JP3913110B2 - Method for improving surface quality of wire rod - Google Patents

Method for improving surface quality of wire rod Download PDF

Info

Publication number
JP3913110B2
JP3913110B2 JP2002159575A JP2002159575A JP3913110B2 JP 3913110 B2 JP3913110 B2 JP 3913110B2 JP 2002159575 A JP2002159575 A JP 2002159575A JP 2002159575 A JP2002159575 A JP 2002159575A JP 3913110 B2 JP3913110 B2 JP 3913110B2
Authority
JP
Japan
Prior art keywords
rolled material
rolling
heating
scale
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002159575A
Other languages
Japanese (ja)
Other versions
JP2004001040A (en
Inventor
仁 串田
勝彦 尾崎
実佳子 武田
雅雄 外山
富士雄 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002159575A priority Critical patent/JP3913110B2/en
Publication of JP2004001040A publication Critical patent/JP2004001040A/en
Application granted granted Critical
Publication of JP3913110B2 publication Critical patent/JP3913110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱間圧延過程で表面スケールの生成状態をコントロールすることによって、線材の圧延仕上がり状態での表面疵を低減させて、その表面品質を改善する方法に関する。
【0002】
【従来の技術】
材には、良好な寸法精度とともに優れた表面品質が要求されるが、熱間圧延仕上がりの状態で、微細な表面疵や肌荒れなどの表面欠陥がしばしば見られる。特に、Si,Cr,Niなどの合金元素を含む鋼種では、加熱過程で生成した、これらの合金元素の酸化物を含むスケールや、同様に圧延過程で生成するスケールの剥離性がわるく、圧延材表面のスケールが熱間圧延過程で押し込まれて表面疵となる。
【0003】
このような熱間圧延中にスケールが押し込まれて表面疵となる問題を解消するために、例えば、特開平11−286718号公報では、鋼板熱間圧延ラインの加熱炉において、炉内の水蒸気雰囲気濃度が25%以上となるように、水蒸気を燃焼用空気および燃焼用ガスとともに供給しながら加熱する方法が提案されている。この方法では、水蒸気の効果により、スケール中の気孔の発生量が増大し、雰囲気ガスがこの気孔の間を通って鋼材表面で直接地鉄を酸化するため、均一な酸化反応が生じやすくなって生成スケールのばらつきが低減し、表面疵の原因となる局所的に深い楔状の粒界酸化を抑制することにより、表面疵の発生率が減少することが示されている。
【0004】
また、特開平5−331531号公報および特開平5−331533号公報では、いずれも熱間圧延用スラブの加熱炉内に、燃焼用空気または燃料ガスに水分を混入することにより、炉内雰囲気の露点を調整して、水蒸気雰囲気下でスラブ表面の酸化を促進し、表層に存在する鋳造欠陥をスケールとして除去する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、線材圧延では、一般に、板圧延に比べて変形速度が速く、即ちひずみ速度が大きいため、圧延毎の加工発熱の累積により、圧延材の温度は上昇していくため、圧延過程でも圧延材表面に所謂2次スケールが生成する。一方、加熱炉でビレット表層に生成する楔状の粒界酸化は、ビレット段階では比較的深い疵でも、圧延材が圧延される毎に延伸するために、疵深さが浅くなっていく。例えば、断面が155mm角のビレットを直径5.5mmの線材の製品に圧延する場合、ビレットでの疵深さをdとすれば、製品での疵深さdは、一般に、疵深さの変化が延伸のみによるとすれば、155mm角ビレットの等価直径(Φ174mm)と製品直径(Φ5.5mm)との比F(F=5.5/174≒1/32)に比例して、d≒1/32dと浅くなる。これに対し、圧延過程で発生する2次スケールと圧延材との界面での粒界酸化による凹凸は、圧延が進行して製品寸法に近づくほど、以後の断面減少率が小さくなるため、即ち上記延伸が少なくなるために、製品で有害な表面疵として残存しやすい。
【0006】
このような表面疵の変形挙動を考えると、前記の特開平11−286718号公報では、一般に圧延されるごとに浅くなるスケールと地鉄、即ちビレット表面との界面での粒界酸化による凹凸を、圧延前の段階で低減する方法が提案されているが、製品に重大な影響を及ぼす、圧延過程で発生する2次スケールと圧延材との界面での粒界酸化による凹凸の低減効果は得られない。同様に、前記の特開平5−331531号公報および特開平5−331533号公報においても、熱間圧延用スラブ表層の鋳造欠陥を圧延前の段階で低減する方法が提案されているが、線材圧延のように、圧延材が菱孔型や角孔型、または楕円孔型や丸孔型により過酷な変形を受けることによって、即ち変形起因によるしわ疵などの表面疵の発生挙動には影響を及ぼさず、製品表面疵の低減効果は得られない。
【0007】
本発明は、上記の問題点を解消するためになしたものであって、その課題は線材の製品表面にしばしば残存するしわ状などの表面疵を、その発生に密接に関連する圧延材表面のスケールの生成状態をコントロールすることにより、低減する表面品質の改善方法を提供することである。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、この発明では以下の構成を採用したのである。即ち、素材ビレットから、それぞれの圧延機のロールに設けた孔型によって断面積を順次減少させ、圧延材を所要の製品寸法に仕上げる圧延過程で、製品断面積に対する圧延材断面積の比率(以下、断面積比αと記す)が600以下であり、かつ少なくとも1回孔型で圧延した圧延材を、前記圧延機間で水蒸気雰囲気下で加熱して線材の表面品質を改善するようにしたのである。
【0009】
このように、圧延材を水蒸気雰囲気下で加熱すれば、水蒸気の作用によって、スケール層中の気孔を通って水蒸気雰囲気が直接スケールと地鉄、即ち圧延材との界面に到達し、この界面での酸化反応が均一の起こりやすくなる。それにより、局部的な粒界酸化が抑制され、前記界面の凹凸の程度が減少し、この凹凸が以後の孔型での変形により消滅しやすくなって、製品に残存する表面疵が低減する。また、スケールの剥離性も向上するため、以後の孔型での変形により、スケールが押し込まれた表面疵が発生しにくくなる。
【0010】
一方、前述のように、スケールと圧延材との界面の粒界酸化による凹凸は、圧延過程での所謂2次スケールの生成の際にも発生するため、前記界面の凹凸を減少させるための水蒸気雰囲気下での加熱を行なう圧延材の寸法、即ち断面積は、製品寸法、即ち製品断面積に近い方が望ましい。
【0011】
特に、5.5mm線材などの細物線材では、断面積比αが600以下の圧延段階で、この圧延材に前記水蒸気雰囲気下での加熱を行なうと、製品に至るまでの以後の圧延時間、即ち酸化時間が、圧延開始時から製品に至るまでの所要圧延時間に比べて短くなるために、この間の圧延過程で生成する2次スケールと圧延材との界面に粒界酸化により発生する凹凸は軽減し、以後の圧延過程での孔型内での変形により消滅して、この凹凸に起因する表面疵は製品に残存しにくくなる。
【0012】
一方、前記断面積比αが600を超える圧延段階で、この圧延材に前記水蒸気雰囲気下での加熱を行なっても、製品に至るまでのこの加熱後の圧延時間、即ち酸化時間が比較的長くなり、製品に至るまでの以後の圧延過程で生成する2次スケールによる前記粒界酸化による凹凸が、以後の圧延過程での孔型内での変形により消滅せず、このスケールに起因する凹凸が、有害な表面疵として製品に残存しやすくなるからである。
【0013】
また、ここで、水蒸気雰囲気下で加熱する前に、少なくとも1回、孔型で圧延しておく理由は以下の通りである。線材の製品直径によっては、製品断面積に対する圧延材の断面積の比率(α)が、素材ビレットの段階で既に600以下となる場合がある。このような場合には、少なくとも1回、孔型で圧延しておくことにより、加熱過程で生成し、素材ビレットに残存するスケールが孔型での変形に伴って剥離し、圧延材表面の平滑度が改善される。それによって、水蒸気雰囲気下での加熱にあたり、前述のように、スケールと圧延材との界面での酸化反応が均一に起こりやすくなり、この界面の凹凸の程度が減少し、以後の孔型での変形によりこの凹凸が消滅しやすくなるからである。
【0014】
前記水蒸気雰囲気中の水蒸気濃度が5%から30%の範囲にあり、前記加熱温度が900℃から1300℃の範囲にあることが望ましい。
【0015】
前記水蒸気濃度が5%未満であると、生成したスケールと圧延材表面との界面に発生する粒界酸化による凹凸を低減する効果が不十分となる。また、この水蒸気濃度が30%を超えても、スケールと圧延材との界面の前記凹凸を低減する効果は、それ以上高まらず、逆にスケールが成長し過ぎて、スケール自体が強固に地鉄、即ち圧延材表面に付着するおそれがある。さらに、スケールロスによる製品歩留まり低下のおそれもある。なお、ここで、水蒸気濃度は雰囲気に占める体積%を示す。
【0016】
前記水蒸気雰囲気で加熱する温度が900℃よりも低くなると、スケールの成長速度が遅くなって、前記のスケールと圧延材との界面の凹凸を低減する効果が得られない。また、前記加熱温度が1300℃を超えても、水蒸気濃度の場合と同様に、スケールと圧延材との界面の前記凹凸を低減する効果は、それ以上高まらず、逆にスケールが成長し過ぎて、スケール自体が強固に地鉄、即ち圧延材に付着するおそれがあり、スケールロスによる製品歩留まり低下のおそれもある。なお、加熱時間は圧延材表面が加熱温度に達するまでの時間を確保すれば十分である。
【0017】
上記の線材の表面品質改善方法を用いて、Si、Cr、Niの合金元素を少なくとも1種類含有し、その含有量が0.1%以上である線材を製造することができる。
【0018】
これらの合金元素を含む鋼種では素材ビレットの加熱過程で、FeSiO4、(ファイヤライト)のほか、SiO、Cr、NiOなどの酸化物が生成し、スケールと地鉄、即ち圧延材表面との界面に凹凸が形成されやすく、スケールの剥離性がわるい。このため、上述のように、圧延過程で、水蒸気雰囲気下で加熱することにより、前記界面での凹凸の程度が減少し、孔型での変形の際にスケールが剥離しやすくなり、かつ前記凹凸が減少しやすくなって、残存する表面疵が低減して、線材の表面品質が改善される。なお、上記合金元素は、機械的性質や耐食性などの改善のために、通常、0.1%(質量%)以上添加される。
【0019】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1および図2に基づいて説明する。
【0020】
図1は、水平圧延機1aおよび垂直圧延機1bからなる圧延機列1、同様に水平圧延機2aおよび垂直圧延機2bからなる圧延機列2の間に加熱装置3が設置された線材の熱間圧延ラインを示した平面図である。
【0021】
前記加熱装置3には、複数のバーナ4が設けられ、このバーナ4に予熱された燃焼用空気の供給管5が配管され、この供給管5に水蒸気の供給管6が接続されている。加熱装置3の入側および出側には、圧延材の装入口7および抽出口8が設けられ、抽出口8側の端部天井壁に排ガス口9が設けられている。バーナ4に、燃料として、例えば、LNGガスが供給され、そして、予熱された燃焼用空気が供給管5から供給され、この燃焼による排ガスで、加熱装置3内の温度が、圧延材10の表面温度を900℃から1300℃の範囲に加熱できるように、所要の温度に保たれる。
【0022】
そして、水蒸気発生装置により生成した水蒸気が供給管6から燃焼用空気の供給管5を経て加熱装置3内に供給され、その供給量が、雰囲気中の水蒸気濃度が5%から30%の範囲にあるように調節され、この加熱装置3内の雰囲気ガスは、排ガス口9から排出される。なお、水蒸気濃度は、雰囲気ガス中での体積%であり、この水蒸気濃度は、雰囲気の露点を測定するなどして管理することができる。また、加熱装置3は、電気加熱方式を採用することもでき、この場合には、水蒸気が前記の所要の濃度範囲にあるように、直接、加熱装置3内に供給される。
【0023】
前記加熱装置3内へは、例えば、直径5.5mmの細物線材などの圧延過程で断面積比αが600以下、望ましくは500以下になるまで、各圧延機の孔型により断面積を減少させた圧延材10、または、素材ビレットの段階で前記断面積比αが既に600以下の場合には、少なくとも1回孔型により圧延された圧延材10が、好ましくは素材ビレットから40%以上断面積を減少させた圧延材10が装入され、その表面温度が900℃から1300℃の範囲、望ましくは900℃から1100℃の範囲に加熱される。断面積比αが600以下でも比較的大きい比率の場合には、図1に示したように、圧延材を切断したりせずに、そのまま加熱装置3に装入してバッチ式で加熱することができる。加熱時間としては、圧延材表面温度がこれらの温度範囲内の所望の温度に達するまでの時間を確保すれば十分である。また、加熱時間をあまり長くすると、スケールの成長が進行しすぎて、前述のように、スケール自体が強固に地鉄、即ち圧延材表面に付着するおそれがあり、スケールロスによる製品歩留まり低下のおそれもあるため、およそ10分以内とすることが望ましい。加熱終了後には、圧延材10は、例えば、加熱炉床面に設けたローラにより、加熱装置3から、矢印11aで示した方向に抽出することができる。
【0024】
一方、例えば、製品直径が5.5mmの場合に、断面積比αが600以下の比較的小さい比率である場合には、加熱する圧延材の長さが長くなり、圧延材をそのまま装入可能とするためには、加熱装置3が非常に長くなって実用的ではなくなる。この場合には、圧延材の断面積は素材ビレットからかなり減少しているので、加熱装置3内での圧延材の表面温度の上昇は比較的はやく、数秒以上の加熱時間を確保すれば、前述の水蒸気雰囲気下での加熱の効果が得られるため、図2に平面図で示すように、圧延材10を、矢印11bで示した方向に圧延しながら連続的に、即ち連続式で加熱することもできる。
【0025】
なお、図1に示した、圧延材を一旦加熱装置3に入れて加熱する場合、図2に示した、圧延材を圧延しながら連続して加熱する場合、のいずれの場合にも、加熱装置3の出側に、高圧水等を利用したデスケーリング装置を設置し、次圧延機の孔型に咬みこむ前に、水蒸気雰囲気下での加熱後の圧延材表面に生成しているスケールを除去しておけば、製品での表面疵の低減により効果的となる。以下に、実施例について説明する。
【0026】
【実施例1】
鋼種がSCM435の155mm角の素材ビレットを製品直径が5.5mmの線材に圧延する過程で、可搬式の前記加熱装置3を用いて、圧延機間の水蒸気雰囲気下での加熱場所、即ち前記断面積比α、水蒸気雰囲気加熱の条件を変化させて、断面積比αと製品での表面疵の深さとの関係を調査した。なお、圧延材の加熱は、図2に示した連続加熱方式で行ない、また、この水蒸気雰囲気下での加熱後のデスケーリングは行なっていない。
【0027】
表1は、上記の圧延過程で、加熱装置3での加熱温度を900℃、水蒸気濃度を5%と一定にした場合の、断面積比αと製品表面疵深さとの関係を示したものである。ここで、製品疵深さは、巻き取った直径5.5mmの線材の先端側コイル部、中央コイル部、後端側コイル部からそれぞれ複数のサンプルを採取して断面内に存在する表面疵の最大深さを測定し、それらを平均した値である。表1には比較として、断面積比αが600を超える場合の調査結果についても記した。
【0028】
【表1】

Figure 0003913110
【0029】
表1から、水蒸気雰囲気下で加熱される圧延材の断面積比αが600以下の場合の方が、600を超える場合に比べて、製品での表面疵深さは、明瞭に低減していることがわかる。
【0030】
【実施例2】
表2は、実施例1の場合と同じ圧延過程で、水蒸気雰囲気下で加熱される圧延材の断面積比αを600、水蒸気濃度を5%と一定にした場合の、加熱装置3での加熱温度と製品表面疵深さとの関係を示したものである。表2には、加熱温度が900℃未満の場合についての調査結果も記した。
【0031】
【表2】
Figure 0003913110
【0032】
表2から、加熱装置3での加熱温度が900℃未満の場合には、同加熱温度が900℃以上の場合に比べて、製品疵深さは顕著に深くなっており、水蒸気雰囲気下での加熱は、900℃以上の温度域で行なう必要があることがわかる。
【0033】
【実施例3】
表3は、実施例1の場合と同じ圧延過程で、水蒸気雰囲気下で加熱される圧延材の断面積比αを600、加熱温度を900℃と一定にした場合の、加熱装置3での雰囲気中の水蒸気濃度と製品表面疵深さとの関係を示したものである。表3には、水蒸気濃度が5%未満の場合の調査結果も記した。
【0034】
【表3】
Figure 0003913110
【0035】
表3から、水蒸気濃度が5%未満の場合には、同5%以上の場合に比べて、製品疵深さは顕著に深くなっており、水蒸気雰囲気下での加熱は、水蒸気濃度を5%以上にする必要があることがかる。
【0036】
【発明の効果】
以上のように、この発明によれば、線材の圧延過程で、圧延材を水蒸気雰囲気下で加熱することにより、水蒸気の作用によって、スケール層中に気孔や亀裂が増加して水蒸気雰囲気が直接スケールと圧延材との界面に到達するため、この界面での酸化反応が均一の起こりやすくなるため、それまでに生成した界面の凹凸が減少する効果が得られる。
【0037】
それに加えて、この水蒸気雰囲気下での加熱を、例えば、直径5.5mmの細物線材などで、断面積比αが600以下の、断面積がある程度小さくなった圧延段階で行なうため、この加熱後の製品に至るまでの圧延時間が短くなり、この間に粒界酸化により発生するスケールと圧延材との界面の凹凸も軽減する。また、いずれの製品寸法の線材でも、水蒸気過熱を行う前に、少なくとも1回孔型で圧延しているため、素材ビレットの加熱上がりに比べて圧延材表面の平滑度が改善され、スケールと圧延材との界面での酸化反応による凹凸の減少が効果的に行われる。
【0038】
これらによって、水蒸気雰囲気下での加熱以後の圧延過程で界面の凹凸は消滅しやすくなり、この凹凸に起因する表面疵深さが低減され、製品に残存しにくくなって、表面品質が改善される。
【図面の簡単な説明】
【図1】この発明の実施形態の水蒸気雰囲気下での加熱をバッチ式で行なう場合の平面図
【図2】同上の加熱を連続式で行なう場合の平面図
【符号の説明】
1、2:圧延機列 1a、2a:水平圧延機 1b、2b:垂直圧延機
3:加熱装置 4:バーナ 5:燃焼用空気供給管
6:水蒸気供給管 7:装入口 8:抽出口
9:排ガス口 10:圧延材 11a、11b:矢印[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing surface wrinkles in a rolled finished state of a wire rod by controlling the generation state of a surface scale during a hot rolling process and improving the surface quality.
[0002]
[Prior art]
The wire has excellent surface quality with good dimensional accuracy is required, in the state of hot rolling finished, surface defects such as fine surface flaws and rough skin often seen. In particular, in steel types containing alloy elements such as Si, Cr, Ni, etc., the scales containing oxides of these alloy elements produced during the heating process and the scales produced during the rolling process are also unfavorable. The surface scale is pushed in the hot rolling process to become surface defects.
[0003]
In order to solve such a problem that the scale is pushed into the surface during hot rolling, for example, in Japanese Patent Application Laid-Open No. 11-286718, in a heating furnace of a steel sheet hot rolling line, a steam atmosphere in the furnace There has been proposed a method of heating while supplying water vapor with combustion air and combustion gas so that the concentration becomes 25% or more. In this method, the amount of pores in the scale increases due to the effect of water vapor, and the atmosphere gas passes between the pores and directly oxidizes the steel on the steel surface, so that a uniform oxidation reaction is likely to occur. It has been shown that the generation rate of surface defects is reduced by reducing the variation in generation scale and suppressing locally deep wedge-shaped grain boundary oxidation that causes surface defects.
[0004]
In both Japanese Patent Laid-Open Nos. 5-331531 and 5-331533, the atmosphere in the furnace is changed by mixing moisture into the combustion air or fuel gas in the heating furnace of the hot rolling slab. A method has been proposed in which the dew point is adjusted to promote oxidation of the slab surface in a water vapor atmosphere, and casting defects existing in the surface layer are removed as a scale.
[0005]
[Problems to be solved by the invention]
However, the line Zai圧 extending, generally for faster deformation rate compared to the plate rolling, i.e., strain rate greater, the accumulation of working heat generation of each rolling, the temperature of the rolled material rises, in the rolling process A so-called secondary scale is generated on the surface of the rolled material. On the other hand, the wedge-shaped grain boundary oxidation generated in the billet surface layer in the heating furnace is stretched every time the rolled material is rolled, even though it is relatively deep in the billet stage. For example, when a billet having a cross section of 155 mm square is rolled into a product having a diameter of 5.5 mm, if the wrinkle depth in the billet is d 0 , the wrinkle depth d 1 in the product is generally the wrinkle depth. If the change is due to stretching only, it is proportional to the ratio F (F = 5.5 / 174≈1 / 32) of the equivalent diameter (Φ174 mm) of the 155 mm square billet and the product diameter (Φ5.5 mm), d 1 ≈ 1 / 32d 0 and shallower. On the other hand, the unevenness due to grain boundary oxidation at the interface between the secondary scale and the rolled material generated in the rolling process has a smaller cross-sectional reduction rate as the rolling progresses and the product dimensions approach, that is, Since stretching is reduced, it tends to remain as harmful surface defects in the product.
[0006]
Considering such deformation behavior of surface defects, the above-mentioned Japanese Patent Application Laid-Open No. 11-286718 generally discloses unevenness due to grain boundary oxidation at the interface between the scale and the ground iron, that is, the billet surface, which becomes shallower each time it is rolled. Although a method of reducing the level before rolling has been proposed, the effect of reducing unevenness due to grain boundary oxidation at the interface between the secondary scale and the rolled material, which occurs in the rolling process, has a significant effect on the product. I can't. Similarly, in the above JP-A 5-331531 and JP-A No. 5-331533 discloses, a method of reducing the casting defects of the slab surface for hot rolling at a stage before rolling have been proposed, wire as the rolling, the rolled material is diamond grooved or square grooved, or by receiving a severe deformation by the elliptical hole type and circular hole type, i.e., affect the generation behavior of surface flaws such as wrinkles flaw due to deformation caused by Therefore, the product surface wrinkle reduction effect cannot be obtained.
[0007]
The present invention has been made to solve the above-mentioned problems, and its problem is that the surface of the rolled material is closely related to the occurrence of wrinkles and other surface defects often remaining on the product surface of the wire. It is to provide a method for improving the surface quality to be reduced by controlling the generation state of the scale.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention adopts the following configuration. That is, the ratio of the rolling material cross-sectional area to the product cross-sectional area in the rolling process in which the cross-sectional area is sequentially reduced from the material billet by the hole mold provided in the roll of each rolling mill to finish the rolled material to the required product dimensions (hereinafter referred to as The cross-sectional area ratio α) is 600 or less, and the rolled material rolled at least once with a perforation mold is heated between the rolling mills in a steam atmosphere to improve the surface quality of the wire. It is.
[0009]
In this way, when the rolled material is heated in a steam atmosphere, the steam atmosphere reaches the interface between the scale and the ground iron, that is, the rolled material, through the pores in the scale layer by the action of the steam. Oxidation reaction of is likely to occur uniformly. As a result, local grain boundary oxidation is suppressed, the degree of unevenness at the interface is reduced, and the unevenness tends to disappear due to subsequent deformation in the hole shape, and the surface defects remaining on the product are reduced. Moreover, since the peelability of the scale is also improved, surface flaws into which the scale is pushed in are less likely to occur due to subsequent deformation in the hole mold.
[0010]
On the other hand, as described above, unevenness due to grain boundary oxidation at the interface between the scale and the rolled material also occurs during the generation of so-called secondary scale in the rolling process, so that the water vapor for reducing the unevenness at the interface is reduced. It is desirable that the dimension, that is, the cross-sectional area, of the rolled material that is heated in an atmosphere is close to the product dimension, that is, the product cross-sectional area.
[0011]
In particular, in a thin wire rod such as a 5.5 mm wire rod, when the cross-sectional area ratio α is heated at a rolling stage of 600 or less, when the rolled material is heated in the water vapor atmosphere, the rolling time until reaching the product, That is, since the oxidation time is shorter than the required rolling time from the start of rolling to the product, the irregularities generated by grain boundary oxidation at the interface between the secondary scale and the rolled material generated during the rolling process are The surface wrinkles due to the unevenness are less likely to remain in the product.
[0012]
On the other hand, even if the rolled material is heated in the water vapor atmosphere in the rolling stage where the cross-sectional area ratio α exceeds 600, the rolling time after heating to the product, that is, the oxidation time is relatively long. Therefore, the unevenness due to the grain boundary oxidation due to the secondary scale generated in the subsequent rolling process up to the product does not disappear due to deformation in the hole mold in the subsequent rolling process, and the unevenness due to this scale does not disappear. This is because it tends to remain in the product as harmful surface defects.
[0013]
In addition, here, the reason for rolling with a perforation at least once before heating in a steam atmosphere is as follows. Depending on the product diameter of the wire, the ratio (α) of the cross-sectional area of the rolled material to the product cross-sectional area may already be 600 or less at the stage of the material billet. In such a case, by rolling at least once with the hole mold, the scale generated in the heating process and remaining in the material billet peels off due to the deformation in the hole mold, and the surface of the rolled material is smoothed. The degree is improved. As a result, during the heating in a steam atmosphere, as described above, the oxidation reaction at the interface between the scale and the rolled material is likely to occur uniformly, and the degree of unevenness at this interface is reduced, and the subsequent pore shape is reduced. This is because the unevenness easily disappears due to the deformation.
[0014]
It is desirable that the water vapor concentration in the water vapor atmosphere is in the range of 5% to 30%, and the heating temperature is in the range of 900 ° C to 1300 ° C.
[0015]
If the water vapor concentration is less than 5%, the effect of reducing irregularities due to grain boundary oxidation occurring at the interface between the generated scale and the surface of the rolled material becomes insufficient. In addition, even if the water vapor concentration exceeds 30%, the effect of reducing the unevenness at the interface between the scale and the rolled material does not increase any more. On the contrary, the scale grows too much and the scale itself is firmly solid. That is, there exists a possibility of adhering to the surface of a rolling material. Furthermore, there is a risk of product yield reduction due to scale loss. Here, the water vapor concentration indicates volume% in the atmosphere.
[0016]
When the temperature heated in the water vapor atmosphere is lower than 900 ° C., the growth rate of the scale becomes slow, and the effect of reducing the unevenness at the interface between the scale and the rolled material cannot be obtained. Moreover, even if the heating temperature exceeds 1300 ° C., the effect of reducing the unevenness at the interface between the scale and the rolled material does not increase any more as in the case of the water vapor concentration, and the scale grows excessively. In addition, the scale itself may be firmly attached to the base iron, that is, the rolled material, and the product yield may be reduced due to scale loss. Note that it is sufficient for the heating time to ensure the time until the surface of the rolled material reaches the heating temperature.
[0017]
By using the above-described method for improving the surface quality of a wire, it is possible to manufacture a wire that contains at least one kind of alloy element of Si, Cr, and Ni and the content of which is 0.1% or more.
[0018]
In steel types containing these alloy elements, during the heating process of the material billet, oxides such as SiO 2 , Cr 2 O 3 , NiO 2 are generated in addition to Fe 2 SiO 4 (firelite), That is, irregularities are easily formed at the interface with the surface of the rolled material, and the peelability of the scale is poor. For this reason, as described above, by heating in a steam atmosphere in the rolling process, the degree of unevenness at the interface is reduced, the scale is easily peeled during deformation in the hole mold, and the unevenness The surface quality of the wire is improved by reducing the remaining surface flaws. The above alloy elements are usually added in an amount of 0.1% (mass%) or more in order to improve mechanical properties and corrosion resistance.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
[0020]
FIG. 1 shows a wire rod in which a heating device 3 is installed between a rolling mill row 1 consisting of a horizontal rolling mill 1a and a vertical rolling mill 1b, and similarly, between a rolling mill row 2 consisting of a horizontal rolling mill 2a and a vertical rolling mill 2b . It is the top view which showed the hot rolling line.
[0021]
The heating device 3 is provided with a plurality of burners 4, a combustion air supply pipe 5 preheated by the burners 4 is piped, and a water vapor supply pipe 6 is connected to the supply pipe 5. An inlet 7 and an extraction port 8 for the rolled material are provided on the entry side and the exit side of the heating device 3, and an exhaust gas port 9 is provided on the end ceiling wall on the extraction port 8 side. For example, LNG gas is supplied to the burner 4 as fuel, and preheated combustion air is supplied from the supply pipe 5, and the temperature in the heating device 3 is the surface of the rolling material 10 by the exhaust gas generated by this combustion. The required temperature is maintained so that the temperature can be heated in the range of 900 ° C. to 1300 ° C.
[0022]
And the water vapor | steam produced | generated by the water vapor | steam generator is supplied in the heating apparatus 3 via the supply pipe | tube 5 of the combustion air from the supply pipe | tube 6, The supply amount is the range whose water vapor | steam density | concentration in atmosphere is 5% to 30%. The atmospheric gas in the heating device 3 is exhausted from the exhaust gas port 9. The water vapor concentration is volume% in the atmospheric gas, and this water vapor concentration can be managed by measuring the dew point of the atmosphere. The heating device 3 can also adopt an electric heating method. In this case, the steam is directly supplied into the heating device 3 so that the water vapor is in the required concentration range.
[0023]
Into the heating device 3, for example, the cross-sectional area is reduced by the hole type of each rolling mill until the cross-sectional area ratio α is 600 or less, preferably 500 or less in the rolling process of a thin wire having a diameter of 5.5 mm. When the cross-sectional area ratio α is already 600 or less at the stage of the rolled material 10 or the material billet, the rolled material 10 that has been rolled at least once by punching is preferably cut by 40% or more from the material billet. The rolled material 10 having a reduced area is charged, and the surface temperature is heated in the range of 900 ° C. to 1300 ° C., preferably in the range of 900 ° C. to 1100 ° C. When the cross-sectional area ratio α is 600 or less, as shown in FIG. 1, as shown in FIG. 1, the rolled material is charged as it is into the heating device 3 and heated in a batch manner without cutting. Can do. As the heating time, it is sufficient to secure a time until the surface temperature of the rolled material reaches a desired temperature within these temperature ranges. In addition, if the heating time is too long, the scale grows too much, and as described above, the scale itself may firmly adhere to the surface of the base metal, that is, the rolled material, and the product yield may be reduced due to scale loss. Therefore, it is desirable that the time be within about 10 minutes. After the heating is completed, the rolled material 10 can be extracted from the heating device 3 in the direction indicated by the arrow 11a by, for example, a roller provided on the heating furnace floor.
[0024]
On the other hand, for example, when the product diameter is 5.5 mm and the cross-sectional area ratio α is a relatively small ratio of 600 or less, the length of the rolled material to be heated becomes long, and the rolled material can be charged as it is. Therefore, the heating device 3 becomes very long and is not practical. In this case, since the cross-sectional area of the rolled material is considerably reduced from the material billet, the increase in the surface temperature of the rolled material in the heating device 3 is relatively quick, and if the heating time of several seconds or more is ensured, As shown in the plan view of FIG. 2, the rolling material 10 is continuously heated while being rolled in the direction indicated by the arrow 11b, that is, continuously, as shown in FIG. You can also.
[0025]
1, when the rolled material is once put into the heating device 3 and heated, or when the rolled material is continuously heated while rolling as shown in FIG. 2, the heating device is used. Install a descaling device using high-pressure water etc. on the exit side of 3 and remove the scale generated on the surface of the rolled material after heating in a steam atmosphere before biting into the hole shape of the next rolling mill If it is done, it becomes more effective by reducing surface flaws in the product. Examples will be described below.
[0026]
[Example 1]
In the process of rolling a 155 mm square material billet with a steel grade of SCM435 into a wire with a product diameter of 5.5 mm, the portable heating device 3 is used to heat the rolling billet between the rolling mills in a steam atmosphere, i.e. The relationship between the cross-sectional area ratio α and the depth of surface defects in the product was investigated by changing the area ratio α and the conditions of heating in the steam atmosphere. Note that the rolling material is heated by the continuous heating method shown in FIG. 2, and the descaling after heating in the water vapor atmosphere is not performed.
[0027]
Table 1 shows the relationship between the cross-sectional area ratio α and the product surface depth when the heating temperature in the heating device 3 is constant at 900 ° C. and the water vapor concentration is 5% in the rolling process. is there. Here, the product wrinkle depth is obtained by collecting a plurality of samples from the front end coil portion, the center coil portion, and the rear end side coil portion of the wound wire having a diameter of 5.5 mm, and the surface wrinkles present in the cross section. The maximum depth is measured and averaged. For comparison, Table 1 also shows the results of the investigation when the cross-sectional area ratio α exceeds 600.
[0028]
[Table 1]
Figure 0003913110
[0029]
From Table 1, when the cross-sectional area ratio α of the rolled material heated in the water vapor atmosphere is 600 or less, the depth of surface defects in the product is clearly reduced as compared with the case where it exceeds 600. I understand that.
[0030]
[Example 2]
Table 2 shows the heating in the heating device 3 when the cross-sectional area ratio α of the rolled material heated in a steam atmosphere is constant at 600 and the steam concentration is 5% in the same rolling process as in Example 1. It shows the relationship between temperature and product surface depth. Table 2 also shows the results of the investigation when the heating temperature is less than 900 ° C.
[0031]
[Table 2]
Figure 0003913110
[0032]
From Table 2, when the heating temperature in the heating device 3 is less than 900 ° C., the depth of the product is significantly deeper than that in the case where the heating temperature is 900 ° C. or higher. It turns out that heating needs to be performed in a temperature range of 900 ° C. or higher.
[0033]
[Example 3]
Table 3 shows the atmosphere in the heating apparatus 3 when the cross-sectional area ratio α of the rolled material heated in the steam atmosphere is kept constant at 600 and the heating temperature is kept at 900 ° C. in the same rolling process as in Example 1. It shows the relationship between the water vapor concentration inside and the product surface depth. Table 3 also shows the results of investigation when the water vapor concentration is less than 5%.
[0034]
[Table 3]
Figure 0003913110
[0035]
From Table 3, when the water vapor concentration is less than 5%, the product depth is significantly deeper than when the water vapor concentration is 5% or more, and heating in a water vapor atmosphere reduces the water vapor concentration to 5%. It needs to be more than that.
[0036]
【The invention's effect】
As described above, according to the present invention, by heating the rolled material in a steam atmosphere during the rolling process of the wire, pores and cracks are increased in the scale layer due to the action of the steam, and the steam atmosphere is directly formed. Since it reaches the interface between the scale and the rolled material, the oxidation reaction at this interface is likely to occur uniformly, so that the unevenness of the interface generated so far can be reduced.
[0037]
In addition, the heating in the water vapor atmosphere is performed in a rolling stage where the cross-sectional area ratio α is 600 or less and the cross-sectional area is reduced to some extent, for example, with a thin wire having a diameter of 5.5 mm. The rolling time until the subsequent product is shortened, and the unevenness at the interface between the scale and the rolled material generated by grain boundary oxidation is reduced during this time. In addition, since the wire rods of any product dimensions are rolled with a perforation mold at least once before steam overheating, the smoothness of the surface of the rolled material is improved compared to the heating of the billet, and the scale The unevenness is effectively reduced by the oxidation reaction at the interface between the steel and the rolled material.
[0038]
As a result, the unevenness at the interface tends to disappear during the rolling process after heating in a steam atmosphere, the surface wrinkle depth due to the unevenness is reduced, and it becomes difficult to remain in the product, and the surface quality is improved. .
[Brief description of the drawings]
FIG. 1 is a plan view when batch heating is performed in a steam atmosphere according to an embodiment of the present invention. FIG. 2 is a plan view when continuous heating is performed.
DESCRIPTION OF SYMBOLS 1, 2: Rolling machine line 1a, 2a: Horizontal rolling mill 1b, 2b: Vertical rolling mill 3: Heating apparatus 4: Burner 5: Combustion air supply pipe 6: Steam supply pipe 7: Loading inlet 8: Extraction port 9: Exhaust gas outlet 10: Rolled material 11a, 11b: Arrow

Claims (3)

素材ビレットから、それぞれの圧延機のロールに設けた孔型によって断面積を順次減少させ、圧延材を所要の製品寸法に仕上げる線材の表面品質改善方法であって、製品断面積に対する圧延材断面積の比率が600以下であり、かつ、少なくとも1回孔型で圧延した圧延材を、前記圧延機間で水蒸気雰囲気下で加熱することを特徴とする線材の表面品質改善方法。This is a method for improving the surface quality of wire rods , in which the cross-sectional area is sequentially reduced from the material billet by the hole molds provided in the rolls of each rolling mill, and the rolled material is finished to the required product dimensions. A method for improving the surface quality of a wire, characterized in that a rolled material having an area ratio of 600 or less and rolled at least once by a perforation is heated in a steam atmosphere between the rolling mills. 前記水蒸気雰囲気中の水蒸気濃度が5%から30%の範囲にあり、前記加熱温度が900℃から1300℃の範囲にあることを特徴とする請求項1に記載の線材の表面品質改善方法。The method for improving the surface quality of a wire according to claim 1, wherein the water vapor concentration in the water vapor atmosphere is in the range of 5% to 30%, and the heating temperature is in the range of 900 ° C to 1300 ° C. 前記線材・棒鋼が、Si、Cr、Niの合金元素の中、少なくともいずれか1種類の合金元素を含有し、かつその含有量が0.1%以上であることを特徴とする請求項1または2に記載の線材の表面品質改善方法。2. The wire rod / steel bar contains at least one of alloy elements of Si, Cr, and Ni, and the content thereof is 0.1% or more. The method for improving the surface quality of the wire according to 2.
JP2002159575A 2002-05-31 2002-05-31 Method for improving surface quality of wire rod Expired - Fee Related JP3913110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159575A JP3913110B2 (en) 2002-05-31 2002-05-31 Method for improving surface quality of wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159575A JP3913110B2 (en) 2002-05-31 2002-05-31 Method for improving surface quality of wire rod

Publications (2)

Publication Number Publication Date
JP2004001040A JP2004001040A (en) 2004-01-08
JP3913110B2 true JP3913110B2 (en) 2007-05-09

Family

ID=30429294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159575A Expired - Fee Related JP3913110B2 (en) 2002-05-31 2002-05-31 Method for improving surface quality of wire rod

Country Status (1)

Country Link
JP (1) JP3913110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324963B2 (en) * 2009-03-03 2013-10-23 株式会社神戸製鋼所 Method for producing Cr-containing strip steel
CN112275796B (en) * 2020-09-03 2023-03-24 太原钢铁(集团)有限公司 Method for improving rolling surface quality of nickel-based alloy wire

Also Published As

Publication number Publication date
JP2004001040A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
WO2013134897A1 (en) Hot rolled silicon steel producing method
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
US9962760B2 (en) Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slab for hot rolling
JP5599708B2 (en) Method for producing surface decarburized hot rolled strip
JP3913110B2 (en) Method for improving surface quality of wire rod
JP4899629B2 (en) Billet continuous casting method
JP4600436B2 (en) Continuous casting method for slabs
JP4851967B2 (en) Hot rolling method for strip steel
JP5064934B2 (en) Method for producing Si and Cr-containing strips with excellent scale peelability
JP2008068307A (en) Bar steel hot rolling method
JP4546408B2 (en) Manufacturing method of strip with excellent surface properties
JP4132567B2 (en) Roller exit guide in hot rolling line for bar wire
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3882465B2 (en) Method for producing hot-rolled steel sheet with good surface properties
JP3539271B2 (en) How to remove scale from billets
JP2010065298A (en) Method for producing ferritic stainless steel sheet having excellent surface quality
JP4764135B2 (en) Mechanical descaling method for steel
JP3425017B2 (en) Manufacturing method of hot rolled steel sheet
JPH10219358A (en) Production of hot rolled steel sheet from thin cast slab for stainless steel and apparatus therefor
JP3774686B2 (en) Descaling method in hot rolling
JP4112670B2 (en) Manufacturing method of steel sheet with excellent surface properties
JP2572757B2 (en) Billet processing method and billet processing apparatus in hot rolling equipment
JP4333523B2 (en) Manufacturing method of hot-rolled steel sheet
JPH07188739A (en) Production of hot rolled steel material excellent in surface characteristic
JP3857817B2 (en) Manufacturing method of stainless steel strip with excellent pickling performance by twin roll type continuous casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Ref document number: 3913110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees