JP3916925B2 - Manufacturing method of lightweight rigid steel with high rigidity - Google Patents

Manufacturing method of lightweight rigid steel with high rigidity Download PDF

Info

Publication number
JP3916925B2
JP3916925B2 JP2001344409A JP2001344409A JP3916925B2 JP 3916925 B2 JP3916925 B2 JP 3916925B2 JP 2001344409 A JP2001344409 A JP 2001344409A JP 2001344409 A JP2001344409 A JP 2001344409A JP 3916925 B2 JP3916925 B2 JP 3916925B2
Authority
JP
Japan
Prior art keywords
steel
flange
thickness
lightweight
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001344409A
Other languages
Japanese (ja)
Other versions
JP2003147900A5 (en
JP2003147900A (en
Inventor
武文 仲子
薫 上新
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001344409A priority Critical patent/JP3916925B2/en
Publication of JP2003147900A publication Critical patent/JP2003147900A/en
Publication of JP2003147900A5 publication Critical patent/JP2003147900A5/ja
Application granted granted Critical
Publication of JP3916925B2 publication Critical patent/JP3916925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、断面性能、外形寸法を維持しながら重量の軽い軽量形鋼を製造する方法に関する。
【0002】
【従来技術及び問題点】
鋼板を所定断面形状に成形した軽量形鋼は、平板状の鋼板に比較して高い剛性を示し、ハット型,コ型,Z型,L型等の断面形状をもつものが知られている。軽量で高強度を示すことから、住宅をはじめとして建造物の構造材に使用されている。
従来の軽量形鋼は、鋼帯を単に幅方向に曲げ加工することによって製造されることから、各部が幅方向に均一な厚みになっている。たとえば、コ型の断面形状をもつ軽量形鋼は、ウエブ,フランジ共に同じ板厚になっている。そのため、断面二次モーメント又は断面係数等の断面性能から必ずしも効率的な断面形状とはいえず、重量当りの断面性能が低い。
【0003】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、ウエブ,フランジの肉厚を変更することにより、断面性能、外寸法を維持しながら重量を軽減できる軽量形鋼を提供することを目的とする。
本発明の剛性の高い軽量形鋼の製造方法は、鋼帯を幅方向に曲げ加工することによって形成されたコ型,L型又はZ型断面をもつ軽量形鋼を製造する際に適用される。
鋼帯としてめっき鋼帯を用いることが好ましい。
【0004】
本発明の剛性の高い軽量形鋼の製造方法は、その目的を達成するため、ロールあるいは長手方向の接触長さが有限長の金型を使用し、鋼帯あるいは形鋼の幅方向両端部を幅方向中央に向かって押圧することにより、形鋼のフランジの一部あるいは全域に相当する領域を素材鋼帯の厚さよりも厚く増肉加工することを特徴とする
ロール成形により鋼帯を軽量形鋼に成形する工程と、形鋼のフランジの一部あるいはほぼ全域に相当する部分を鋼帯幅方向に押圧して素材鋼帯の厚さよりも厚く増肉する工程を連続して行ってもよい。
【0005】
【作用】
軽量形鋼の代表的なコ型断面形状をもつ軽量溝形鋼を例にとって説明する。軽量溝形鋼は、フランジに平行で且つウエブの中央を通る中立軸に関する断面二次モーメントでその構造部材としての性能が評価される。
図1の(a)、(b)に示されるサイズの溝形鋼の断面二次モーメントは、それぞれ次の(1)、(2)式のようになる。
【0006】

Figure 0003916925
また、それぞれの断面積は次の(3)、(4)式になる。
Figure 0003916925
【0007】
本発明では、2つの溝形鋼において断面二次モーメントを同じにしようとしているので、Ia=Ibである。
(1)、(2)式より次(5)式の関係が出てくる。
Figure 0003916925
【0008】
(5)式を用いて(4)式を変形すると
Figure 0003916925
となり、(1)式と比較して、h2/h3を1より大きくすれば、断面二次モーメントは同じで、断面積を小さく、すなわち鋼材を軽くできることがわかる。
2/h3を1より大きくするためにはh3を小さく、すなわちフランジの板厚を厚くすれば良いことになる。
なお、実際の形鋼では隅部は直角ではなく、Rが付いているので上記のとおりではない。大よその概念を示したものである。
【0009】
【実施の形態】
次に、本発明者は、同じ鋼帯又は鋼板を使用して剛性の高い形鋼を製造するには如何したらよいか検討した。
例えば、図2の(a)に示すような板厚4.5mm、ウエブ高さ200mm、フランジ幅75mmのサイズの溝形鋼と同じ断面二次モーメントになるような溝形鋼を板厚4mm、ウエブ高さ200mmで製造しようとするとフランジ幅は約88mmのものとなる(図2の(b))。そこで、フランジ部を図2の(c)に示すように、フランジ幅75mmの溝形鋼が得られるよう、フランジ先端部分で板厚の最大1.5倍の厚さになるようにフランジ幅方向に押圧して漸増分布で増肉した。
しかし、フランジ部はその全域にわたって漸増分布されず、この場合は、フランジ先端よりフランジ幅の約70%の領域を増肉することによって同等の断面二次モーメントを得ることができた(図3参照)。
【0010】
上記のように図2の(a)と図3とでは、ウエブ高さ200mm、フランジ幅75mmの同じ外形サイズの溝形鋼であるが、鋼そのものの断面積(すなわち鋼材の重量)は、フランジ部を漸増分布で増肉とすることにより、約4.5%少ない溝形鋼で、同等の断面二次モーメントを有するものが得られる。
なお、実際の形鋼製品では、前記したように隅部が直角ではなくRが付いており(図3参照)、しかも増肉部はフランジの内側に形成されているので断面二次モーメントは上記計算値よりも若干小さくなっており、断面軽減率も3.7%程度となる。
【0011】
同様に板厚4mm、ウエブ高さ150mmの溝形鋼の場合、約86mmのフランジ幅を75mmまで押圧してフランジ先端より増肉後のフランジ幅の約60%を増肉することによって、板厚4.5mmの板から同一外形寸法(ウエブ高さ150mm、フランジ幅75mm)の溝形鋼を製造したと比べて約3.6%少ない材料で同等の断面二次モーメントを有する溝形鋼を得ることができた。
【0012】
フランジの一部の領域を均一な肉厚で増肉する場合についても検討した。
板厚4mmで、増肉前のフランジ幅が約87mmのフランジ部の一部を、図4に示すようにフランジ先端部で最大1.25倍に、かつ増肉幅が均一になるように増肉すると、ウエブ高さ200mmの溝形鋼の場合、フランジ先端よりフランジ幅の約65%の領域を増肉することによって、ウエブ高さ200mm、フランジ幅75mmが同一外形寸法で、板厚4.5mmの軽量溝形鋼に比べて約4.2%少ない材料で同等の断面二次モーメントをもつ溝形鋼が得られる。
【0013】
同様に板厚4mm、ウエブ高さ150mmの溝形鋼の場合、約86mmのフランジ幅を75mmまで押圧してフランジ先端より増肉後のフランジ幅の約60%を増肉することによって、ウエブ高さ150mm、フランジ幅75mmが同一外形寸法で、板厚4.5mmの軽量溝形鋼に比べて約3.6%少ない材料で同等の断面二次モーメントをもつ溝形鋼が得られる。
図3,4に示されるような寸法の厚肉フランジをもつ軽量溝形鋼について断面二次モーメントを計算し、従来の標準型のものとの違いを、表1にまとめて表記した。表1には、断面係数をも併せて計算、表記した。
【0014】
Figure 0003916925
【0015】
次に、上記のようなフランジ部の肉厚を厚くして剛性を高めた形鋼の製造方法について説明する。
フランジの一部を増肉する方法としては、例えばロール成形前の素材、ロール成形中、あるいはロール成形後の形鋼のフランジ先端に相当する幅方向両端部を、フランジ幅方向に相当する方向にロールあるいは素材長手方向に有限の長さをもつ金型によって押圧する方法がある。ロール成形の場合は連続的に増肉することができるが、金型を使用する場合、数メートルに及ぶ長さの形鋼を成形しようとすると、長い金型と大きな押圧力を必要とするため、一段階で押圧することは現実的ではない。有限の長さを有する金型を使用し、形鋼を長手方向に分割して繰り返し押圧することにより、比較的低い押圧力で成形できる。
【0016】
金型と素材の接触長さによってフランジの幅方向先端からの塑性変形が及ぶ領域が決まることから、金型の接触長さによってフランジの肉厚分布はある程度コントロールすることができる。ロール成形により増肉しようとする場合、ロールと素材の接触長さLは必然的に有限となり、その長さはロール径と圧下量によって調整することができる(図5参照)。
一般的に、この接触長さLを短くするとフランジの肉厚は図3のようにフランジ先端部から漸減する分布となり、逆にこの長さLを長く取ると図4のように比較的均一な分布に近づく傾向がある。
【0017】
実際の増肉後のフランジの板厚分布は図3あるいは図4に類似したもの、あるいは双方の中間か、あるいはフランジ圧下に伴う座屈の影響でさらに複雑な分布形態となっていることがある。いずれにしても、溝形鋼の断面性能は、フランジの断面積に依存し、板厚分布そのものにはほとんど影響を受けない。しかしながら、溝形鋼として使用する場合、フランジへのスポット溶接、部品取付け等の面から、一般的にはフランジの板厚は均一な方が好ましい。
【0018】
なお、フランジに増肉部を形成する際、図5に示すように、形鋼の成形過程の途中でフランジを外側に膨らませた形状とし、その後、フランジ外面及びウエブの内外面をロール等の金型によって拘束した状態でフランジを圧下させると、座屈が抑制され、良好な形状の形鋼を得ることができる。
以上、断面コ型の軽量溝形鋼を例に説明してきたが、L型又はZ型断面を有する軽量形鋼においても、同様に適用できる。
【0019】
【発明の効果】
以上に説明したように、ウエブ,フランジに加わる応力を考慮して各部のフランジ部の肉厚をウエブ部の肉厚よりも厚くすることにより、同じ重量及び同じ外形寸法であっても断面二次モーメントを大きくすることができ、それによって、断面性能の高い軽量形鋼を得ることができる。
【図面の簡単な説明】
【図1】 板厚の違いによる断面二次モーメントの変化を説明する図
【図2】 フランジの板厚を厚くして断面二次モーメントを大きくする過程を説明する図
【図3】 フランジに漸増増肉部を形成した軽量溝形鋼
【図4】 フランジに均一増肉部を形成した軽量溝形鋼
【図5】 フランジに増肉部を形成する方法を説明する図[0001]
[Industrial application fields]
The present invention relates to a method of manufacturing a lightweight section steel having a light weight while maintaining a cross-sectional performance and an external dimension.
[0002]
[Prior art and problems]
Lightweight shaped steel obtained by forming a steel plate into a predetermined cross-sectional shape has a higher rigidity than a flat steel plate and has a cross-sectional shape such as a hat shape, a U shape, a Z shape, and an L shape. Because it is lightweight and shows high strength, it is used as a structural material for buildings such as houses.
Since conventional lightweight shaped steel is manufactured by simply bending a steel strip in the width direction, each part has a uniform thickness in the width direction. For example, a lightweight steel having a U-shaped cross-sectional shape has the same thickness for both the web and the flange. For this reason, the cross-sectional performance such as the secondary moment or the section modulus is not necessarily an efficient cross-sectional shape, and the cross-sectional performance per weight is low.
[0003]
[Means for Solving the Problems]
The present invention has been devised to solve such problems, the web, by changing the thickness of the flange cross-section performance, lightweight shape steel that can reduce the weight while maintaining the outer shape dimension The purpose is to provide.
The method for producing a lightweight lightweight steel having high rigidity according to the present invention is applied when producing a lightweight steel having a U-shaped, L-shaped or Z-shaped cross section formed by bending a steel strip in the width direction. .
It is preferable to use a plated steel strip as the steel strip.
[0004]
In order to achieve the object, the method for producing a rigid and lightweight section steel according to the present invention uses a roll or a die having a finite length in the contact direction in the longitudinal direction, and the both ends in the width direction of the steel strip or the section steel. by pressing toward the widthwise center, characterized by increasing meat thicker than the thickness of the region of the material steel strip corresponding to a part or the whole of the flange section steel.
Forming the steel strip into light-weight shaped steel by roll forming and pressing the part corresponding to part or almost the entire area of the flange of the shaped steel in the steel strip width direction to increase the thickness thicker than the thickness of the material steel strip May be performed continuously.
[0005]
[Action]
A light-weight channel steel having a typical U-shaped cross-sectional shape of a lightweight steel will be described as an example. The lightweight channel steel is evaluated for its performance as a structural member based on the second moment of section with respect to the neutral axis parallel to the flange and passing through the center of the web.
The cross-sectional secondary moments of the channel steel of the size shown in FIGS. 1A and 1B are expressed by the following equations (1) and (2), respectively.
[0006]
Figure 0003916925
Moreover, each sectional area becomes following (3), (4) Formula.
Figure 0003916925
[0007]
In the present invention, Ia = Ib because the second moment of section is to be made the same in the two channel steels.
From the equations (1) and (2), the relationship of the following equation (5) appears.
Figure 0003916925
[0008]
Using equation (5) to transform equation (4)
Figure 0003916925
Compared with the formula (1), it can be seen that if h 2 / h 3 is made larger than 1, the cross-sectional secondary moment is the same and the cross-sectional area can be reduced, that is, the steel material can be lightened.
In order to make h 2 / h 3 greater than 1, h 3 should be reduced, that is, the flange thickness should be increased.
In an actual shape steel, the corner is not a right angle but has an R, which is not as described above. It shows the general concept.
[0009]
[Embodiment]
Next, the present inventor examined how to manufacture a highly rigid shape steel using the same steel strip or steel plate.
For example, as shown in FIG. 2 (a), a steel sheet having a thickness of 4.5 mm, a web height of 200 mm, and a grooved steel having the same moment of inertia as that of the grooved steel having a flange width of 75 mm is 4 mm thick. When manufacturing with a web height of 200 mm, the flange width is about 88 mm ((b) of FIG. 2). Therefore, as shown in FIG. 2 (c), the flange width direction is set so that the flange tip has a maximum thickness of 1.5 times the plate thickness so that a grooved steel with a flange width of 75 mm can be obtained. To increase the thickness with a gradually increasing distribution.
However, the flange portion is not gradually distributed over the entire region, and in this case, an equivalent second moment of section could be obtained by increasing the thickness of the region of about 70% of the flange width from the flange tip (see FIG. 3). ).
[0010]
As described above, in FIGS. 2A and 3, the cross-sectional area of the steel itself (that is, the weight of the steel material) is a flange-shaped steel having the same outer size with a web height of 200 mm and a flange width of 75 mm. By increasing the thickness of the part with a gradually increasing distribution, it is possible to obtain approximately 4.5% less channel steel having the same cross-sectional secondary moment.
In an actual shape steel product, the corner is not a right angle as described above, but has an R (see FIG. 3), and the thickened portion is formed on the inside of the flange. It is slightly smaller than the calculated value, and the cross-sectional reduction rate is about 3.7%.
[0011]
Similarly, in the case of a channel steel having a plate thickness of 4 mm and a web height of 150 mm, the plate thickness is increased by pressing the flange width of about 86 mm to 75 mm and increasing the thickness of the flange by about 60% from the flange end. A grooved steel having an equivalent secondary moment of inertia is obtained with about 3.6% less material than a grooved steel having the same external dimensions (web height 150 mm, flange width 75 mm) from a 4.5 mm plate. I was able to.
[0012]
The case of increasing the thickness of a part of the flange with a uniform thickness was also examined.
A part of the flange part with a plate thickness of 4 mm and a flange width of approximately 87 mm before thickening is increased up to 1.25 times at the flange tip as shown in FIG. 4 so that the thickening width is uniform. In the case of a grooved steel having a web height of 200 mm, the area of about 65% of the flange width is increased from the flange tip, so that the web height of 200 mm and the flange width of 75 mm have the same outer dimensions and a plate thickness of 4. A grooved steel having the same moment of inertia in cross section can be obtained with about 4.2% less material than a 5 mm lightweight grooved steel.
[0013]
Similarly, in the case of a channel steel having a plate thickness of 4 mm and a web height of 150 mm, the web height is increased by pressing the flange width of about 86 mm to 75 mm and increasing the thickness of the flange by about 60% from the flange end. A grooved steel having the same sectional secondary moment is obtained with about 3.6% less material than a lightweight grooved steel having a thickness of 150 mm and a flange width of 75 mm with the same outer dimensions and a thickness of 4.5 mm.
The cross-sectional secondary moment was calculated for the lightweight channel steel having a thick flange with dimensions as shown in FIGS. 3 and 4, and the differences from the conventional standard type were summarized in Table 1. In Table 1, the section modulus is also calculated and described.
[0014]
Figure 0003916925
[0015]
Next, a method for manufacturing a shaped steel with increased rigidity by increasing the thickness of the flange portion as described above will be described.
As a method of increasing the thickness of part of the flange, for example, the width direction both ends corresponding to the flange tip of the material before roll forming, during roll forming, or after roll forming in the direction corresponding to the flange width direction. There is a method of pressing with a roll or a die having a finite length in the longitudinal direction of the material. In the case of roll forming, it is possible to continuously increase the thickness, but when using a mold, if you try to form a shape steel with a length of several meters, a long mold and a large pressing force are required. It is not realistic to press in one step. By using a mold having a finite length and dividing the shaped steel in the longitudinal direction and repeatedly pressing it, molding can be performed with a relatively low pressing force.
[0016]
Since the region where plastic deformation from the front end in the width direction of the flange reaches is determined by the contact length between the mold and the material, the thickness distribution of the flange can be controlled to some extent by the contact length of the mold. When attempting to increase the thickness by roll forming, the contact length L between the roll and the material is inevitably limited, and the length can be adjusted by the roll diameter and the amount of reduction (see FIG. 5).
In general, when the contact length L is shortened, the thickness of the flange gradually decreases from the flange tip as shown in FIG. 3, and conversely, when the length L is increased, the thickness is relatively uniform as shown in FIG. There is a tendency to approach the distribution.
[0017]
The thickness distribution of the flange after actual thickness increase is similar to that in FIG. 3 or FIG. 4, or in the middle of both, or may have a more complicated distribution due to the influence of buckling due to flange pressure reduction. . In any case, the cross-sectional performance of the channel steel depends on the cross-sectional area of the flange and is hardly affected by the plate thickness distribution itself. However, when used as channel steel, in general, it is preferable that the plate thickness of the flange is uniform from the viewpoint of spot welding to the flange, component mounting, and the like.
[0018]
In addition, when forming the thickened portion on the flange, as shown in FIG. 5, the flange is bulged outward during the forming process of the shape steel. When the flange is pressed down in a state constrained by the mold, buckling is suppressed, and a shaped steel having a good shape can be obtained.
As described above, the light-duty steel having a U-shaped cross section has been described as an example, but the present invention can be similarly applied to a lightweight steel having an L-shaped or Z-shaped cross section.
[0019]
【The invention's effect】
As described above, by taking into account the stress applied to the web and flange, the thickness of the flange portion of each part is made thicker than the thickness of the web portion, so that even if the same weight and the same external dimensions are used, the cross-sectional secondary The moment can be increased, whereby a lightweight section steel with high cross-sectional performance can be obtained.
[Brief description of the drawings]
[Fig. 1] A diagram explaining the change in the secondary moment of section due to the difference in plate thickness. [Fig. 2] A diagram explaining the process of increasing the secondary moment by increasing the plate thickness of the flange. [Fig. 3] Gradually increasing to the flange Lightweight grooved steel with thickened part [Fig. 4] Lightweight grooved steel with uniform thickened part on the flange [Figure 5] Diagram explaining the method of forming the thickened part on the flange

Claims (3)

ロールあるいは長手方向の接触長さが有限長の金型を使用し、鋼帯あるいは形鋼の幅方向両端部を幅方向中央に向かって押圧することにより、形鋼のフランジの一部あるいは全域に相当する領域を素材鋼帯の厚さよりも厚く増肉加工することを特徴とする剛性の高い軽量形鋼の製造方法。  Using a roll or a mold with a finite contact length in the longitudinal direction, pressing both ends in the width direction of the steel strip or section steel toward the center in the width direction, to part or all of the flange of the shape steel A method for producing a lightweight section steel having high rigidity, characterized in that the corresponding region is thickened to be thicker than the thickness of the material steel strip. ロール成形により鋼帯を軽量形鋼に成形する工程と、形鋼のフランジの一部あるいはほぼ全域に相当する部分を鋼帯幅方向に押圧して素材鋼帯の厚さよりも厚く増肉する工程を連続して行うことを特徴とする剛性の高い軽量形鋼の製造方法。  Forming the steel strip into light-weight shaped steel by roll forming and pressing the part corresponding to part or almost the entire area of the steel strip in the width direction of the steel strip to increase the thickness thicker than the thickness of the material steel strip A method for producing a lightweight section steel having high rigidity, characterized in that the step is continuously performed. 素材鋼帯がめっき鋼帯である請求項1又は2に記載の剛性の高い軽量形鋼の製造方法。The method for producing a lightweight lightweight steel having high rigidity according to claim 1 or 2 , wherein the material steel strip is a plated steel strip.
JP2001344409A 2001-11-09 2001-11-09 Manufacturing method of lightweight rigid steel with high rigidity Expired - Fee Related JP3916925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344409A JP3916925B2 (en) 2001-11-09 2001-11-09 Manufacturing method of lightweight rigid steel with high rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344409A JP3916925B2 (en) 2001-11-09 2001-11-09 Manufacturing method of lightweight rigid steel with high rigidity

Publications (3)

Publication Number Publication Date
JP2003147900A JP2003147900A (en) 2003-05-21
JP2003147900A5 JP2003147900A5 (en) 2005-07-07
JP3916925B2 true JP3916925B2 (en) 2007-05-23

Family

ID=19157946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344409A Expired - Fee Related JP3916925B2 (en) 2001-11-09 2001-11-09 Manufacturing method of lightweight rigid steel with high rigidity

Country Status (1)

Country Link
JP (1) JP3916925B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017946A1 (en) * 2005-08-11 2007-02-15 Yugenkaisha Japan Tsusyo Resin knockdown house
KR101371197B1 (en) * 2012-09-04 2014-03-10 채일수 Production process of the hybrid lightweight steel structure according to the stress variation

Also Published As

Publication number Publication date
JP2003147900A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US5934544A (en) Apparatus and method for making an automotive bumper beam
JP5114688B2 (en) Method of forming metal member with excellent shape freezing property
WO2015040969A1 (en) Press molded product, press molded product manufacturing method, and press molded product manufacturing device
WO2018066663A1 (en) Method and device for manufacturing press formed article
KR20090070813A (en) Roll forming system and method thereof
JPH1085877A (en) Rolling formation of flat tube and device therefor
TWI590885B (en) A method of manufacturing a press-formed product and a press-formed product, and a manufacturing apparatus of the press-formed product
JP2011127293A (en) Multilayer light-gauge steel
JP3916925B2 (en) Manufacturing method of lightweight rigid steel with high rigidity
CN211437481U (en) Hole pattern structure, cogging mill and production line for rolling I-steel by slab
KR100396059B1 (en) Method for processing a bending deformation portion of metallic material, and metallic material for plastic processing used in the same
JP2011106149A (en) Double-flange light-gauge steel
JP4907590B2 (en) Metal cross-section hat-shaped member having a bent portion outside the plane in the longitudinal direction of the member, and press forming method thereof
JP2008213028A (en) Twist preventing method for channel
JP4546592B2 (en) Metal pipe bending method and metal bent pipe
CN209876479U (en) Corrugated board for vehicle
JP3752863B2 (en) How to make brace material
CN112605202B (en) Roll forming method of plate connecting piece
JP2682376B2 (en) Full web corrugated H-section steel and its manufacturing method
JPS59113905A (en) Production of steel plate of different thicknesses having one flat surface
CN113536479B (en) Design method of highlight film and highlight coating rolling door frame pattern
JP2012250261A (en) Method for production of door-reinforcing member, and door-reinforcing member
JPS6121123Y2 (en)
JPH0230629Y2 (en)
JPS6215694B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees