JP3914938B2 - Projector keystone distortion correction device and projector including the keystone distortion correction device - Google Patents

Projector keystone distortion correction device and projector including the keystone distortion correction device Download PDF

Info

Publication number
JP3914938B2
JP3914938B2 JP2004135127A JP2004135127A JP3914938B2 JP 3914938 B2 JP3914938 B2 JP 3914938B2 JP 2004135127 A JP2004135127 A JP 2004135127A JP 2004135127 A JP2004135127 A JP 2004135127A JP 3914938 B2 JP3914938 B2 JP 3914938B2
Authority
JP
Japan
Prior art keywords
projector
plane
projection
intersection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004135127A
Other languages
Japanese (ja)
Other versions
JP2005318355A (en
Inventor
陽一 田村
Original Assignee
Necビューテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necビューテクノロジー株式会社 filed Critical Necビューテクノロジー株式会社
Priority to JP2004135127A priority Critical patent/JP3914938B2/en
Publication of JP2005318355A publication Critical patent/JP2005318355A/en
Application granted granted Critical
Publication of JP3914938B2 publication Critical patent/JP3914938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はプロジェクタに関し、特に撮像した投射面となる壁面とその壁面と交差する面との交差線から投影装置の投射光軸と投射面との傾斜角度とを算定するための台形歪み補正装置を有するプロジェクタに関する。   The present invention relates to a projector, and more particularly, to a trapezoidal distortion correction device for calculating an inclination angle between a projection optical axis of a projection device and a projection surface from a crossing line between a wall surface serving as a captured projection surface and a surface intersecting the wall surface. The present invention relates to a projector.

液晶技術やDLP(商標)(デジタルライトプロセッシング)技術の急速な進展に伴うプロジェクタの小型化・高性能化により、映像投射を目的とするプロジェクタの用途も拡大し、家庭内でのディスプレイ型テレビに代わる大型の表示装置としても注目されている。   With the rapid development of liquid crystal technology and DLP ™ (digital light processing) technology, the miniaturization and high performance of projectors has expanded the use of projectors for video projection, making it a display-type television at home. It is also attracting attention as an alternative large display device.

しかし、プロジェクタはディスプレイ型テレビと違って映像面がスクリーンであったり壁であったりするためにプロジェクタの投射光軸と投射面との相対関係によって映像に歪みを生ずるという問題点がある。特許文献1には液晶プロジェクタの据付角度の検出手段と液晶プロジェクタと投射対象との間の距離を検出する距離検出手段を有し、両検出結果から算出された角度によって液晶表示ユニットの角度を調整する方法が開示されている。この場合液晶表示ユニットの角度を機械的に調整する必要がある。また、特許文献2には角度制御可能なレーザポインタの光点を曲面のスクリーンに投影し、一方、計測用点画像を生成してプロジェクタからスクリーンに投影し、カメラで撮影して光点と点画像との位置計測を行って点画像を移動しながら両点が一致したときに点画像のフレームメモリ上の画素座標を光点の入力画像上の座標に置換して座標変換パラメータメモリに設定する歪み補正方法が開示されている。この場合レーザポインタの角度を制御する必要があり、構造が複雑となる。   However, unlike a display-type television, the projector has a problem that the image is distorted due to the relative relationship between the projection optical axis of the projector and the projection surface because the image surface is a screen or a wall. Patent Document 1 has a liquid crystal projector installation angle detection means and a distance detection means for detecting the distance between the liquid crystal projector and the projection target, and the angle of the liquid crystal display unit is adjusted by the angle calculated from both detection results. A method is disclosed. In this case, it is necessary to mechanically adjust the angle of the liquid crystal display unit. In Patent Document 2, the light spot of a laser pointer capable of angle control is projected onto a curved screen. On the other hand, a point image for measurement is generated, projected from the projector onto the screen, and photographed with a camera. Measure the position of the image and move the point image. When the two points coincide, replace the pixel coordinates on the frame memory of the point image with the coordinates on the input image of the light point and set in the coordinate conversion parameter memory. A distortion correction method is disclosed. In this case, it is necessary to control the angle of the laser pointer, and the structure becomes complicated.

一方、スクリーンのプロジェクタの投射光軸に対する垂直方向および水平方向の傾斜がわかればプロジェクタのフレームメモリの座標を変換したりすることによって歪みのない映像をスクリーンに投影する技術は実用化されている。このため特に歪みの原因となりやすい垂直方向の傾斜を測定するために、スクリーンが垂直に設置されているという前提でプロジェクタの垂直の傾きを重力センサで検知し、その傾きに見合った歪み補正を行うプロジェクタは既に開示されて発売されている(特許文献3参照)。
特開平9−281597号公報 特開2001−169211号公報 特開2003−5278号公報
On the other hand, a technique for projecting an image without distortion onto the screen by converting the coordinates of the frame memory of the projector when the vertical and horizontal inclinations of the screen with respect to the projection optical axis of the projector are known has been put into practical use. For this reason, in order to measure the vertical tilt that is likely to cause distortion, the vertical tilt of the projector is detected by the gravity sensor on the premise that the screen is installed vertically, and distortion correction corresponding to the tilt is performed. Projectors have already been disclosed and sold (see Patent Document 3).
Japanese Patent Laid-Open No. 9-281597 Japanese Patent Application Laid-Open No. 2001-169211 JP 2003-5278 A

しかし、特許文献3に記載の方法はスクリーンが垂直に設置されているという前提であり、スクリーンが垂直に設置されていない場合やプロジェクタの投射光軸に対し水平方向に傾斜している場合には正確な歪み補正を行うことができないという問題がある。映像の歪み補正のためにスクリーンの液晶プロジェクタの投射光軸に対する垂直方向および水平方向の傾斜角度をレーザポインタと撮像素子を有するデジタルカメラを用いて正確に測定できる傾斜角度測定装置を有する液晶プロジェクタも検討されており、スクリーンに対するプロジェクタの角度を正確に取得する手段としては非常に優れているが、その構成機器としてレーザポインタと二次元配列撮像素子を有するデジタルカメラを用いる必要がある。   However, the method described in Patent Document 3 is based on the premise that the screen is installed vertically, and when the screen is not installed vertically or is inclined in the horizontal direction with respect to the projection optical axis of the projector. There is a problem that accurate distortion correction cannot be performed. There is also a liquid crystal projector having a tilt angle measuring device that can accurately measure the tilt angles in the vertical and horizontal directions with respect to the projection optical axis of the liquid crystal projector of the screen for image distortion correction using a digital camera having a laser pointer and an image sensor. It has been studied and is an excellent means for accurately obtaining the angle of the projector with respect to the screen. However, it is necessary to use a digital camera having a laser pointer and a two-dimensional array image sensor as its constituent devices.

本発明の目的は、映像の歪み補正のためのプロジェクタの投射光軸に対する投射面の傾斜角度を、投射面の壁面とそれに交差する面との交差線の撮像画像を基に、交差線と撮像範囲の枠線との交点の3次元座標を用いて演算によって算出する台形歪み補正装置を有するプロジェクタを提供することにある。   The object of the present invention is to determine the inclination angle of the projection surface with respect to the projection optical axis of the projector for image distortion correction, based on the captured image of the intersection line between the wall surface of the projection surface and the surface intersecting with it. An object of the present invention is to provide a projector having a trapezoidal distortion correction device that calculates by calculation using the three-dimensional coordinates of an intersection with a range frame line.

本発明のプロジェクタの台形歪み補正装置は、
プロジェクタによる投射画像を含む所定の撮像範囲の撮像面を有する固体撮像素子と、固体撮像素子における撮像画像から投射面となる平面と該平面と交差する面との交差線を検出し、該交差線と撮像範囲を規定する枠線との交点の位置情報に基づいてプロジェクタの投影装置の光軸と投射面との傾斜角度を算定し、算定された傾斜角度を、該傾斜角度に従って投影装置の表示部の出力映像を制御することにより投射面の映像における台形の歪みを補正するプロジェクタの画像制御部に出力する撮像画像解析傾斜角度算定部とを備える。
The trapezoidal distortion correction apparatus for a projector according to the present invention is:
A solid-state imaging device having an imaging surface of a predetermined imaging range including a projection image by a projector, and a cross line between a plane that is a projection surface and a plane that intersects the plane is detected from the captured image in the solid-state imaging device, and the intersection line Is calculated based on the position information of the intersection point between the projection line and the frame defining the imaging range, and the projection apparatus displays the calculated inclination angle according to the inclination angle. And a captured image analysis tilt angle calculation unit that outputs to the image control unit of the projector that corrects trapezoidal distortion in the image of the projection surface by controlling the output video of the unit.

固体撮像素子の撮像画像からの投射面となる平面とその平面と交差する面との交差線の検出が、投影装置より投射面に投射された垂直方向および水平方向のいずれかの2本以上の直線のテストパターンの反射光の撮像面上に現れる屈折点の位置情報を取得して、その屈折点を結んだ直線を算出し、その直線を投射面となる平面とその平面と交差する面との交差線としてもよい。   The detection of the intersecting line between the plane that is the projection plane from the captured image of the solid-state imaging device and the plane that intersects the plane is performed by two or more of the vertical direction and the horizontal direction projected from the projection device onto the projection plane The position information of the refraction point appearing on the imaging surface of the reflected light of the straight test pattern is obtained, the straight line connecting the refraction points is calculated, and the plane that becomes the projection plane and the plane that intersects the plane It may be an intersection line.

投射面における平面とその平面と交差する面との交差線が、その投射面となる壁面とその壁面と交差する天井および床面との間の水平方向の2本の交差線であり、撮像画像解析傾斜角度算定部は、固体撮像素子に画像を投射する撮像レンズの中心を原点とし、その撮像レンズの光軸をZ軸とし、Z軸を含む鉛直面と撮像面との交線をY軸とし、Z軸を含む水平面と撮像面との交線をX軸として算出した左右の枠線と交差線の交点との位置情報である3次元座標に対する、3次元の座標回転式の適用によって、プロジェクタの投影装置の光軸と投射面との水平および垂直方向の傾斜角度を算定してもよい。   The intersecting line between the plane on the projection plane and the plane intersecting with the plane is the two intersecting lines in the horizontal direction between the wall surface serving as the projection plane and the ceiling and floor surface intersecting with the wall surface. The analysis inclination angle calculation unit uses the center of the imaging lens that projects an image on the solid-state imaging device as the origin, the optical axis of the imaging lens as the Z axis, and the intersection line between the vertical plane including the Z axis and the imaging plane as the Y axis By applying a three-dimensional coordinate rotation formula to the three-dimensional coordinates that are position information of the intersection of the left and right frame lines and the intersection line calculated with the intersection line between the horizontal plane including the Z axis and the imaging plane as the X axis, You may calculate the inclination angle of the horizontal and vertical direction of the optical axis of a projector of a projector, and a projection surface.

その場合、撮像画像解析傾斜角度算定部は、算出された左右の枠線と交差線の交点とのX、Y、Zの3次元座標に基づいてY軸を中心とした水平方向およびX軸を中心とした鉛直方向の回転を行ったと仮定した場合の交差点の交点の座標の変化情報を、回転角と、原点から撮像面までの垂直距離と、撮像レンズの撮像面に対する画角とに基づいて取得し、得られた4個の交点のX、Y、Z座標から2本の交差線が平行であると判定される場合にY軸を中心とした水平方向の回転角を光軸と投射面との水平方向の傾斜角度と判定し、X軸を中心とした鉛直方向の回転角から光軸と投射面との鉛直方向の傾斜角度を算出してもよい。   In that case, the captured image analysis inclination angle calculation unit calculates the horizontal direction and the X axis centered on the Y axis based on the calculated three-dimensional coordinates of X, Y, and Z of the left and right frame lines and the intersection of the intersection lines. Based on the rotation angle, the vertical distance from the origin to the imaging surface, and the angle of view of the imaging lens with respect to the imaging surface, assuming that the vertical rotation around the center is assumed The horizontal rotation angle about the Y axis is used as the optical axis and the projection plane when it is determined that the two intersecting lines are parallel from the X, Y, and Z coordinates of the obtained four intersections. And the vertical inclination angle between the optical axis and the projection surface may be calculated from the vertical rotation angle about the X axis.

本発明の台形歪み補正装置を備えたプロジェクタは、
上述のプロジェクタの台形歪み補正装置と、その台形歪み補正装置が算定した傾斜角度に従って投影装置の表示部の出力映像を制御することにより投射面の画像における台形の歪みを補正する画像制御部とを有する。
A projector equipped with the trapezoidal distortion correction device of the present invention,
A trapezoidal distortion correction device for a projector as described above, and an image control unit that corrects trapezoidal distortion in an image on a projection surface by controlling an output image of a display unit of the projection device according to an inclination angle calculated by the trapezoidal distortion correction device. Have.

本発明は、投射面の壁面とそれに交差する面との交差線の撮像画像を基に、2本の交差線と撮像範囲の枠線との交点の位置情報である3次元座標を用いて演算によってプロジェクタの投射光軸に対する投射面の傾斜角度を算出するので、投射面の壁面とそれに交差する面との交差線の撮像画像が取得できれば簡単な機構で映像の台形歪みを補正することができるという効果がある。   The present invention calculates based on the captured image of the intersection line between the wall surface of the projection surface and the surface intersecting with it using the three-dimensional coordinates that are the position information of the intersection of the two intersection lines and the frame line of the imaging range. Since the angle of inclination of the projection surface with respect to the projection optical axis of the projector is calculated by the above, if a captured image of the intersection line between the wall surface of the projection surface and the surface intersecting with it can be acquired, the trapezoidal distortion of the image can be corrected with a simple mechanism. There is an effect.

次に、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態のプロジェクタの台形歪み補正装置を備えているプロジェクタの模式的ブロック構成図であり、図2は本発明の第1の実施の形態の台形歪み補正装置を備えたプロジェクタの模式図であり(a)は正面図、(b)は側面図、(c)は上面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram of a projector including a projector keystone distortion correction apparatus according to a first embodiment of the present invention, and FIG. 2 is a keystone distortion correction apparatus according to the first embodiment of the present invention. 1A is a front view, FIG. 2B is a side view, and FIG. 2C is a top view.

プロジェクタ10は、投射レンズ21と表示部22とを有する投影装置20と、表示部22の映像を制御する画像制御部23と、台形歪み補正装置30と、全体の動作を制御する中央処理装置60とを備える。台形歪み補正装置30が算定した傾斜角度に従って画像制御部23が表示部22の出力映像を制御することにより投射面70の映像の歪みが補正される。映像の歪みの補正は中央処理装置60によって所定の手順で自動的に行われる。   The projector 10 includes a projection device 20 having a projection lens 21 and a display unit 22, an image control unit 23 that controls the image of the display unit 22, a trapezoidal distortion correction device 30, and a central processing unit 60 that controls the overall operation. With. The image control unit 23 controls the output image of the display unit 22 according to the tilt angle calculated by the trapezoidal distortion correction device 30, thereby correcting the image distortion on the projection surface 70. Image distortion correction is automatically performed by the central processing unit 60 in a predetermined procedure.

台形歪み補正装置30は、プロジェクタ10の前面に設けられ所定の方向の光軸を有する撮像レンズ51と、撮像レンズ51を通過する光を受光して撮像画像の所望の位置情報を出力するようにプロジェクタ10の内部に撮像レンズ51の光軸と垂直になるように設けられて撮像面が所定の形状の撮像範囲となるように枠線が周囲に設けられた固体撮像素子53と、固体撮像素子53における画像の位置情報の解析からプロジェクタ10の傾斜角度を算定する撮像画像解析傾斜角度算定部54とを備えている。   The trapezoidal distortion correction device 30 is provided on the front surface of the projector 10 and has an imaging lens 51 having an optical axis in a predetermined direction, and receives light passing through the imaging lens 51 and outputs desired position information of the captured image. A solid-state imaging device 53 provided inside the projector 10 so as to be perpendicular to the optical axis of the imaging lens 51 and provided with a frame line around the imaging surface in a predetermined shape; and a solid-state imaging device And a captured image analysis tilt angle calculation unit 54 that calculates the tilt angle of the projector 10 from the analysis of the position information of the image at 53.

本発明では、投射面70となる壁面とその壁面と交差する天井あるいは床面との水平方向の少なくとも2本の交差線の固体撮像素子53の画面上の位置情報に基づいて、プロジェクタ10の投影装置20の投射光軸27と投射面70との水平方向、鉛直方向の傾斜角度を算定することを特徴とする。また、投射面70となる壁面とその壁面と交差する壁面との鉛直方向の少なくとも2本の交差線の固体撮像素子53の画面上の位置情報に基づいて、プロジェクタ10の投影装置20の投射光軸27と投射面70との傾斜角度を算定することにも適用できる。   In the present invention, the projection of the projector 10 is performed based on positional information on the screen of the solid-state imaging device 53 of at least two intersecting lines in the horizontal direction between the wall surface serving as the projection surface 70 and the ceiling or floor surface intersecting the wall surface. The tilt angle in the horizontal direction and the vertical direction between the projection optical axis 27 and the projection surface 70 of the apparatus 20 is calculated. Further, based on the positional information on the screen of the solid-state imaging device 53 of at least two intersecting lines in the vertical direction between the wall surface serving as the projection surface 70 and the wall surface intersecting with the wall surface, the projection light of the projection device 20 of the projector 10 is projected. The present invention can also be applied to calculating the inclination angle between the shaft 27 and the projection surface 70.

固体撮像素子53の画面上の壁面の交差線の位置情報の取得には2つの方法がある。第1の方法では、プロジェクタ10の正面側の投射面70を含む反射面から撮像レンズ51を通過して固体撮像素子53に入力した全反射光の撮像画面上の例えば照度の変化線を境界線として取得する。この場合明確な境界線を取得するためには適宜フイルタ処理を行うなどの操作が必要となることが多い。   There are two methods for acquiring the position information of the intersecting line of the wall surface on the screen of the solid-state image sensor 53. In the first method, for example, a change line of illuminance on the imaging screen of total reflection light that has passed through the imaging lens 51 and input to the solid-state imaging element 53 from a reflection surface including the projection surface 70 on the front side of the projector 10 is a boundary line. Get as. In this case, in order to obtain a clear boundary line, it is often necessary to perform an operation such as appropriately performing a filter process.

第2の方法は投射範囲が十分に大きく天井や床にかかる場合の方法であり、投射面70を含む前方の面に投影装置20より垂直方向および水平方向のいずれかの2本以上の直線のテストパターンを投射し、テストパターンからの反射光の撮像画面上に現れる屈折点を取得して、その屈折点を結んだ直線を算出し、その直線を投射面となる平面とその平面と交差する面との交差線とする、
図3はプロジェクタから壁面および天井に鉛直方向の複数のテストパターンを投射した状態を示す模式図であり、(a)は側面図、(b)は背面図であり、図4はテストパターンの変化を示す模式図であり、(a)は投射されたテストパターン、(b)は固体撮像素子に入射したテストパターンであり、図5は入射したテストパターンから壁面の交差線を検出する方法を説明するための模式図であり、(a)は想定される交差線の状態、(b)は入射したテストパターンから壁面の交差線を検出する原理を説明する模式図である。
The second method is a method in the case where the projection range is sufficiently large and covers the ceiling or floor. Two or more straight lines in either the vertical direction or the horizontal direction are projected on the front surface including the projection surface 70 from the projection device 20. A test pattern is projected, the refraction point appearing on the imaging screen of the reflected light from the test pattern is obtained, a straight line connecting the refraction points is calculated, and the straight line intersects the plane that becomes the projection surface and the plane The intersection line with the surface,
FIG. 3 is a schematic diagram showing a state in which a plurality of vertical test patterns are projected from the projector onto the wall surface and ceiling, (a) is a side view, (b) is a rear view, and FIG. 4 is a test pattern change. (A) is a projected test pattern, (b) is a test pattern incident on a solid-state image sensor, and FIG. 5 explains a method for detecting a crossing line on a wall surface from the incident test pattern. (A) is the state of the assumed intersection line, (b) is a schematic diagram explaining the principle which detects the intersection line of a wall surface from the incident test pattern.

図3(a)のように投射面70となる壁面75とその壁面75と交差する天井76に、図4(a)に示す複数の鉛直方向のテストパターン90を投射すると、壁面75が投射装置20の投射光軸27に対して傾斜しているので、壁面75から天井76にかけ屈折したテストパターン90の映像が生じ、その反射光がプロジェクタ10の撮像レンズ51を透過して固体撮像素子53の撮像画面80に図4(b)に示すテストパターン画像91として入射する。テストパターン画像91は図に示されるような直線の交点99を有している。   When a plurality of vertical test patterns 90 shown in FIG. 4A are projected onto a wall surface 75 that becomes the projection surface 70 and a ceiling 76 that intersects the wall surface 75 as shown in FIG. 20 is inclined with respect to the projection optical axis 27, so that an image of the test pattern 90 refracted from the wall surface 75 to the ceiling 76 is generated, and the reflected light passes through the imaging lens 51 of the projector 10 and passes through the imaging element 51 of the projector 10. It enters the imaging screen 80 as a test pattern image 91 shown in FIG. The test pattern image 91 has a straight intersection 99 as shown in the figure.

この複数の直線の交点99を結んだものが図5(a)に一点差線で示す交差線92である。図ではテストパターン90は5本示されているが、2本であっても交差線92は算定できる。直線の交点99の求め方は図5(b)に示すように、テストパターン画像91の上側の2点の検出点93、94の座標を検出点93、94の画素位置から求めて第1の直線方程式により直線95を求め、テストパターン画像91の下側の2点の検出点96、97の座標を検出点96、97の画素位置から求めて第2の直線方程式により直線98を求め、第1の直線方程式と第2の直線方程式の交点として直線の交点99を求めてもよい。直線の交点99が2点得られるとそれぞれの座標から交差線92の第3の直線方程式を求めることができる。直線の交点99が複数ある場合はそれぞれの座標から最小二乗法を用いて第3の直線方程式を求めるとよい。   An intersection line 92 shown by a one-point difference line in FIG. 5A is obtained by connecting the intersection points 99 of the plurality of straight lines. Although five test patterns 90 are shown in the figure, the intersection line 92 can be calculated even if there are two test patterns 90. As shown in FIG. 5 (b), the straight line intersection 99 is obtained by obtaining the coordinates of the two detection points 93 and 94 on the upper side of the test pattern image 91 from the pixel positions of the detection points 93 and 94. A straight line 95 is obtained by a linear equation, the coordinates of two detection points 96 and 97 on the lower side of the test pattern image 91 are obtained from the pixel positions of the detection points 96 and 97, and a straight line 98 is obtained by a second linear equation. A straight line intersection 99 may be obtained as the intersection of the first linear equation and the second linear equation. When two intersection points 99 of the straight line are obtained, the third linear equation of the intersection line 92 can be obtained from the respective coordinates. If there are a plurality of straight line intersections 99, the third straight line equation may be obtained from each coordinate using the least square method.

テストパターン画像91の第1および第2の直線方程式の算出が撮像されたテストパターン画像91の2点以上の座標を基に行なわれるので、テストパターン90は連続した直線でなく、複数の輝点が直線上に並んだものとして、撮像された輝点の座標から直線方程式を求めてもよく、その場合輝点が2点の場合は2点を通る直線方程式、2点より多い場合は最小二乗法などの近似法を用いることができる。   Since the calculation of the first and second linear equations of the test pattern image 91 is performed based on two or more coordinates of the captured test pattern image 91, the test pattern 90 is not a continuous straight line, but a plurality of bright spots. May be obtained from the coordinates of the imaged bright spots, and in that case, if there are two bright spots, a linear equation that passes through two points, and if there are more than two, the minimum two An approximation method such as multiplication can be used.

ここでは説明を簡略にするために1本の交差線の求め方について説明したが、上下2本の交差線を求める場合には投射範囲に壁面75と天井および床面との交差線が入るようにテストパターン90を投射して上下2ヶ所の直線の交点99を得て、それぞれの交点99について交差線92を求める。   Here, in order to simplify the description, the method of obtaining one intersection line has been described. However, when obtaining two intersection lines, upper and lower, the intersection line between the wall surface 75 and the ceiling and the floor surface enters the projection range. The test pattern 90 is projected to obtain intersections 99 of two straight lines at the top and bottom, and intersecting lines 92 are obtained for the respective intersections 99.

固体撮像素子53の撮像画面80から、同方向の2本の交差線画像あるいは算出された交差線92が求められると、撮像画像解析傾斜角度算定部54は、求められた交差線92と撮像面の撮像範囲81の枠線82との交点の位置を3次元座標として取得し、既知の撮像レンズ51と撮像面の距離と、撮像範囲81の枠線82に対する撮像レンズ51の画角とから投射面70となる壁面と撮像レンズ51の光軸に垂直な面とのなす傾斜角度を算出する。   When two intersecting line images in the same direction or the calculated intersecting line 92 is obtained from the image capturing screen 80 of the solid-state image sensor 53, the captured image analysis inclination angle calculating unit 54 determines the obtained intersecting line 92 and the image capturing surface. The position of the intersection with the frame line 82 of the imaging range 81 is acquired as a three-dimensional coordinate, and is projected from the distance between the known imaging lens 51 and the imaging surface and the angle of view of the imaging lens 51 with respect to the frame line 82 of the imaging range 81. An inclination angle formed by the wall surface to be the surface 70 and a surface perpendicular to the optical axis of the imaging lens 51 is calculated.

本発明では壁面と天井および床面との同方向の2本の交差線、あるいは壁面と左右の壁面との同方向の2本の交差線を用いて壁面とプロジェクタ10との傾斜角度を算出するが、壁面と天井および床面との2本の同方向の交差線を用いる場合を主として説明する。壁面と左右の壁面との同方向の2本の交差線を用いる場合はそれを90度回転させると考えればよい。   In the present invention, the inclination angle between the wall surface and the projector 10 is calculated using two intersecting lines in the same direction between the wall surface and the ceiling and the floor surface, or two intersecting lines in the same direction between the wall surface and the left and right wall surfaces. However, the case where two intersecting lines in the same direction of the wall surface, the ceiling, and the floor surface are used will be mainly described. If two intersecting lines in the same direction between the wall surface and the left and right wall surfaces are used, it may be considered that they are rotated by 90 degrees.

図6は撮像範囲内に壁と天井と床面とが撮像された場合の個体撮像素子の撮像画像の模式図であり、図7は交差線と撮像画面の枠線との交点の演算のための座標の初期設定を説明するための模式図であり、図8は後述の仮想スクリーン上の初期写像における交差線と撮像画面の枠線との交点の座標を示す模式図であり、図9はy軸まわりの回転を実施後の仮想スクリーン上の交差線と撮像画面の枠線との交点の座標を示す模式図であり、図10はさらにx軸まわりの回転を実施後の仮想スクリーン上の交差線と撮像画面の枠線との交点の座標を示す模式図である。   FIG. 6 is a schematic diagram of a captured image of an individual image sensor when a wall, a ceiling, and a floor surface are imaged within an imaging range, and FIG. 7 is for calculating an intersection of an intersection line and a frame line of an imaging screen. FIG. 8 is a schematic diagram for explaining the initial setting of the coordinates of FIG. 8. FIG. 8 is a schematic diagram showing the coordinates of the intersection of the intersection line in the initial mapping on the virtual screen described later and the frame line of the imaging screen. FIG. 10 is a schematic diagram showing the coordinates of the intersection point of the intersection line on the virtual screen after the rotation around the y axis and the frame line of the imaging screen, and FIG. 10 further shows the coordinates on the virtual screen after the rotation around the x axis. It is a schematic diagram which shows the coordinate of the intersection of an intersection line and the frame line of an imaging screen.

図6に個体撮像素子53を搭載したプロジェクタ10を斜めに投射した際に、個体撮像素子53で得られる画像が示されている。投影装置20から投射面70に投射された投射画像の個体撮像素子53上での表示エリア71は、個体撮像素子53と投射レンズ21との距離が投射距離(プロジェクタ10と投射面70との距離)に比べて十分小さければほぼ長方形となる。プロジェクタ10から投射される画像は通常投射レンズ中心線に対して垂直方向上向きに打ち上げ角度を設けて投射されるので表示エリア71は図の撮像画面80の中心点72よりも上方(実際は下方)に離れて表示されている。個体撮像素子53の撮像画面80には投射画像の表示エリア71よりも広い範囲が撮像されており壁面75と天井76との交差線78、壁面75と床面77との交差線79も撮像されている。撮像画面80は個体撮像素子53による撮像範囲全体を示し枠線82で囲まれている。ここには天井76と壁面75との交差線78、床面77と壁面75との交差線である79が示されている。   FIG. 6 shows an image obtained by the individual image sensor 53 when the projector 10 equipped with the individual image sensor 53 is projected obliquely. In the display area 71 of the projection image projected from the projection device 20 onto the projection surface 70 on the individual imaging element 53, the distance between the individual imaging element 53 and the projection lens 21 is the projection distance (the distance between the projector 10 and the projection plane 70). If it is small enough compared to), it becomes almost rectangular. Since the image projected from the projector 10 is usually projected with a launch angle upward in the vertical direction with respect to the center line of the projection lens, the display area 71 is above (actually below) the center point 72 of the imaging screen 80 in the figure. Are displayed away. A range wider than the display area 71 of the projected image is imaged on the imaging screen 80 of the individual imaging element 53, and an intersection line 78 between the wall surface 75 and the ceiling 76 and an intersection line 79 between the wall surface 75 and the floor surface 77 are also imaged. ing. The imaging screen 80 shows the entire imaging range by the individual imaging element 53 and is surrounded by a frame line 82. Here, an intersection line 78 between the ceiling 76 and the wall surface 75 and an intersection line 79 between the floor surface 77 and the wall surface 75 are shown.

図6は個体撮像素子53上のイメージであり、撮像レンズ51の中心と撮像画像80の中心72とを結ぶ線に対して鉛直な平面(以下仮想スクリーン74と称す)への写像と考えることができる。天井76と壁面75との交差線78、床面77と壁面75との交差線79は壁面75に対して垂直方向から見た場合は平行であることを前提として、図6の撮像された画像である仮想スクリーン74上の写像を基として計算によってプロジェクタ10と壁面75との水平、垂直の角度を求めて、その角度に基づいて画像の歪みの補正を行う方法について説明する。   FIG. 6 shows an image on the individual imaging device 53, which can be considered as a mapping onto a plane (hereinafter referred to as a virtual screen 74) perpendicular to a line connecting the center of the imaging lens 51 and the center 72 of the captured image 80. it can. The captured image of FIG. 6 is assumed on the assumption that the intersection line 78 between the ceiling 76 and the wall surface 75 and the intersection line 79 between the floor surface 77 and the wall surface 75 are parallel to the wall surface 75 when viewed from the vertical direction. A method of obtaining horizontal and vertical angles between the projector 10 and the wall surface 75 by calculation based on the mapping on the virtual screen 74 and correcting the distortion of the image based on the angles will be described.

まず、仮想スクリーン74上の写像に対して図7のように3次元座標を決定する。図7の撮像レンズ中心52は、3次元座標回転計算時の原点である。撮像レンズ中心52と仮想スクリーン74上の写像の中心点73を結ぶ線の延長方向をz軸、仮想スクリーン74の写像の垂直方向をy軸、y軸廻りの反時計廻りの回転角度をθ、仮想スクリーン74上の写像の水平方向をx軸、x軸廻りの反時計廻りの回転角度をψとする。図6の個体撮像素子53の撮像範囲80は必ずしも個体撮像素子53の物理的な限界である必要はなく、個体撮像素子53の解像度や測定誤差等を考慮して適当な大きさの長方形として決めることができる。   First, three-dimensional coordinates are determined for the mapping on the virtual screen 74 as shown in FIG. The imaging lens center 52 in FIG. 7 is the origin at the time of three-dimensional coordinate rotation calculation. The extension direction of the line connecting the imaging lens center 52 and the center point 73 of the mapping on the virtual screen 74 is the z axis, the vertical direction of the mapping of the virtual screen 74 is the y axis, and the counterclockwise rotation angle around the y axis is θ, The horizontal direction of the mapping on the virtual screen 74 is taken as the x axis, and the counterclockwise rotation angle around the x axis is taken as ψ. The imaging range 80 of the individual imaging element 53 in FIG. 6 is not necessarily limited to the physical limit of the individual imaging element 53, and is determined as a rectangle having an appropriate size in consideration of the resolution of the individual imaging element 53, measurement errors, and the like. be able to.

図8には図6で撮像した画像から求められた交差線78、交差線79と撮像範囲の枠線82との交点A、B、C、Dが示されている。図8は個体撮像素子53上の画像であるため、これら4つの交点のxy平面における座標を求めることができる。また、撮像レンズ51の画角は既知であるため撮像レンズ中心52から仮想スクリーン74までの距離とこれら4つの交点の座標は比例関係にある。もちろん交差線78、79の定義は両端の2点に限らず複数点でもよいし直線方程式で定義されていてもよい。   FIG. 8 shows intersections A, B, C, and D of the intersection line 78 and the intersection line 79 obtained from the image captured in FIG. 6 and the frame line 82 of the imaging range. Since FIG. 8 is an image on the individual imaging device 53, the coordinates of these four intersections on the xy plane can be obtained. Further, since the angle of view of the imaging lens 51 is known, the distance from the imaging lens center 52 to the virtual screen 74 and the coordinates of these four intersections are in a proportional relationship. Of course, the definition of the intersecting lines 78 and 79 is not limited to two points at both ends, but may be a plurality of points or may be defined by a linear equation.

次に、プロジェクタ10の傾きに起因する歪みを逆算するために、選択された4つの座標に対して座標の回転演算を行う。ここでプロジェクタ10は水平な台に載っているものとする(つまりz軸まわりの回転はないものとする。)。y軸まわりに反時計回りの角度をθ、y軸まわりの回転後の新しいx軸まわりの反時計回りの角度をψ、個体撮像素子53の仮想スクリーン上の任意の点(X、Y、Z)の座標回転後の座標を(x、y、z)とすると次の式が成り立つ。   Next, in order to reversely calculate the distortion caused by the inclination of the projector 10, a coordinate rotation calculation is performed on the four selected coordinates. Here, it is assumed that the projector 10 is placed on a horizontal base (that is, there is no rotation around the z axis). The counterclockwise angle around the y axis is θ, the counterclockwise angle around the new x axis after rotation around the y axis is ψ, and any point (X, Y, Z on the virtual screen of the individual image sensor 53 ) If the coordinates after the coordinate rotation are (x, y, z), the following equation is established.

Figure 0003914938
Figure 0003914938

すなわち、
x=Xcosθ+Ysinθsinψ+Zsinθcosψ
y=Ycosψ−Zsinψ
z=−Xsinθ+Ycosθsinψ+Zcosθcosψ
となる。撮像レンズ中心52から仮想スクリーン74までの距離をZ0とすると、4つの点の元の座標はA(X1、Y1、Z0)、B(X2、Y2、Z0)、C(X3、Y3、Z0)、D(X4、Y4、Z0)と表すことができる。これらを上記の式に代入することによって、それぞれ座標回転後の座標A(x1、y1、z1)、B(x2、y2、z2)、C(x3、y3、z3)、D(x4、y4、z4)を求めることができる。さらにz1ないしz4をZ0に正規化することによって座標回転後の画像を仮想スクリーン74上に写像として表すことができる。このようにZ0によって正規化された座標を(Nx、Ny)とすると、
Nx=x/z×Z0 Ny=y/z×Z0
となる。
That is,
x = X cos θ + Y sin θ sin φ + Z sin θ cos φ
y = Ycosψ−Zsinψ
z = −X sin θ + Y cos θ sin ψ + Z cos θ cos ψ
It becomes. If the distance from the imaging lens center 52 to the virtual screen 74 is Z0, the original coordinates of the four points are A (X1, Y1, Z0), B (X2, Y2, Z0), C (X3, Y3, Z0). , D (X4, Y4, Z0). By substituting these into the above equation, coordinates A (x1, y1, z1), B (x2, y2, z2), C (x3, y3, z3), D (x4, y4, z4) can be determined. Further, by normalizing z1 to z4 to Z0, the image after the coordinate rotation can be represented as a mapping on the virtual screen 74. Assuming that the coordinates normalized by Z0 are (Nx, Ny),
Nx = x / z × Z0 Ny = y / z × Z0
It becomes.

次に、図6で得られた交差線78、79が座標回転により平行となるθ、ψを求める手順を説明する。図8での2本の交差線の広がりからy軸まわりの回転方向を決定する。B、D点間のy座標の差と、A、C点間のy座標の差を比較することから判断する。図8の状態ではY4−Y2>Y3−Y1なので2本の交差線は右側に広がっている。これは個体撮像素子53の位置(すなわちプロジェクタの位置)が正面の壁に対して左下側にあることを意味する。この場合、y軸まわりの回転方向は時計回りとなり、x軸まわりの回転方向は時計回りとなる。   Next, a procedure for obtaining θ and ψ in which the intersecting lines 78 and 79 obtained in FIG. 6 become parallel by coordinate rotation will be described. The direction of rotation about the y-axis is determined from the spread of the two intersecting lines in FIG. Judgment is made by comparing the difference in y-coordinate between points B and D with the difference in y-coordinate between points A and C. In the state of FIG. 8, since Y4-Y2> Y3-Y1, the two intersecting lines spread to the right. This means that the position of the individual imaging element 53 (that is, the position of the projector) is on the lower left side with respect to the front wall. In this case, the rotation direction around the y axis is clockwise, and the rotation direction around the x axis is clockwise.

まず、y軸まわりの回転を行う。座標回転後にZ0で正規化し、仮想スクリーン74への写像に変換した4つの交点A’、B’、C’、D’の仮想スクリーン平面上の座標はそれぞれ(Nx1、Ny1)、(Nx2、Ny2)、(Nx3、Ny3)、(Nx4、Ny4)として求めることができる。ここで、
Δy1=|(Ny3−Ny1)−(Ny4−Ny2)|
としてΔy1が最小となるようにθを変更する。図8の場合は回転方向が時計回りなので回転角をゼロから減じていくことになる。Δy1が最小になったら次にy軸の回転による新たなx軸まわりの回転を行う。図9にΔy1が最小になったときの仮想スクリーン74への写像を示す。ここで、
Δy2=|Ny1−Ny2|
Δy3=|Ny3−Ny4|
とし、|Δy2−Δy3|が最小となるまでψをゼロから減じていく。|Δy2−Δy3|が最小となったときの4つの交点の仮想スクリーン74への写像A”、B”、C”、D”を図10に示す。2本の線分CDとABが地表に対してほぼ平行となっていることが分かる。以上のような手順で求めた角度θとψは、撮像レンズ中心52から正面の壁を見たときの角度であり、個体撮像素子53とプロジェクタ10の投射レンズ21との距離がプロジェクタ10と壁との距離よりも十分短ければ角度θとψはプロジェクタの傾斜角度と強い相関があると考えることができる。特にy軸まわりの回転角度であるθは個体撮像素子53がプロジェクタ10の投射レンズ21の投射光軸27と垂直に取り付けられていた場合はそのままプロジェクタ10の傾斜角となる。
First, rotation about the y-axis is performed. The coordinates on the virtual screen plane of the four intersections A ′, B ′, C ′, and D ′ normalized by Z0 after the coordinate rotation and converted into the mapping to the virtual screen 74 are (Nx1, Ny1), (Nx2, Ny2), respectively. ), (Nx3, Ny3), (Nx4, Ny4). here,
Δy1 = | (Ny3-Ny1) − (Ny4-Ny2) |
Then, θ is changed so that Δy1 is minimized. In the case of FIG. 8, since the rotation direction is clockwise, the rotation angle is reduced from zero. When Δy1 becomes minimum, a new rotation around the x-axis is performed by rotating the y-axis. FIG. 9 shows the mapping onto the virtual screen 74 when Δy1 is minimized. here,
Δy2 = | Ny1-Ny2 |
Δy3 = | Ny3-Ny4 |
And ψ is reduced from zero until | Δy2−Δy3 | becomes minimum. FIG. 10 shows mappings A ″, B ″, C ″, and D ″ of the four intersections onto the virtual screen 74 when | Δy2−Δy3 | becomes the minimum. It can be seen that the two line segments CD and AB are substantially parallel to the ground surface. The angles θ and ψ obtained by the above procedure are angles when the front wall is viewed from the imaging lens center 52, and the distance between the individual imaging element 53 and the projection lens 21 of the projector 10 is the projector 10 and the wall. If the angle θ and ψ are sufficiently shorter than the distance to the projector, it can be considered that there is a strong correlation between the tilt angle of the projector. In particular, θ, which is the rotation angle around the y-axis, becomes the tilt angle of the projector 10 as it is when the solid-state image sensor 53 is mounted perpendicular to the projection optical axis 27 of the projection lens 21 of the projector 10.

以上の計算の過程で、仮想スクリーン74への写像のx座標は計算に関与していないことから個体撮像素子53がプロジェクタ10の投射レンズ21の投射光軸27に対して上向きに傾いて取り付けられていたとしてもプロジェクタの姿勢を求めることができることを意味している。例えば個体撮像素子53がプロジェクタ10の投射光軸27に対してα傾いていた場合は、上述の手順で求めたθから個体撮像素子53の打ち上げ角度αを引いたθ−αがプロジェクタ自体の傾きを表す。   In the process of the above calculation, since the x coordinate of the mapping to the virtual screen 74 is not involved in the calculation, the individual image pickup device 53 is attached to be inclined upward with respect to the projection optical axis 27 of the projection lens 21 of the projector 10. This means that the attitude of the projector can be obtained even if it is. For example, when the individual image pickup device 53 is inclined by α with respect to the projection optical axis 27 of the projector 10, θ−α obtained by subtracting the launch angle α of the individual image pickup device 53 from θ obtained by the above procedure is the inclination of the projector itself. Represents.

撮像レンズ中心52から壁への傾斜角度とプロジェクタ自体の壁への傾斜角度がほぼ等しいと考えられるのでθとψ、プロジェクタの打ち上げ角度α、レンズの投射倍率を基に斜めに投射したことに起因する歪みを補正することができる。前述の各パラメータから直接的に求めてもよいし、θとψを変数とする2次元ルックアップテーブルを作成しておいて歪み補正に必要なパラメータを参照してもよい。   Because the tilt angle from the imaging lens center 52 to the wall and the tilt angle to the wall of the projector itself are considered to be approximately equal, it is caused by projecting obliquely based on θ and ψ, the launch angle α of the projector, and the projection magnification of the lens Distortion can be corrected. It may be obtained directly from the above-mentioned parameters, or a two-dimensional lookup table having θ and ψ as variables may be created and parameters necessary for distortion correction may be referred to.

同様に垂直の2本の交差線を検出することができた場合は、上述の手順のうち、写像のx座標について同様の演算を施すことによってθとψを求めることができる。   Similarly, when two perpendicular intersecting lines can be detected, θ and ψ can be obtained by performing the same operation on the x coordinate of the mapping in the above procedure.

画像制御部23は歪みを補正するように傾斜角度に基づいて表示部22の出力映像を制御する。   The image control unit 23 controls the output video of the display unit 22 based on the tilt angle so as to correct the distortion.

プロジェクタ10は液晶プロジェクタでもDLP(登録商標)(デジタルライトプロセッシング)方式のプロジェクタであっても本発明は適用でき、液晶プロジェクタの場合の表示部22は液晶表示部となり、DLP方式のプロジェクタの場合の表示部22はDMD(デジタルマイクロミラーデバイス)表示部、カラーホイール、光源を備える。   The present invention can be applied regardless of whether the projector 10 is a liquid crystal projector or a DLP (registered trademark) (digital light processing) type projector, and the display unit 22 in the case of a liquid crystal projector is a liquid crystal display unit. The display unit 22 includes a DMD (digital micromirror device) display unit, a color wheel, and a light source.

図11は第2の方法で交差線を算出する場合における固体撮像素子53の反射光の入射位置情報から交差線位置情報を3次元座標として取得し、座標の回転演算によって傾斜角度を算出して表示部22の出力映像を修正する過程を示す模式的流れ図である。   In FIG. 11, when the intersection line is calculated by the second method, the intersection line position information is acquired as the three-dimensional coordinates from the incident position information of the reflected light of the solid-state imaging device 53, and the inclination angle is calculated by rotating the coordinates. 5 is a schematic flowchart showing a process of correcting an output video of the display unit 22.

撮像画像解析傾斜角度算定部54が、投射面70の2本以上の同一方向の直線テストパターンの反射光の固体撮像素子53における入射位置を取得し(ステップS11)、それぞれのテストパターン画像の屈折点(直線の交点99)を算出し(ステップS12)、屈折点を結ぶ直線を壁面の交差線92として算出し(ステップS13)、交差線92と撮像画面80の枠線82との交点の位置情報を3次元座標として取得し(ステップS14)、x軸まわりとy軸まわりに座標の回転演算を実施し(ステップS15)2本の交差線の広がりからy軸まわりの回転方向を決定し(ステップS16)、y軸方向の交点間の距離が左右で同一となるようにy軸まわりに回転し(ステップS17)、水平方向の交点間のy軸方向の座標が一致するようにx軸まわりに回転し(ステップS18)、y軸まわりの回転角θとx軸まわりの回転角ψから壁面と光軸に垂直な面との傾斜角度を算出する(ステップS19)。   The captured image analysis inclination angle calculation unit 54 acquires the incident position of the reflected light of the two or more linear test patterns in the same direction on the projection surface 70 in the solid-state image sensor 53 (step S11), and refracts each test pattern image. A point (intersection 99 of the straight line) is calculated (step S12), a straight line connecting the refraction points is calculated as the intersection line 92 of the wall surface (step S13), and the position of the intersection of the intersection line 92 and the frame line 82 of the imaging screen 80 is calculated. Information is acquired as three-dimensional coordinates (step S14), and coordinate rotation is performed around the x-axis and the y-axis (step S15), and the rotation direction around the y-axis is determined from the spread of two intersecting lines ( Step S16) Rotates around the y axis so that the distance between the intersections in the y-axis direction is the same on the left and right (step S17), so that the coordinates in the y-axis direction between the intersections in the horizontal direction coincide. Rotates about the axis (step S18), and calculates the inclination angle between a surface perpendicular from the rotation angle ψ to the wall surface and the optical axis around the rotation angle θ and the x-axis around the y-axis (step S19).

ステップS19で生成した傾斜角度を受けて画像制御部23はLSI制御パラメータを生成し(ステップS21)、プロジェクタ用画像処理LSIを制御することにより(ステップS22)、入力映像24が修正されて表示部22で出力映像25となる。この出力映像25は投射面70に投射されると入力映像24と相似の映像となる。   In response to the tilt angle generated in step S19, the image control unit 23 generates an LSI control parameter (step S21), and controls the projector image processing LSI (step S22), whereby the input video 24 is corrected and the display unit is displayed. 22 becomes an output image 25. When the output video 25 is projected onto the projection surface 70, it becomes a video similar to the input video 24.

本発明の第1の実施の形態のプロジェクタの台形歪み補正装置を備えているプロジェクタの模式的ブロック構成図である。1 is a schematic block configuration diagram of a projector provided with a trapezoidal distortion correction device for a projector according to a first embodiment of the present invention. 本発明の第1の実施の形態の台形歪み補正装置を備えたプロジェクタの模式図である。(a)は正面図である。(b)は側面図である。(c)は上面図である。1 is a schematic diagram of a projector including a trapezoidal distortion correction apparatus according to a first embodiment of the present invention. (A) is a front view. (B) is a side view. (C) is a top view. プロジェクタから壁面および天井に鉛直方向の複数のテストパターンを投射した状態を示す模式図である。(a)は側面図である。(b)は背面図である。It is a schematic diagram which shows the state which projected the several test pattern of the perpendicular direction on the wall surface and ceiling from the projector. (A) is a side view. (B) is a rear view. テストパターンの変化を示す模式図である。(a)は投射されたテストパターンである。(b)は固体撮像素子に入射したテストパターンである。It is a schematic diagram which shows the change of a test pattern. (A) is a projected test pattern. (B) is a test pattern incident on the solid-state imaging device. 入射したテストパターンから壁面の交差線を検出する方法を説明するための模式図である。(a)は想定される交差線の状態である。(b)は入射したテストパターンから壁面の交差線を検出する原理を説明する模式図である。It is a schematic diagram for demonstrating the method to detect the crossing line of a wall surface from the incident test pattern. (A) is the state of the assumed intersection line. (B) is a schematic diagram explaining the principle which detects the crossing line of a wall surface from the incident test pattern. 撮像範囲内に壁と天井と床面とが撮像された場合の個体撮像素子の撮像画像の模式図である。It is a schematic diagram of the picked-up image of an individual image pick-up element when a wall, a ceiling, and a floor surface are imaged within the imaging range. 交差線と撮像画面の枠線との交点の演算のための座標の初期設定を説明するための模式図である。It is a schematic diagram for demonstrating the initial setting of the coordinate for the calculation of the intersection of an intersection line and the frame line of an imaging screen. 仮想スクリーン上の初期写像における交差線と撮像画面の枠線との交点の座標を示す模式図である。It is a schematic diagram which shows the coordinate of the intersection of the intersection line in the initial mapping on a virtual screen, and the frame line of an imaging screen. y軸まわりの回転を実施後の仮想スクリーン上の交差線と撮像画面の枠線との交点の座標を示す模式図である。It is a schematic diagram which shows the coordinate of the intersection of the intersection line on the virtual screen after implementing rotation around a y-axis, and the frame line of an imaging screen. さらにx軸まわりの回転を実施後の仮想スクリーン上の交差線と撮像画面の枠線との交点の座標を示す模式図である。Furthermore, it is a schematic diagram which shows the coordinate of the intersection of the intersection line on the virtual screen after implementing rotation around x-axis, and the frame line of an imaging screen. 第2の方法で交差線を算出する場合における固体撮像素子の反射光の入射位置情報から交差線位置情報を3次元座標として取得し、座標の回転演算によって傾斜角度を算出して表示部の出力映像を修正する過程を示す模式的流れ図である。When the intersection line is calculated by the second method, the intersection line position information is acquired as the three-dimensional coordinates from the incident position information of the reflected light of the solid-state imaging device, and the tilt angle is calculated by rotating the coordinates to output the display unit. It is a typical flowchart which shows the process which corrects an image | video.

符号の説明Explanation of symbols

10 プロジェクタ
20 投影装置
21 投射レンズ
22 表示部
23 画像制御部
24 入力映像
25 出力映像
27 投射光軸
30 台形歪み補正装置
51 撮像レンズ
52 撮像レンズ中心
53 個体撮像素子
54 撮像画像解析傾斜角度算定部
60 中央処理装置
70 投射面
71 投射画像の表示エリア
72、73 中心点
74 仮想スクリーン
75 壁面
76 天井
77 床面
78、79、92 交差線
80 撮像画面
82 枠線
90 テストパターン
91 テストパターン画像
93、94、96、97 検出点
95、98 方程式による直線
99 直線の交点
S11〜S19、S21、S22 ステップ
DESCRIPTION OF SYMBOLS 10 Projector 20 Projector 21 Projection lens 22 Display part 23 Image control part 24 Input image 25 Output image 27 Projection optical axis 30 Trapezoid distortion correction apparatus 51 Imaging lens 52 Imaging lens center 53 Individual image sensor 54 Captured image analysis inclination angle calculation part 60 Central processing unit 70 Projection surface 71 Projected image display area 72, 73 Center point 74 Virtual screen 75 Wall surface 76 Ceiling 77 Floor surface 78, 79, 92 Cross line 80 Imaging screen 82 Frame 90 Test pattern 91 Test pattern image 93, 94 , 96, 97 Detection point 95, 98 Straight line by equation 99 Straight line intersection S11-S19, S21, S22 Steps

Claims (5)

画像を投射するプロジェクタに設けられているプロジェクタの台形歪み補正装置であって、
前記プロジェクタによる投射画像を含む所定の撮像範囲の撮像面を有する固体撮像素子と、
前記固体撮像素子における撮像画像から、投射面となる平面と該平面と交差する面との交差線を検出し、該交差線と前記撮像範囲を規定する枠線との交点の位置情報に基づいて前記プロジェクタの投影装置の光軸と前記投射面との傾斜角度を算定し、算定された前記傾斜角度を、該傾斜角度に従って前記投影装置の表示部の出力映像を制御することにより前記投射面の映像における台形の歪みを補正する前記プロジェクタの画像制御部に出力する撮像画像解析傾斜角度算定部とを備える、プロジェクタの台形歪み補正装置。
A keystone distortion correction apparatus for a projector provided in a projector for projecting an image,
A solid-state imaging device having an imaging surface of a predetermined imaging range including an image projected by the projector;
An intersection line between a plane serving as a projection plane and a plane intersecting the plane is detected from a captured image in the solid-state imaging device, and based on position information of an intersection between the intersection line and a frame line defining the imaging range. The tilt angle between the optical axis of the projector of the projector and the projection plane is calculated, and the calculated tilt angle is controlled by controlling the output image of the display unit of the projector according to the tilt angle. A trapezoidal distortion correction apparatus for a projector, comprising: a captured image analysis tilt angle calculation unit that outputs to a projector image control unit that corrects a trapezoidal distortion in an image.
前記固体撮像素子の撮像画像からの前記投射面となる平面と該平面と交差する面との交差線の検出が、前記投影装置より前記投射面に投射された垂直方向および水平方向のいずれかの2本以上の直線のテストパターンの前記撮像面上に現れる反射光の屈折点の位置情報を取得して、該屈折点を結んだ直線を算出し、該直線を前記投射面となる平面と該平面と交差する面との交差線とする、請求項1に記載のプロジェクタの台形歪み補正装置。   The detection of the intersecting line between the plane that is the projection plane and the plane that intersects the plane from the captured image of the solid-state imaging element is either the vertical direction or the horizontal direction that is projected from the projection device onto the projection plane. The position information of the refraction point of the reflected light that appears on the imaging surface of the two or more straight line test patterns is obtained, a straight line connecting the refraction points is calculated, the straight line is defined as a plane that becomes the projection surface, and the straight line The trapezoidal distortion correction apparatus for a projector according to claim 1, wherein the trapezoidal distortion correction apparatus is a crossing line with a plane that intersects the plane. 前記投射面における平面と該平面と交差する面との交差線が、該投射面となる壁面と該壁面と交差する天井および床面との間の水平方向の2本の交差線であり、前記撮像画像解析傾斜角度算定部は、前記固体撮像素子に画像を投射する撮像レンズの中心を原点とし、該撮像レンズの光軸をZ軸とし、前記Z軸を含む鉛直面と前記撮像面との交線をY軸とし、前記Z軸を含む水平面と前記撮像面との交線をX軸として算出した前記左右の枠線と前記交差線の交点との位置情報である3次元座標に対する、3次元の座標回転式の適用によって、前記プロジェクタの前記投影装置の光軸と前記投射面との水平および垂直方向の傾斜角度を算定する、請求項1または請求項2に記載のプロジェクタの台形歪み補正装置。   The intersecting line between the plane on the projection surface and the plane intersecting the plane is two intersecting lines in the horizontal direction between the wall surface serving as the projection surface and the ceiling and floor surface intersecting the wall surface, The captured image analysis tilt angle calculation unit uses the center of the imaging lens that projects an image on the solid-state imaging device as the origin, the optical axis of the imaging lens as the Z axis, and a vertical plane including the Z axis and the imaging plane 3 with respect to the three-dimensional coordinates that are the position information of the intersection of the left and right frame lines and the intersection line calculated with the intersection line as the Y axis and the intersection line between the horizontal plane including the Z axis and the imaging surface as the X axis. 3. The keystone distortion correction of a projector according to claim 1, wherein a tilt angle in a horizontal direction and a vertical direction between an optical axis of the projection device of the projector and the projection plane is calculated by applying a coordinate rotation type of the projector. apparatus. 前記撮像画像解析傾斜角度算定部は、算出された前記左右の枠線と前記交差線との交点のX、Y、Zの3次元座標に基づいてY軸を中心とした水平方向およびX軸を中心とした鉛直方向の回転を行ったと仮定した場合の前記交差点の交点の座標の変化情報を、前記回転角と、前記原点から前記撮像面までの垂直距離と、前記撮像レンズの前記撮像面に対する画角とに基づいて取得し、得られた4個の交点のX、Y、Z座標から2本の交差線が平行であると判定される場合にY軸を中心とした水平方向の回転角を前記光軸と前記投射面との水平方向の傾斜角度と判定し、X軸を中心とした鉛直方向の回転角から前記光軸と前記投射面との鉛直方向の傾斜角度を算出する、請求項3に記載のプロジェクタの台形歪み補正装置。   The captured image analysis inclination angle calculation unit calculates a horizontal direction and an X axis centered on the Y axis based on the calculated three-dimensional coordinates of X, Y, and Z of the left and right frame lines and the intersection line. The change information of the coordinates of the intersection of the intersection when it is assumed that the center is rotated in the vertical direction, the rotation angle, the vertical distance from the origin to the imaging surface, and the imaging lens with respect to the imaging surface The horizontal rotation angle about the Y axis when it is determined that the two intersection lines are parallel based on the X, Y, and Z coordinates of the four intersections obtained based on the angle of view. Is determined as a horizontal inclination angle between the optical axis and the projection plane, and a vertical inclination angle between the optical axis and the projection plane is calculated from a vertical rotation angle about the X axis. Item 4. A trapezoidal distortion correction apparatus for a projector according to Item 3. 請求項1から請求項4のずれか1項に記載のプロジェクタの台形歪み補正装置と、該台形歪み補正装置が算定した傾斜角度に従って投影装置の表示部の出力映像を制御することにより前記投射面の画像における台形の歪みを補正する画像制御部とを有する、台形歪み補正装置を備えたプロジェクタ。   5. The projector trapezoidal distortion correction device according to claim 1 and a projection surface by controlling an output image of a display unit of the projection device according to an inclination angle calculated by the trapezoidal distortion correction device. A projector including a trapezoidal distortion correction device, and an image control unit that corrects a trapezoidal distortion in the image.
JP2004135127A 2004-04-30 2004-04-30 Projector keystone distortion correction device and projector including the keystone distortion correction device Expired - Fee Related JP3914938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135127A JP3914938B2 (en) 2004-04-30 2004-04-30 Projector keystone distortion correction device and projector including the keystone distortion correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135127A JP3914938B2 (en) 2004-04-30 2004-04-30 Projector keystone distortion correction device and projector including the keystone distortion correction device

Publications (2)

Publication Number Publication Date
JP2005318355A JP2005318355A (en) 2005-11-10
JP3914938B2 true JP3914938B2 (en) 2007-05-16

Family

ID=35445310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135127A Expired - Fee Related JP3914938B2 (en) 2004-04-30 2004-04-30 Projector keystone distortion correction device and projector including the keystone distortion correction device

Country Status (1)

Country Link
JP (1) JP3914938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960390B2 (en) 2004-05-31 2007-08-15 Necディスプレイソリューションズ株式会社 Projector with trapezoidal distortion correction device
JP5958072B2 (en) * 2012-05-18 2016-07-27 株式会社Jvcケンウッド Projection apparatus and image correction method
CN114339179A (en) * 2021-12-23 2022-04-12 深圳市火乐科技发展有限公司 Projection correction method, projection correction device, storage medium and projection equipment
WO2024029991A1 (en) * 2022-08-05 2024-02-08 삼성전자 주식회사 Electronic device and operating method thereof

Also Published As

Publication number Publication date
JP2005318355A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP3960390B2 (en) Projector with trapezoidal distortion correction device
EP1517550B1 (en) Projector with tilt angle measuring device
JP5401940B2 (en) Projection optical system zoom ratio measurement method, projection image correction method using the zoom ratio measurement method, and projector for executing the correction method
JP5257616B2 (en) Projector, program, information storage medium, and trapezoidal distortion correction method
JP3844076B2 (en) Image processing system, projector, program, information storage medium, and image processing method
JP4730136B2 (en) Video display device
WO2013038656A1 (en) Projection image automatic correction system, projection image automatic correction method and program
JP2005500751A (en) Method and system for correcting keystone in a projector in any orientation with respect to the display surface
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
JP2007036482A (en) Information projection display and program
TW201443827A (en) Camera image calibrating system and method of calibrating camera image
JP2011155412A (en) Projection system and distortion correction method in the same
JP2008294545A (en) Projection type video display device and projection type video display system
JP2008211355A (en) Projector, program, and information storage medium
JP3742085B2 (en) Projector having tilt angle measuring device
JP3926311B2 (en) Projector having tilt angle measuring device
JP3914938B2 (en) Projector keystone distortion correction device and projector including the keystone distortion correction device
JP5561503B2 (en) Projector, program, information storage medium, and trapezoidal distortion correction method
JP5187480B2 (en) Projector, program, information storage medium, and image generation method
JP2005331585A (en) Projector having device for measuring distance and tilt angle
JP4535769B2 (en) Projector with tilt angle measuring device
JP2020067511A (en) Camera system, control method and program of the same
JP3742086B2 (en) Projector having tilt angle measuring device
JP2008170282A (en) Shape measuring device
JP5354163B2 (en) Projector, program and information storage medium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Ref document number: 3914938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees