JP3912925B2 - Organic light emitting device - Google Patents

Organic light emitting device Download PDF

Info

Publication number
JP3912925B2
JP3912925B2 JP11183499A JP11183499A JP3912925B2 JP 3912925 B2 JP3912925 B2 JP 3912925B2 JP 11183499 A JP11183499 A JP 11183499A JP 11183499 A JP11183499 A JP 11183499A JP 3912925 B2 JP3912925 B2 JP 3912925B2
Authority
JP
Japan
Prior art keywords
emitting device
organic light
light emitting
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11183499A
Other languages
Japanese (ja)
Other versions
JP2000306675A (en
Inventor
精二 真下
章弘 妹尾
和則 上野
雄一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11183499A priority Critical patent/JP3912925B2/en
Publication of JP2000306675A publication Critical patent/JP2000306675A/en
Application granted granted Critical
Publication of JP3912925B2 publication Critical patent/JP3912925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光性物質からなる発光層を有し、電界を印加することにより電界印加エネルギーを直接光エネルギーに変換できる有機発光素子に関する。
【0002】
詳しくは従来の白熱灯、蛍光灯あるいは無機発光ダイオード等と異なり、大面積、高分解能、薄型、軽量、高速動作、完全な固体デバイスという特徴を有し、高度な要求を満たす可能性のあるエレクトロルミネッセンス(EL)パネルに使用する有機発光素子に関する。
【0003】
【従来の技術】
有機材料の電界発光現象は1963年にポープ(Pope)らによってアントラセン単結晶で観測され(J.Chem.Phys.38(1963)2042)、それに続き1965年にヘルフリッヒ(Helfinch)とシュナイダー(Schneider)は注入効率の良い溶液電極系を用いる事により比較的強い注入型ELの観測に成功している(Phys.Rev.Lett.14(1965)229)。
【0004】
それ以来、米国特許3,172,862号、米国特許3,173,050号、米国特許3,710,167号、J.Chem.Phys.44(1966)2902、J.Chem.Phys.50(1969)14364、J.Chem.Phys.58(1973)1542、あるいはChem.Phys.Lett.36(1975)345等に報告されている様に、共役の有機ホスト物質と縮合ベンゼン環を持つ共役の有機活性化剤とで有機発光性物質を形成した研究が行われた。ナフタレン、アンスラセン、フェナンスレン、テトラセン、ピレン、ベンゾピレン、クリセン、ピセン、カルバゾール、フルオレン、ビフェニル、ターフェニル、トリフェニレンオキサイド、ジハロビフェニル、トランス−スチルベン及び1,4−ジフェニルブタジエン等が有機ホスト物質の例として示され、アンスラセン、テトラセン、及びペンタセン等が活性化剤の例として挙げられた。しかしこれらの有機発光性物質はいずれもlμm以上をこえる厚さを持つ単一層として存在し、発光には高電界が必要であった。この為、真空蒸着法による薄膜素子の研究が進められた(例えばThin Solid Films 94(1982)171、Polymer 24(1983)748、Jpn.J.Appl.Phys.25(1986)L773)。
【0005】
しかし、薄膜化は駆動電圧の低減には有効ではあったが、実用レベルの高輝度の素子を得るには至らなかった。
しかし、タン(Tang)らは(Appl.Phys.Lett.51(1987)913あるいは米国特許4,356,429号)、陽極と陰極との間に2つの極めて薄い層(電荷輸送層と発光層)を真空蒸着で積層したEL素子を考案し、低い駆動電圧で高輝度を実現した。この種の積層型有機ELデバイスはその後も活発に研究され、例えば特開昭59−194393号公報、米国特許4,539,507号、特開昭59−194393号公報、米国特許4,720,432号、特開昭63−264692号公報、Appl.Phys.Lett.55(1989)1467、特開平3−163188等に記載されている。
【0006】
また、更にJpn.J.Appl.Phys.27(1988)L269.L713には、キャリア輸送と発光の機能を分離した3層構造のEL素子が報告されており、発光色を決める発光層の色素の選定に際してもキヤリヤ輸送性能の制約が緩和され選択の自由度がかなり増し、更には中央の発光層にホールと電子(あるいは励起子)を有効に閉じ込めて発光の向上をはかる可能性も示唆される。
【0007】
積層型有機EL素子の作成には、一般に真空蒸着法が用いられているが、キャスティング法によってもかなりの明るさの素子が得られる事が報告されている(例えば、第50回応物学会学術講演会講演予稿集l006(1989)及び第50回応物学会学術講演会講演予稿集1041(1990))。
【0008】
更には、ホール輸送化合物としてポリビニルカルバゾール、電子輸送化合物としてオキサジアゾール誘導体及び発光体としてクマリン6を混合した溶液から浸漬塗布法で形成した混合1層型有機EL素子でもかなり高い発光効率が得られる事が報告されている(例えば、第38回応物関係連合講演会講演予稿集1086(1991))。
【0009】
上述の様に有機ELデバイスにおける最近の進歩は著しく広汎な用途の可能性を示峻している。
しかしそれらの研究の歴史はまだまだ浅く、未だその材料研究やデバイス化への研究は十分なされていない。現状では更なる高輝度の光出力や長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性の面に未だ問題がある。更にはフルカラーデスプレー等への応用を考えた場合の青、緑、赤の発光色相を精密に選択できる為の発光波長の多様化等の問題も未だ十分に解決されていない。
【0010】
【発明が解決しようとする課題】
本発明は、この様な従来技術の問題点を解決するためになされたものであり、第一に極めて高輝度、高寿命の光出力を有する有機発光素子を提供する事にある。
【0011】
第二に発光波長に多様性があり、種々の発光色相を呈するとともに極めて耐久性のある有機発光素子を提供する事にある。
第三に製造が容易でかつ比較的安価に提供できる有機発光素子を提供する事にある。
【0012】
【課題を解決するための手段】
即ち、本発明は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物からなる層を少なくとも有する有機発光素子において、前記有機化合物からなる層のうち少なくとも一層が下記一般式[2]で示される化合物を含有することを特徴とする有機発光素子である。
【0013】
【化2】

Figure 0003912925
【0014】
(式中、Mはアルカリ金属を表す。)
前記一般式[2]で示される化合物を電子注入層として用いるのが好ましい。
【0015】
【発明の実施の形態】
本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物からなる層を少なくとも有する有機発光素子において、前記有機化合物からなる層のうち少なくとも一層が下記一般式[2]で示される化合物を含有することを特徴とする。
【0016】
【化3】
Figure 0003912925
【0017】
Mは、Li、Na、Kなどのアルカリ金属を表す。
本発明の有機発光素子は、陽極及び陰極の間に挟持された一または複数の、有機化合物からなる層を有し、前記有機化合物からなる層のうち少なくとも一層が前記一般式[2]で示される化合物から選ばれた少なくとも一種を含有する。
【0018】
本発明の有機発光素子においては、上述の様な一般式[2]で示される化合物を真空蒸着法や溶液塗布法等により陽極及び陰極の間に形成する。その有機層の厚みは2μmより薄く、好ましくは0.5μm以下、より好ましくは0.05〜0.5μmの厚みに薄膜化する事が好ましい。
【0019】
以下、図面に沿って本発明を更に詳細に説明する。
図1は本発明の有機発光素子の一例を示す断面図である。図1は基板1上に陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子はそれ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。
【0020】
図2は本発明の有機発光素子の他の例を示す断面図である。図2は基板1上に陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。この場合は発光物質はホール輸送性かあるいは電子輸送性のいずれかあるいは両方の機能を有している材料をそれぞれの層に用い、発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層3はホール輸送層5および電子輸送層6からなる。
【0021】
図3は本発明の有機発光素子の他の例を示す断面図である。図3は基板1上に陽極2、ホール輸送層5、発光層3、電子輸送層6及び陰極4を順次設けた構成のものである。これはキヤリア輸送と発光の機能を分離したものであり、ホール輸送性、電子輸送性、発光性の各特性を有した化合物と適時組み合わせて用いられ極めて材料の選択の自由度が増すとともに、発光波長を異にする種々の化合物が使用出来る為、発光色相の多様化が可能となる。また更に中央の発光層にホールと電子(あるいは励起子)を有効に閉じ込めて発光効率の向上を図る事も可能になる。
【0022】
本発明に用いられる一般式[2]で示される化合物は、従来の化合物に比べいずれも極めて発光特性の優れた化合物であり、必要に応じて図1〜図3のいずれの形態の発光素子でも使用する事が可能である。
【0023】
また、本発明に用いられる一般式[2]で示される化合物は、構造によりホール輸送性あるいは電子輸送性のいずれかあるいは両方の性能を有し、図1〜図3のいずれの形態の場合でも、前記一般式[2]で示される化合物の単独または2種類以上を使用してもかまわない。
【0024】
特に本発明の一般式[2]で示される化合物を用いた有機層は、電子注入層として有用である。
本発明においては、必要に応じて電子写真感光体分野等で研究されているホール輸送性化合物やこれ迄知られているホール輸送性発光体化合物(例えば表1〜4に示される化合物等)あるいは電子輸送性化合物やこれ迄知られている電子輸送性発光体化合物(例えば表5〜6に挙げられる化合物)を必要に応じて一緒に使用する事も出来る。
【0025】
【表1】
Figure 0003912925
【0026】
【表2】
Figure 0003912925
【0027】
【表3】
Figure 0003912925
【0028】
【表4】
Figure 0003912925
【0029】
【表5】
Figure 0003912925
【0030】
【表6】
Figure 0003912925
【0031】
本発明の有機発光素子において、一般式[2]で示される化合物を含有する層およびその他の有機化合物からなる層は、一般には真空蒸着あるいは適当な結着性樹脂と組み合わせて薄膜を形成する。
【0032】
上記結着剤としては広範囲な結着性樹脂より選択でき、例えばポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、エポキシ樹脂、シリコン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。これらは単独または共重合体ポリマーとして1種または2種以上混合して用いても良い。
【0033】
陽極材料としては仕事関数がなるべく大きなものが良く、例えば、ニッケル、金、白金、パラジウム、セレン、レニウム、イリジウムやこれらの合金、あるいは酸化錫、酸化錫インジウム(ITO)、ヨウ化銅が好ましい。またポリ(3−メチルチオフェン)、ポリフェニレンスルフィドあるいはポリピロール等の導電性ポリマーも使用出来る。
【0034】
一方、陰極材料としては仕事関数が小さな銀、鉛、錫、マグネシウム、アルミニウム、カルシウム、マンガン、インジウム、クロム、リチウム、ナトリウムあるいはこれらの合金が用いられる。
【0035】
また、陽極及び陰極として用いる材料のうち少なくとも一方は、素子の発光波長領域において50%より多くの光を透過する事が好ましい。
また、本発明で用いる透明性基板としては、ガラス、プラスチックフィルム等が用いられる。
【0036】
本発明の有機発光素子は、大面積化、薄型、軽量、高速動作、完全な固体デバイスという特徴を有し、高度な要求を満たす可能性のある発光素子である。
【0037】
【実施例】
以下に実施例および参考例を挙げて本発明を具体的に説明する。
参考例1
酸化錫−インジウム(ITO)被膜(膜厚1200Å)を設けたガラス基板の透明陽極上に、ホール輸送材料としてN,N′−ビス−(3−メチルフェニル)−1,1′−ビフェニル−4,4−ジアミン(以下、TPDと記す)を500Å、トリス(8−キノリノラート)アルミニウム錯体を500Å、次いで一般式[1]で示される化合物(本参考例において、M=Li)を20Å、陰極としてAlを1500Åの厚みに順次真空蒸着を行い素子を作成した。この素子の発光は緑であり、その電圧−輝度特性を図4に示す。
【0038】
【化4】
Figure 0003912925
【0039】
実施例1
酸化錫−インジウム(ITO)被膜(膜厚1200Å)を設けたガラス基板の透明陽極上に、ホール輸送材料としTPDを500Å、トリス(8−キノリノラート)アルミニウム錯体を500Å、次いで一般式[2]で示される化合物(本実施例において、M=Li)を20Å、陰極としてAlを1500Åの厚みに順次真空蒸着を行い素子を作成した。この素子の発光は緑色であり、その電圧−輝度特性を図5に示す。
【0040】
比較例1として、前記一般式[2]で示される化合物の層を設けないで、それ以外は実施例2と同様の方法で素子を作製した。その電圧−輝度特性を実施例1と同時に図5に示す。
図5により、実施例1の前記一般式[2]で示される化合物が電子注入層として非常によい特性を示すことが確認できた。
【0041】
実施例2
酸化錫−インジウム(ITO)被膜(1200Å)ガラスの透明陽極上に、ホール輸送材料としてTPDを500Å、トリス(8−キノリノラート)アルミニウム錯体にナイルレッドを5wt%ドーピングしたものを150Å、トリス(8−キノリノラート)アルミニウム錯体を350Å、次いで一般式[2]で示される化合物(本実施例において、M=Li)を20Å、陰極としてAlを1500Åの厚みに順次真空蒸着を行い素子を作成した。この素子の発光は橙色であり、その電圧−輝度特性を図6に示す。
【0042】
【発明の効果】
以上説明した様に、本発明の一般式[2]で示される化合物を用いた発光素子は、低い印加電庄で極めて輝度の高い発光を得ることができ且つ耐久性にも極めて優れている。
【0043】
特に本発明の一般式[2]で示される化合物を用いた有機層は、電子注入層として有用である。
また素子の作成も真空蒸着あるいはキャスティング法等で作成でき比較的安価で大面積の素子を容易に作成する事が可能である。
【図面の簡単な説明】
【図1】 本発明の有機発光素子の一例を示す断面図である。
【図2】 本発明の有機発光素子の他の例を示す断面図である。
【図3】 本発明の有機発光素子の他の例を示す断面図である。
【図4】 本発明の参考例1の有機発光素子の電圧−輝度特性を示すグラフである。
【図5】 本発明の実施例1および比較例1の有機発光素子の電圧−輝度特性を示すグラフである。
【図6】 本発明の実施例2の有機発光素子の電圧−輝度特性を示すグラフである。
【符号の説明】
1 基板
2 陽極
3 発光層
4 陰極
5 ホール輸送層
6 電子輸送層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic light emitting device having a light emitting layer made of a light emitting substance and capable of directly converting electric field applied energy into light energy by applying an electric field.
[0002]
Specifically, unlike conventional incandescent lamps, fluorescent lamps, inorganic light-emitting diodes, etc., it has the characteristics of large area, high resolution, thin, lightweight, high-speed operation, complete solid-state device, and has the potential to meet advanced requirements. The present invention relates to an organic light emitting device used for a luminescence (EL) panel.
[0003]
[Prior art]
The electroluminescent phenomenon of organic materials was observed in an anthracene single crystal by Pope et al. In 1963 (J. Chem. Phys. 38 (1963) 2042), followed in 1965 by Helfinch and Schneider. Has succeeded in observing a relatively strong injection type EL by using a solution electrode system with good injection efficiency (Phys. Rev. Lett. 14 (1965) 229).
[0004]
Since then, US Pat. No. 3,172,862, US Pat. No. 3,173,050, US Pat. No. 3,710,167, J. Pat. Chem. Phys. 44 (1966) 2902; Chem. Phys. 50 (1969) 14364, J. MoI. Chem. Phys. 58 (1973) 1542, or Chem. Phys. Lett. 36 (1975) 345 and the like, studies have been conducted in which an organic light-emitting substance is formed with a conjugated organic host substance and a conjugated organic activator having a condensed benzene ring. Examples of organic host materials include naphthalene, anthracene, phenanthrene, tetracene, pyrene, benzopyrene, chrysene, picene, carbazole, fluorene, biphenyl, terphenyl, triphenylene oxide, dihalobiphenyl, trans-stilbene, and 1,4-diphenylbutadiene. Anthracene, tetracene, pentacene, and the like were listed as examples of activators. However, all of these organic light-emitting substances exist as a single layer having a thickness exceeding 1 μm or more, and a high electric field is required for light emission. For this reason, research on a thin film element by a vacuum evaporation method has been advanced (for example, Thin Solid Films 94 (1982) 171, Polymer 24 (1983) 748, Jpn. J. Appl. Phys. 25 (1986) L773).
[0005]
However, although thinning was effective in reducing the drive voltage, it did not lead to a device with a high luminance at a practical level.
However, Tang et al. (Appl. Phys. Lett. 51 (1987) 913 or US Pat. No. 4,356,429), two very thin layers (charge transport layer and light emitting layer) between the anode and cathode. ) Was devised by vacuum deposition, and high brightness was achieved with a low driving voltage. This type of stacked organic EL device has been actively studied since then, for example, Japanese Patent Application Laid-Open No. 59-194393, US Pat. No. 4,539,507, Japanese Patent Application Laid-Open No. 59-194393, US Pat. No. 4,720, 432, JP-A 63-264692, Appl. Phys. Lett. 55 (1989) 1467 and JP-A-3-163188.
[0006]
Furthermore, Jpn. J. et al. Appl. Phys. 27 (1988) L269. In L713, an EL element having a three-layer structure in which carrier transport and light emission functions are separated has been reported. In selecting a light emitting layer that determines a light emission color, restrictions on carrier transport performance are relaxed, and the degree of freedom in selection is increased. It is also suggested that there is a possibility of improving light emission by effectively confining holes and electrons (or excitons) in the central light emitting layer.
[0007]
In general, a vacuum evaporation method is used to make a stacked organic EL device, but it has been reported that a device having a considerably high brightness can be obtained by a casting method (for example, the 50th Society of Japan Society of Physics). Proceedings of the conference l006 (1989) and Proceedings of the 50th Society of Physics Society Annual Conference 1041 (1990)).
[0008]
Furthermore, even a mixed single-layer organic EL device formed by a dip coating method from a solution in which polyvinyl carbazole as a hole transport compound, an oxadiazole derivative as an electron transport compound, and coumarin 6 as a light emitter is mixed can provide considerably high light emission efficiency. This has been reported (for example, Proceedings of the 38th Joint Conference on Human Relations 1086 (1991)).
[0009]
As described above, recent advances in organic EL devices have shown the potential for a wide variety of applications.
However, the history of these studies is still very short, and the materials and devices have not been fully researched. At present, there are still problems in terms of durability, such as light output with higher brightness, changes over time due to long-term use, and deterioration due to atmospheric gas or moisture containing oxygen. Furthermore, problems such as diversification of emission wavelengths that enable precise selection of blue, green, and red emission hues when considering application to full-color displays have not been sufficiently solved.
[0010]
[Problems to be solved by the invention]
The present invention has been made to solve such problems of the prior art, and firstly, it is to provide an organic light emitting device having an extremely high luminance and long life light output.
[0011]
Secondly, it is to provide an organic light emitting device that has various emission wavelengths, exhibits various emission hues, and is extremely durable.
A third object is to provide an organic light emitting device that is easy to manufacture and can be provided at a relatively low cost.
[0012]
[Means for Solving the Problems]
That is, the present invention provides an organic light emitting device having at least a pair of electrodes composed of an anode and a cathode, and a layer composed of one or a plurality of organic compounds sandwiched between the pair of electrodes. At least one layer contains the compound shown by following General formula [2] , It is an organic light emitting element characterized by the above-mentioned.
[0013]
[Chemical formula 2]
Figure 0003912925
[0014]
(In the formula, M represents an alkali metal.)
The compound represented by the general formula [2] is preferably used as the electron injection layer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The organic light-emitting device of the present invention is a layer made of the organic compound in the organic light-emitting device having at least a pair of electrodes composed of an anode and a cathode and a layer composed of one or a plurality of organic compounds sandwiched between the pair of electrodes. Among them, at least one layer contains a compound represented by the following general formula [2] .
[0016]
[Chemical Formula 3]
Figure 0003912925
[0017]
M represents an alkali metal such as Li, Na, or K.
The organic light-emitting device of the present invention has one or more layers made of an organic compound sandwiched between an anode and a cathode, and at least one of the layers made of the organic compound is represented by the general formula [2] . At least one selected from the following compounds.
[0018]
In the organic light emitting device of the present invention, the compound represented by the general formula [2] as described above is formed between the anode and the cathode by a vacuum deposition method, a solution coating method, or the like. The organic layer is thinner than 2 μm, preferably 0.5 μm or less, more preferably 0.05 to 0.5 μm.
[0019]
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the organic light emitting device of the present invention. FIG. 1 shows a structure in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when it has a single hole transport ability, electron transport ability, and light-emitting performance, or when a compound having each characteristic is mixed.
[0020]
FIG. 2 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 2 shows a configuration in which an anode 2, a hole transport layer 5, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light-emitting substance is a material having either a hole-transporting property or an electron-transporting function, or both, and is used in combination with a simple hole-transporting material or electron-transporting material that does not emit light. Useful in cases. In this case, the light emitting layer 3 includes a hole transport layer 5 and an electron transport layer 6.
[0021]
FIG. 3 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 3 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of carrier transport and light emission functions, and is used in combination with compounds having hole transport properties, electron transport properties, and light emission properties in a timely manner. Since various compounds having different wavelengths can be used, it is possible to diversify the emission hue. Furthermore, it becomes possible to effectively confine holes and electrons (or excitons) in the central light emitting layer to improve the light emission efficiency.
[0022]
The compound represented by the general formula [2] used in the present invention is a compound having extremely excellent light emission characteristics as compared with conventional compounds, and any of the light emitting devices of FIGS. It is possible to use it.
[0023]
In addition, the compound represented by the general formula [2] used in the present invention has either or both of a hole transport property and an electron transport property depending on the structure, and even in the case of any form of FIGS. A single compound or two or more compounds represented by the general formula [2] may be used.
[0024]
In particular, the organic layer using the compound represented by the general formula [2] of the present invention is useful as an electron injection layer.
In the present invention, if necessary, a hole transporting compound studied in the field of electrophotographic photoreceptors, a hole transporting light emitting compound known so far (for example, compounds shown in Tables 1 to 4) or the like An electron transporting compound or an electron transporting phosphor compound known so far (for example, compounds listed in Tables 5 to 6) can be used together as necessary.
[0025]
[Table 1]
Figure 0003912925
[0026]
[Table 2]
Figure 0003912925
[0027]
[Table 3]
Figure 0003912925
[0028]
[Table 4]
Figure 0003912925
[0029]
[Table 5]
Figure 0003912925
[0030]
[Table 6]
Figure 0003912925
[0031]
In the organic light-emitting device of the present invention, the layer containing the compound represented by the general formula [2] and the layer composed of other organic compounds are generally formed by vacuum deposition or a combination with an appropriate binder resin.
[0032]
The binder can be selected from a wide range of binder resins such as polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, butyral resin, polystyrene resin, polyvinyl acetal resin, diallyl phthalate resin, acrylic resin, methacrylic resin. , Phenol resin, epoxy resin, silicon resin, polysulfone resin, urea resin and the like, but are not limited thereto. These may be used alone or in combination as a copolymer polymer.
[0033]
As the anode material, a material having a work function as large as possible is preferable. For example, nickel, gold, platinum, palladium, selenium, rhenium, iridium or an alloy thereof, tin oxide, indium tin oxide (ITO), or copper iodide is preferable. In addition, conductive polymers such as poly (3-methylthiophene), polyphenylene sulfide, and polypyrrole can also be used.
[0034]
On the other hand, as the cathode material, silver, lead, tin, magnesium, aluminum, calcium, manganese, indium, chromium, lithium, sodium or alloys thereof having a small work function are used.
[0035]
Moreover, it is preferable that at least one of the materials used as the anode and the cathode transmits more than 50% of light in the light emission wavelength region of the element.
Moreover, glass, a plastic film, etc. are used as a transparent substrate used by this invention.
[0036]
The organic light-emitting device of the present invention is characterized by having a large area, thinness, light weight, high-speed operation, and a complete solid-state device, and is a light-emitting device that may satisfy high demands.
[0037]
【Example】
The present invention will be specifically described below with reference to examples and reference examples .
Reference example 1
N, N'-bis- (3-methylphenyl) -1,1'-biphenyl-4 as a hole transport material on a transparent anode of a glass substrate provided with a tin oxide-indium (ITO) film (thickness: 1200 mm) , 4-diamine (hereinafter referred to as TPD) 500Å, tris (8-quinolinolato) aluminum complex 500Å, then the compound represented by the general formula [1] (in this reference example , M = Li) 20Å as a cathode A device was formed by sequentially vacuum-depositing Al in a thickness of 1500 mm. The light emission of this element is green, and its voltage-luminance characteristics are shown in FIG.
[0038]
[Formula 4]
Figure 0003912925
[0039]
Example 1
On a transparent anode of a glass substrate provided with a tin oxide-indium (ITO) coating (thickness: 1200 mm), TPD is 500 mm as a hole transport material, tris (8-quinolinolato) aluminum complex is 500 mm, and then the general formula [2] A device was formed by sequentially vacuum-depositing the compound shown (M = Li in this example) to a thickness of 20 mm and using Al as a thickness of 1500 mm. The light emission of this element is green, and its voltage-luminance characteristics are shown in FIG.
[0040]
As Comparative Example 1, a device was fabricated in the same manner as in Example 2 except that the compound layer represented by the general formula [2] was not provided. Its voltage - shown in FIG. 5 at the same time as in Example 1. The luminance characteristics.
From FIG. 5, it was confirmed that the compound represented by the general formula [2] in Example 1 showed very good characteristics as an electron injection layer.
[0041]
Example 2
On a transparent anode of tin oxide-indium (ITO) coating (1200 mm) glass, 500 mm of TPD as a hole transport material, 150 kg of tris (8-quinolinolato) aluminum complex doped with 5 wt% Nile red, Tris (8- Quinolinolato) An aluminum complex was formed by vacuum deposition in an order of 350 tons, then a compound represented by the general formula [2] (in this example, M = Li) to 20 tons, and a cathode to a thickness of 1,500 to Al. The light emitted from this element is orange, and its voltage-luminance characteristics are shown in FIG.
[0042]
【The invention's effect】
As described above, the light-emitting element using the compound represented by the general formula [2] of the present invention can emit light with extremely high luminance with a low applied voltage and is extremely excellent in durability.
[0043]
In particular, the organic layer using the compound represented by the general formula [2] of the present invention is useful as an electron injection layer.
Also, the device can be prepared by vacuum deposition or casting, and a relatively inexpensive and large-area device can be easily prepared.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an organic light emitting device of the present invention.
FIG. 2 is a cross-sectional view showing another example of the organic light emitting device of the present invention.
FIG. 3 is a cross-sectional view showing another example of the organic light emitting device of the present invention.
FIG. 4 is a graph showing voltage-luminance characteristics of the organic light-emitting device of Reference Example 1 of the present invention.
FIG. 5 is a graph showing voltage-luminance characteristics of organic light-emitting elements of Example 1 and Comparative Example 1 of the present invention.
FIG. 6 is a graph showing voltage-luminance characteristics of the organic light emitting device of Example 2 of the present invention.
[Explanation of symbols]
1 Substrate 2 Anode 3 Light-Emitting Layer 4 Cathode 5 Hole Transport Layer 6 Electron Transport Layer

Claims (2)

陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物からなる層を少なくとも有する有機発光素子において、前記有機化合物からなる層のうち少なくとも一層が下記一般式[2]で示される化合物を含有することを特徴とする有機発光素子。
Figure 0003912925
(式中、Mはアルカリ金属を表す。)
In an organic light-emitting device having at least one layer composed of an anode and a cathode and one or more organic compound layers sandwiched between the pair of electrodes, at least one of the organic compound layers is represented by the following general formula: An organic light-emitting device comprising the compound represented by [2] .
Figure 0003912925
(In the formula, M represents an alkali metal.)
前記一般式[2]で示される化合物を電子注入層として用いる請求項1記載の有機発光素子。The organic light-emitting device according to claim 1, wherein the compound represented by the general formula [2] is used as an electron injection layer.
JP11183499A 1999-04-20 1999-04-20 Organic light emitting device Expired - Fee Related JP3912925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183499A JP3912925B2 (en) 1999-04-20 1999-04-20 Organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183499A JP3912925B2 (en) 1999-04-20 1999-04-20 Organic light emitting device

Publications (2)

Publication Number Publication Date
JP2000306675A JP2000306675A (en) 2000-11-02
JP3912925B2 true JP3912925B2 (en) 2007-05-09

Family

ID=14571350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183499A Expired - Fee Related JP3912925B2 (en) 1999-04-20 1999-04-20 Organic light emitting device

Country Status (1)

Country Link
JP (1) JP3912925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050333B2 (en) * 2005-09-20 2012-10-17 コニカミノルタホールディングス株式会社 Organic electroluminescence device

Also Published As

Publication number Publication date
JP2000306675A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP5476061B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2000123973A (en) Organic light emitting element
JPH0632307B2 (en) Organic electroluminescent device with improved power conversion efficiency
JPH04212284A (en) Organic membranous electro-luminescence(el) element
JPH04212287A (en) Organic membranous electro-luminescence(el) element
JPH06212153A (en) Organic electroluminescent element
JPH06136360A (en) Electroluminescent element
JPH04334894A (en) Organic thin film type electroluminescence element
JP2869447B2 (en) EL device
JPH0665569A (en) Electroluminescent element
US6586119B1 (en) Luminescent device
JP2939051B2 (en) EL device
JP3302064B2 (en) EL device
JP2939052B2 (en) EL device
JPH09151371A (en) Organic thin film el element
JP2806144B2 (en) Organic thin film EL device
JPH1154284A (en) Electroluminescent element
JP3912925B2 (en) Organic light emitting device
JP3229079B2 (en) Organic film element
JP2004111080A (en) Organic el element
JPH0468076A (en) Electroluminescent element
JP2000021574A (en) Light emitting element
JPH03163187A (en) Electroluminescent element
JP2003178887A (en) Selecting method of electrode material for electric field light-emitting element
JP2000021573A (en) Organic light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees