H-pentadecafluorooctylacrylamide is abbreviated as C 7 F 15 AA.
A cumulative film using N-2- (perfluorooctyl) ethyl acrylamide was prepared as follows.
A cumulative film of 40 layers on one side was prepared using N-2- (perfluorodecyl) ethylacrylamide (C 8 F 17 AA) by the same operation as described above, and the occupied area and the surface pressure were measured. The relationship is shown in FIG. In the figure, N-2- (perfluorooctyl) ethylacrylamide was abbreviated as C 8 F 17 AA.
[0036]
Example 2
Using N-2- (perfluorodecyl) ethyl acrylamide (C 10 F 21 AA), a cumulative film (40 layers) on a quartz substrate prepared under the same conditions as in Example 5 above was manufactured by USHIO INC./500 W. Using a xenon lamp, contact exposure was performed at different times of 15, 30, 45, and 60 minutes. Next, when the accumulated film subjected to this exposure was immersed in a Freon 113 solvent for 1 minute, the unexposed portion was dissolved, but the accumulated film exposed for 30 minutes or more was not dissolved, and the film remained. That is, the cross-linking group in the cumulative film was cross-linked, and a solvent-insoluble ultra-thin polymer film was formed. Next, in the same manner as described above, a xenon lamp is used for the accumulated film on the quartz substrate, and the exposure is performed for 15 minutes, 30 minutes, 45 minutes, and 60 minutes, and the visible-ultraviolet absorption spectrum of the accumulated film after each exposure. Was measured. The result is shown in FIG. It can be seen that the absorption around 230 nm attributed to the carbon-carbon double bond decreases in proportion to the exposure time.
[0037]
Example 3
Using N-2- (perfluorodecyl) ethylacrylamide (C 10 F 21 AA), under the same conditions as in Example 5, a cumulative film of 40 layers was produced on a silicon wafer subjected to hydrophobic treatment. . Next, using a xenon lamp, the accumulated film was closely exposed through a photomask for 20 minutes. Next, the photomask was removed, and the surface was washed with Freon 113 for 1 minute. The unexposed area was dissolved, the exposed area was polymerized, and the fine pattern was transferred onto the silicon wafer. From the observation of this pattern with an optical microscope, it was confirmed that the present accumulated film could be practically used as a resist material.
[0038]
Example 4
Using N-2- (perfluorodecyl) ethylacrylamide (C 10 F 21 AA), a 10-layer cumulative film was produced on a slide glass that had been subjected to hydrophobic treatment under the same conditions as in Example 5 above. A very small amount of pure water was dropped onto the membrane using a microsyringe, and the contact angle was measured. As a result, a high value of 110 degrees was shown. Next, in order to determine the critical surface tension, contact angles for various n-alkanes were determined, Zisman plots were performed, and the critical surface tension was determined to be 9-10 mN / m. It is clear that the surface tension of normal Teflon is considerably smaller than that of 18 mN / m, and it has been found that the water repellency is unprecedented. For contact angle measurement, Nakamura Work Co. The contact angle measuring device made by LTD was used.
[0039]
Example 5
Using N-2- (perfluorodecyl) ethylacrylamide (C 10 F 21 AA), 10 layers of cumulative films were produced on a glass substrate that had been subjected to hydrophobic treatment in the same manner as in Example 5 above. Next, the dynamic friction coefficient of this monomolecular film was measured using a reciprocating friction tester (Heiden-14D manufactured by Shinto Kagaku Co., Ltd.), and the dynamic friction was determined from the 10th frictional force in which the reciprocating motion was repeated 11 times to stabilize the sliding. As a result of obtaining the coefficient, a value of 0.1 was obtained. It was found that the coefficient of dynamic friction of the glass substrate used for comparison was significantly reduced compared to 0.7.
[0040]
A similar test was performed on a monomolecular film (one layer) and a 10-layer cumulative film polymer. As a result, a value of a dynamic friction coefficient of 0.1 was obtained.
[0041]
Reference example 1
Synthesis of N-1H, 1H-pentadecafluorooctylacrylamide polymer (hereinafter sometimes abbreviated as poly-C 7 F 15 AA):
Dissolve 0.4 g of N-1H, 1H-pentadecafluorooctylacrylamide in 10 ml of THF, add 0.014 g of AlBN as an initiator, remove the dissolved oxygen by freezing, evacuation, and melting cycles, and then in a thermostatic bath at 60 ° C. For 8 hours. The polymer was obtained as a precipitate. The polymer was purified by dissolving in Freon R113 and precipitation into dichloromethane. The polymer was separated by filtration and then dried under reduced pressure at room temperature for two days to obtain 0.2 g of N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA). The IR spectrum of the obtained polymer is shown in FIG. Polymerization reduces the absorption at 1632 cm −1 corresponding to the double bond found in the monomer.
Since this polymer was insoluble in general-purpose solvents such as THF, it was difficult to measure the molecular weight by GPC or the like, but it was estimated to be a tens of mer. The molecular weight can be lowered by increasing an initiator such as AIBN or using about 10 −3 mol / L of dodecyl mercaptan or the like.
[0042]
Reference example 2
Preparation of N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA) cumulative membrane:
Example 1 except that N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA) is used instead of N-2- (perfluorodecyl) ethylacrylamide, and the cumulative film is 10 layers. A monomolecular film and a cumulative film of N-1H, 1H-pentadecafluorooctylacrylamide polymer were prepared. FIG. 5 shows the relationship between the occupied area per molecule calculated from the membrane area and the surface pressure. It can be seen from FIG. 5 that a monomolecular film (monomolecular film) having a high collapse pressure and densely packed with molecules is formed. The cumulative ratio was approximately 1.0 when rising and when falling.
[0043]
Reference example 3
N-1H, 1H-heptafluorobutylacrylamide polymer (hereinafter sometimes abbreviated as poly-C 3 F 7 AA), N-2- (perfluorooctyl) ethyl, polymerized in the same manner as in Reference Example 1 . An acrylamide polymer (hereinafter sometimes abbreviated as poly-C 8 F 17 AA) and 2- (perfluorodecyl) ethyl acrylamide polymer (hereinafter abbreviated as poly-C 10 F 21 AA) were used. A monomolecular film and a cumulative film were prepared in the same manner as in Reference Example 2, and the relationship between the occupied area per molecule and the surface pressure was measured. FIG. 5 shows the relationship between the occupied area and the surface pressure.
[0044]
Reference example 4
N-2- (perfluorooctyl) ethyl acrylamide polymer (poly-C 8 F 17 AA), N-1H, 1H-pentadecafluorooctyl acrylamide polymer (poly-C 7 F 15 AA) and N-1H, Using 1H-heptafluorobutylacrylamide polymer (poly-C 3 F 7 AA), a cumulative film of 1 to 12 layers is prepared on a slide glass subjected to hydrophobic treatment in the same manner as in Reference Example 2 except for the cumulative number of times. did. Contact angles for various n-alkanes were determined and Zisman plots were performed. As a result, the contact angles were N-2- (perfluorooctyl) ethylacrylamide polymer (poly-C 8 F 17 AA) and N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA). It was found that the cumulative film of 3 or more layers using) showed a high value of 110 degrees, and the critical surface tensions were 9 and 11 mN / m, respectively, which was significantly higher in water repellency than before. The contact angle to the cumulative film using N-1H, 1H-heptafluorobutylacrylamide polymer (poly-C 3 F 7 AA) was 95 degrees, and the critical surface tension was 14 mN / m.
[0045]
Reference Example 5
N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA), N-2- (perfluorooctyl) ethyl acrylamide (poly-C 8 F 17 AA) was used, and the cumulative number was removed. In the same manner as in Reference Example 2 , 1, 2, 4, and 6 layers of cumulative films were formed on a glass substrate that had been subjected to hydrophobic treatment, and the dynamic friction coefficient was measured. As a result of obtaining the dynamic friction coefficient from the friction force of the 10th time when the sliding motion was continuously performed 11 times with the load and the sliding was stabilized, a value of 0.15 was obtained for the cumulative film of 1 to 6 layers. It was found that the coefficient of dynamic friction of the glass substrate used for comparison was significantly reduced compared to 0.7.
[0046]
【The invention's effect】
Monomolecular film and LB film of the present invention is suitable for creating high-molecular built-up film. It is suitable as Les resist materials especially.
[Brief description of the drawings]
FIG. 1 is an IR absorption spectrum of N-2- (perfluorodecyl) ethylacrylamide (poly-C 10 F 21 AA).
FIG. 2 is a surface pressure-surface area curve of N-polyfluoroalkyl-substituted acrylamide.
FIG. 3 is a UV absorption spectrum of a cumulative film before and after light irradiation.
FIG. 4 is an IR absorption spectrum of N-1H, 1H-pentadecafluorooctylacrylamide polymer (poly-C 7 F 15 AA).
FIG. 5 is a surface area-surface pressure curve of an N-polyfluoroalkyl-substituted acrylamide polymer.

Claims (5)

式(1)で表されるN−ポリフロロアルキル置換(メタ)アクリルアミドを用いた単分子膜
Figure 0003919269
(式中nは0〜2を表しはHまたはメチル基を表し、Rは炭素数1〜14のペルフロロアルキル基を表す。)
A monomolecular film using N-polyfluoroalkyl-substituted (meth) acrylamide represented by the formula (1).
Figure 0003919269
(In the formula, n represents 0 to 2 , R 1 represents H or a methyl group, and R 2 represents a perfluoroalkyl group having 1 to 14 carbon atoms.)
が炭素数5〜14のペルフロロアルキル基である請求項1記載の単分子膜The monomolecular film according to claim 1, wherein R 2 is a perfluoroalkyl group having 5 to 14 carbon atoms. 請求項1または2に記載の単分子膜を累積して得られるラングミュア−ブロジェット膜。 Blodgett film - Langmuir obtained by accumulating monomolecular film according to claim 1 or 2. 請求項3に記載のラングミュア−ブロジェット膜に紫外線光を照射することにより形成される溶媒不溶性高分子薄膜 A solvent-insoluble polymer thin film formed by irradiating the Langmuir-Blodgett film according to claim 3 with ultraviolet light . 請求項4に記載の溶媒不溶性高分子薄膜よりなるレジストA resist comprising the solvent-insoluble polymer thin film according to claim 4 .
JP31295396A 1996-11-08 1996-11-08 Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide Expired - Fee Related JP3919269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31295396A JP3919269B2 (en) 1996-11-08 1996-11-08 Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31295396A JP3919269B2 (en) 1996-11-08 1996-11-08 Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide

Publications (2)

Publication Number Publication Date
JPH10139747A JPH10139747A (en) 1998-05-26
JP3919269B2 true JP3919269B2 (en) 2007-05-23

Family

ID=18035472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31295396A Expired - Fee Related JP3919269B2 (en) 1996-11-08 1996-11-08 Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide

Country Status (1)

Country Link
JP (1) JP3919269B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040392B2 (en) * 2002-08-22 2008-01-30 富士フイルム株式会社 Positive photoresist composition
JP4692032B2 (en) * 2005-03-16 2011-06-01 チッソ株式会社 Electroless plating substrate, electroless plated substrate and method for producing the same
CN111499836B (en) * 2020-04-21 2022-03-04 临沂大学 Method for converting and utilizing perfluoroiodide, obtained product and application

Also Published As

Publication number Publication date
JPH10139747A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JP6419820B2 (en) Block copolymer
JP6361893B2 (en) Block copolymer
JP6496318B2 (en) Block copolymer
JP6483694B2 (en) Monomers and block copolymers
JP5259394B2 (en) Hydrofluoroalkanesulfonic acids and salts from fluorovinyl ethers
CN104678699B (en) Self-assembled structures, methods of making the same, and articles comprising the same
JP5223775B2 (en) Water repellent additive for immersion resist
TWI379167B (en)
JP2017505355A (en) Block copolymer
JP2017502116A (en) Block copolymer
JP2016540084A (en) Block copolymer
JP2016540082A (en) Block copolymer
US10078261B2 (en) Self-assembled structures, method of manufacture thereof and articles comprising the same
KR20120042755A (en) Fluorine-containing compound, fluorine-containing polymer compound, resist composition, top coat composition and pattern formation method
TW201044112A (en) Resist protective coating composition and patterning process
WO2013031878A1 (en) Polymerizable monomer, polymer, resist using same, and pattern forming method therefor
JP3919269B2 (en) Monomolecular film, cumulative film and polymer film using N-polyfluoroalkyl-substituted (meth) acrylamide
JP7076701B2 (en) A block copolymer and a method for producing the same, and a method for producing a structure including a phase-separated structure.
Li et al. Formation of Polymerizable Monomer Langmuir− Blodgett Films with Polyfluorocarbon Chains for Use in High-Resolution Negative Resists
JPS62240956A (en) Positive type resist pattern forming method
US5258262A (en) Radiation-sensitive film composed of at least one mono-molecular layer of fluorine-containing amphiphiles
IE920827A1 (en) Amphiphilic polymers containing silane units and film¹comprising at least one monomolecular layer produced¹therefrom
JP3430796B2 (en) Copolymer cumulative film having cross-linking group and resist material using the same
Yamashita et al. Novel Fluorinated Polymers for Releasing Material in Nanoimprint Lithography
EP3683245A1 (en) Laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees