JP3912743B2 - Reinforced structure of building or building - Google Patents

Reinforced structure of building or building Download PDF

Info

Publication number
JP3912743B2
JP3912743B2 JP2002174999A JP2002174999A JP3912743B2 JP 3912743 B2 JP3912743 B2 JP 3912743B2 JP 2002174999 A JP2002174999 A JP 2002174999A JP 2002174999 A JP2002174999 A JP 2002174999A JP 3912743 B2 JP3912743 B2 JP 3912743B2
Authority
JP
Japan
Prior art keywords
spring
spring steel
leaf spring
building
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002174999A
Other languages
Japanese (ja)
Other versions
JP2004019226A (en
Inventor
拓造 中村
清孝 七間
孝明 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2002174999A priority Critical patent/JP3912743B2/en
Publication of JP2004019226A publication Critical patent/JP2004019226A/en
Application granted granted Critical
Publication of JP3912743B2 publication Critical patent/JP3912743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物又は建造物の補強構造及びそれに使用される補強材に関し、詳しくは、防振性及び耐震性が強化された建築物又は建造物の補強構造に関する。特にRC造り或いはSRC造り等の建築物又は建造物に最適に用いられる。
【0002】
【従来の技術】
木造軸組建築物における柱、間柱、土台、梁及び胴差等の構造材、木造枠組壁構法建築物における角材等の構造材、鉄骨建築物における鉄骨等の構造材では、それら構造材の中で相互に接している2つの構造材の間において、筋交いやブレースなどの補強材を架け渡した補強構造が公知である。具体的なこのような構造として例えば、図7に示すように、一方の構造材101の途中から、他方の構造材102の途中にかけて、火打材等の木製又は金属製の補強部材103を斜めに接続し、両端部を構造材101、102に固定して建築物を補強してなる、補強構造が公知である。
【0003】
上記補強構造を有する建築物又は建造物(以下、単に建築物と記載する。本発明では建築物と記載した場合特に断りがない限り建造物の意味も含まれる。)は、補強部材が存在しない建築物の構造に比べ、耐震性が向上する。またこのような補強構造において、制振構造を用いて耐震性能を更に高いものとするために、本願出願人は特願2001-287022及び特願2001-287022号等を提案している。
【0004】
上記出願の発明に係る補強構造としては具体的には、一方の構造材(構造材A)の途中から他方の構造材(構造材B)の途中にかけてばね鋼からなる補強部材を固定してなるもの、或いは、構造材Aと構造材Bと補強部材とで構成される空間内に合成樹脂発泡体が圧縮状態で固定されている構造等である。このような構造は柔構造の耐震補強構造の一種である。
【0005】
上記発明によれば、木造、鉄骨造りの建築物では、大きな変位に対しても、揺れによるエネルギーを良好に吸収し、ねじれ変形等を小さくし、耐久性を向上させることが出来る。
【0006】
【発明が解決しようとする課題】
ところで、RC造り或いはSRC造り等では、木造、鉄骨造りなどと比較して、建物に許容される仕口変形量が小さい。すなわち、RC造り或いはSRC造り等においては、揺れなどの変位が小さな場合であっても、建物にクラックが入ってしまうことになる。そのため、このような場合の補強構造は、仕口変形量が少ない場合でも、効果的に作用することが要求される。
【0007】
上記従来の補強構造は、揺れなどの変位が大きい場合には、補強部材が追従して、そのエネルギーを吸収することが可能である。しかしながら、RC造り或いはSRC造り等のように、許容される変位を小さく設計しなければならない場合には、上記従来の補強部材によるエネルギー吸収は不十分であるという問題があることが判った。
【0008】
本発明は上記従来技術の欠点を解消するためになされたものであり、RC造り或いはSRC造り等の建築物又は建造物等の仕口変形量が少ない場合であっても、制振構造を用いて耐震性能を向上せしめることが可能な建築物又は建造物の補強構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、
(1)相互に当接または交叉している2つの構造材における一方の構造材の途中から他方の構造材の途中に補強部材としてばね鋼が架け渡されて構造材に固定されていると共に、ばね鋼の動きを拘束する手段が設けられて、補強部材が構造材間に取り付けられている建築物又は建造物の補強構造であって、上記ばね鋼の動きを拘束する手段が、下記[1]〜[6]のいずれかの手段又はいずれか複数を組み合わせた手段であることを特徴とする建築物又は建造物の補強構造、
[1]ばね鋼が架け渡された前記構造材間にオイルダンパーを取り付ける
[2]ばね鋼が、複数枚の板ばねが重ね合わされて固定部材で圧締されてなるものであり、板ばね同士の間にすべり摩擦抵抗材を設ける
[3]ばね鋼が、前記構造材間に架け渡されて固定される親板ばねと、該親板ばねに対してスライド移動する子板ばねとからなる重ね板ばねであって、さらに、前記親板ばねと子板ばねとを互いにスライド可能に圧締する固定部材と、該固定部材と前記重ね板ばねとの間に設けられたすべり摩擦抵抗材とを備えている
[4]ばね鋼が架け渡される各構造材とばね鋼とにより囲まれて形成される空間に充填材を充填する
[5]ばね鋼の外面側を網状体により覆い含浸材を用いて該網状体をばね鋼と一体化する
[6]長手方向の両端が前記2つの構造材にそれぞれ固定されて表裏面側に湾曲する前記ばね鋼の短手方向の両側のうち少なくとも一方に、側面板を接合一体化する
(2)ばね鋼及び構造材により形成される空間側をばね鋼の裏面側とし空間側と反対方向をばね鋼の表面側とした場合、ばね鋼の少なくとも表面側に合成樹脂発泡体を積層することで、更にばね鋼の動きを拘束するものである上記(1)記載の建築物又は建造物の補強構造、
を要旨とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づき詳細に説明する。図1に示すように、本発明の建築物の補強構造は、一方の構造材(構造材A)として梁11と他方の構造材(構造材B)として柱12が交叉するところにおいて、梁11の途中から柱12の途中に、ばね鋼1が架け渡されて、該ばね鋼1の両端が前記梁11及び柱12に、ボルト等の固定具を使用して各々固定されてなると共に、該ばね鋼1の動きを拘束する手段(図1には示さなれていない)を備えており、ばね鋼1を含む補強部材が構造材A、B間に取付けられて構成されるものである。
【0011】
本発明の補強構造は、鉄骨建築物、鉄筋鉄骨建築物における鉄骨、コンクリート製柱、コンクリート製梁等の構造材、木造軸組建築物における柱、間柱、土台、梁及び胴差等の構造材、木造枠組壁構法建築物における角材等の構造材に設けられる。
【0012】
構造材A、Bにばね鋼1を架け渡し補強構造を設ける箇所は具体的には、図1に示すように梁11と柱12が当接或いは交叉する場所、或いは建築物の基礎14の上に設けた土台13と柱12が相互に接する場所等のように、水平方向の構造材と垂直方向の構造材の当接或いは交叉する箇所等が挙げられる。また図2に示すように、水平方向の構造材A(梁)15と水平方向の構造材B(梁)16が当接、或いは交叉する箇所でも良い。要するに補強構造は、構造材どうしが当接する箇所或いは交叉する箇所であれば形成することができる。
【0013】
本発明において構造材A及び構造材Bと言う場合、構造材の中で水平方向の構造材と水平方向の構造材、或いは水平方向の構造材と垂直方向の構造材とが相互に当接している部分或いは交叉している部分の2つの構造材を意味する。また構造材の途中とは、図1及び図2から明らかなように、一方の構造材と他方の構造材との交点から他の交点までの間における構造材の長手方向の途中位置のことをいう。すなわち構造材が接している(交叉している)部分から他の接している(交叉している)部分の途中という意味である。この場合、構造材A、Bが直交するように交叉しているか、或いは直角に当接しているのが一般的であるが、特に交叉が直交のみに限定されるものでもなく、或いは当接が直角のみに限定されるものでもない。
【0014】
ばね鋼1の動きを拘束するための手段としては、以下の(a)〜(f)の手段を用いることができる。これらの手段は単独で用いても良いし、或いは各手段を複数、適宜組合わせて構成しても良い。
(a)ばね鋼の表面又は/及び裏面に合成樹脂発泡体を積層する。
(b)ばね鋼が架け渡された構造材間にオイルダンパーを取り付ける。
(c)ばね鋼が複数枚の板ばねが重ね合わされて固定部材で圧締されてなるものを用いた場合には、該固定部材と板ばねとが接する部分又は/及び板ばねどうしの間にすべり摩擦抵抗材を設ける。
(d)ばね鋼が架け渡される各構造材とばね鋼とにより囲まれて形成される空間に充填材を充填する。
(e)ばね鋼の外面側を網状体により覆い含浸材を用いて該網状体をばね鋼と一体化する。
(f)ばね鋼の側面に側面板を接合一体化する。
【0015】
以下にばね鋼の動きを拘束する各種手段について図面を用いて説明する。図3(a)、(b)は本発明の補強構造の1例を示すものである。
図3に示す補強構造は、梁11と柱12からなる構造材A、B間にばね鋼として重ね板ばね5が架け渡されて、梁11と柱12の間に固定され、重ね板ばね5の表面側及び裏面側に合成樹脂発泡体2a、2bが積層され、梁11と柱12間にオイルダンパー3が取り付けられ、重ね板ばね5、梁11、及び柱12とにより囲まれて形成される三角形状の空間に充填材4が充填されているものである。重ね板ばね5は、補強部材取り付け用のボルトユニット6を使用して梁11及び柱12間に固定されている。
【0016】
本実施態様では、重ね板ばね5の表面側と裏面側との両面に合成樹脂発泡体が積層されているが、少なくともばね鋼の表面側に合成樹脂発泡体を積層することで、ばね鋼の動きを拘束することが好ましい。
【0017】
なお本発明において「ばね鋼の表面側」とは、ばね鋼及び構造材により形成される空間の反対側を言い、「ばね鋼の裏面側」とは、ばね鋼及び構造材により形成される空間側を言う。すなわち、ばね鋼1(重ね板ばね5)の「表裏面」は、重ね板ばね5の湾曲する方向の前後となる面になる。ちなみに図3(b)に示す重ね板ばね5の図中上側の合成樹脂発泡体2aは、「ばね鋼の表面側」に積層した合成樹脂発泡体であり、同図に示す重ね板ばね5の図中下側の合成樹脂発泡体は2bは、「ばね鋼の裏面側」に積層した合成樹脂発泡体である。
【0018】
また「ばね鋼の側面」とは、ばね鋼1の幅方向(短手方向)の両側であり、図3(b)に示す重ね板ばね5では、図中左右側として示される重ね板ばね5の両側面のことである。
【0019】
図3(a)、(b)に示す補強構造では、重ね板ばね5は、板ばねが予め湾曲状に形成されたものが用いられている。この湾曲は、構造材A、Bと重ね板ばね5により形成される三角形状の空間が狭まるように、すなわち梁11と柱12との交点である角部17に向かって凸となるような湾曲状態である。また湾曲のない平板状の重ね板ばね5を用いて、板ばねを湾曲状に形成する場合は、取り付けの際に板ばねを三角形状の空間が狭まるような湾曲状に形成することができる。
【0020】
ばね鋼1が湾曲状を有し、構造材A、Bとばね鋼1とで形成される三角形状の空間が狭まるように構造材に固定すると、補強効果が非常に大きくなる。またアーチ状の湾曲に形成すると補強効果が更に良好となる。
【0021】
図3に示すように重ね板ばね5は、幅方向(短手方向)が構造材の幅方向と一致し長手方向が構造材A、Bの長手方向と一致するように取り付けられている。このように取り付けられていることで、板ばねの変形を抑制する力、及び変形して元に戻ろうとする力が、構造材A、Bに対する垂直振動及び水平振動等の応力を効果的に緩和及び吸収することができる。
【0022】
図3(a)、(b)に示すように合成樹脂発泡体2a、2bは、重ね板ばね5が湾曲する方向の前後、すなわち重ね板ばね5の梁11と柱12の接する角部 17の方向及びその反対方向に積層されている。この合成樹脂発泡体2a、2bは、重ね板ばねの湾曲に対する抵抗力として機能することで、板ばねの動きを拘束するものである。特に、重ね板ばね5の表面側に積層される合成樹脂発泡体2aは、重ね板ばね5が圧縮作用しようとするエネルギーを、その圧縮変形により効果的に吸収できる。
【0023】
図3(a)、(b)では、ばね鋼1の表裏両面に合成樹脂発泡体が積層される態様を示したが、本発明においてばね鋼に積層される合成樹脂発泡体は、ばね鋼の表面側或いはばね鋼の裏面側のいずれかのみに積層されていても良いが、ばね鋼の表面側に積層されているのが好ましい。
【0024】
合成樹脂発泡体2a、2bと重ね板ばね5、或いは合成樹脂発泡体2a、2bと構造材A、及び構造材Bとは、接着されていることが好まい。その際、通常は接着剤が使用されるが、重ね板ばね5と合成樹脂発泡体2a、2bとが熱接着可能な場合には、熱接着性樹脂を介して、或いは熱接着性樹脂を介することなく直接接着することもできる。また合成樹脂発泡体2a、2bと板ばねとをあらかじめ接着して構成した補強部材を使用すると、構造材A、B間への取り付け作業が容易である。
【0025】
合成樹脂発泡体2a、2bを形成する樹脂としては、以下の合成樹脂が用いられる。スチレンの単独重合体樹脂、スチレンと他のモノマーとから製造されたスチレン系共重合体樹脂、スチレンの単独重合体樹脂又は/及びスチレン系共重合体樹脂とスチレン−ブタジエンブロック共重合体との混合物、ゴム状重合体の存在下でスチレン系モノマーを重合することによって得られるゴム変性スチレン系樹脂(耐衝撃性ポリスチレン)、或いは上記したスチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、スチレン成分比率が50重量%以上であるポリスチレン系樹脂或いはポリスチレン系樹脂組成物;エチレンの単独重合体樹脂、エチレンと他のモノマーとから製造されたエチレン系共重合体樹脂、エチレンの単独重合体樹脂又は/及びエチレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性エチレン系樹脂、或いは上記エチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、エチレン成分比率が50重量%以上であるポリエチレン系樹脂或いはポリエチレン系樹脂組成物;プロピレンの単独重合体樹脂、プロピレンと他のモノマーとから製造されたプロピレン系共重合体樹脂、プロピレンの単独重合体樹脂又は/及びプロピレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性プロピレン系樹脂、或いは上記プロピレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、プロピレン成分比率が50重量%以上であるポリプロピレン系樹脂或いはポリプロピレン系樹脂組成物;熱可塑性ポリエステル樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ポリフェニレンエーテル樹脂;或いは上記した樹脂の2以上の混合物等。
【0026】
図3(a)に示すようにオイルダンパー3は、梁11及び柱12間に、重ね板ばね5の湾曲したアールの内側方向の構造材A、B間の位置に(ばね鋼の表面側)取付けられている。オイルダンパー3は、重ね板ばね5によるエネルギーの吸収を助けると共に、建築物に対する振動、揺れの周期の速度調整の機能を有する。オイルダンパー3が取付けられていると、仕口(接合部分)に作用する振動及び揺れに速度差が生じる。その結果、構造材相互の振動及び揺れ方向に干渉作用が働き、建築物の振動及び揺れが低減されることになる。また後述する重ね板ばね5に用いたクリップ53のすべり摩擦抵抗材57、58等によっても、前記と同様の揺れ方向の干渉作用が得られる。
【0027】
オイルダンパー3は、車両用として広く使用されているショックアブソーバー等と同様のピストン構造のものが用いられる。ピストン構造のオイルダンパーは、水鉄砲や注射器と同じ構造で、振動などの外力により、ダンパー内部のオイルが流動し、その流体抵抗が建物の揺れを吸収する減衰力として働き、速度に依存した減衰特性を示す。この種のオイルダンパーは、速度依存型の減衰機構として、小振幅から大振幅まで振幅に応じた減衰力を発揮する。速度に比例した減衰力を仮定することで、減衰定数の形式で性能を設定することができ、応答スペクトルなどを介して効果の把握が比較的容易にできる。
【0028】
図4(a)、(b)に示すように重ね板ばね5は、親板ばね51に子板ばね52が重ね合され、子板ばね52の長手方向両端部付近に、固定部材であるクリップ53を取り付けて、重合した子板ばね52と親板ばね 51とをクリップ53により挟持して一体化して形成されている。
【0029】
また図4(a)、(b)に示すように親板ばね51のクリップ53で挟持した部分よりも長手方向の外側は、構造材に重ね板ばね5を固定するための固定部54として形成されている。図4(b)に示すよう固定部 54は、平板状に形成されていると共に、補強部材取り付けの際に構造材側等に設けられているボルトを挿入するためのボルト孔55等が設けられている。
【0030】
クリップ53で重ね板ばね5を挟持し圧締するには、図4(b)に示すように、リベット60を用いて、子板ばね側に設けたクリップ53に設けた貫通孔に、該リベット60を通して押付け、板ばねどうしを拘束して固定する。
【0031】
重ね板ばね5に用いられる親板ばね51及び子板ばね52等の板ばねは、軽量で高い強度を出すことができる為、金属製が好ましく用いられる。金属製の板ばねは、ポリプロピレン系樹脂からなる合成樹脂発泡体を、該板ばねに直接熱接着させることができる。各板ばねは強化プラスチック製のものを用いても良い。なお本発明で用いるばね鋼は、上記重ね板ばね以外のものであっても、補強部材として利用可能であれば、限定されずに用いることができる。
【0032】
また、板ばね等のばね鋼は、JIS G4801に規定される鋼材を用いることができる。板ばね等のばね鋼は、復元力が強いため、水平応力の強弱による変位に対し、その変形を素早く復元出来るので、建築物又は建造物に対して揺れを収束させ、ゆがみを起こりにくくして耐久性を向上させる。特にばね鋼として板ばねを用いると、厚みの割に力の強いばねとすることができ、また複数の板ばねを重ねてなる重ね板ばねは、補強部材として大きな応力に対応出来る。
【0033】
重ね板ばね5は、親板ばね51を共通のものとし、ばね力の異なる全長板又は子ばね板を複数種類用意しておくことができる。そうすると、建築物の補強度合いに応じて、親板ばね 51 任意のばね力を有する全長板又は子ばね板を組み合わせることができるので、部品点数を少なくすることが可能である。
【0034】
クリップ53は図4(c)、(d)に示すように、重ねた板ばね51、52を巻回し、その巻回した端部間が離れて溝56が形成され、かぶせ金状に形成されている。さらに図4(d)に示すように、クリップ53の内面側の親板ばね51と接する面である、該クリップの上方内面及び側方内面には、すべり摩擦抵抗材57が取付けられている。
【0035】
また図4(c)に示すように、クリップ53を取りつけた部分の親板ばね51と子板ばね52とが接する部分に、すべり摩擦抵抗材58が取り付けられている。このすべり摩擦抵抗材58は、図4(e)に示すように、平面形状としてH字状に形成され、クリップ53が嵌合する切り欠き部59が両端に設けられ、板ばねよりも少し幅広に形成されている。
【0036】
すべり摩擦抵抗材58は、親板ばね51と子板ばね52との間ですべり摩擦抵抗が確実に発生する様に、どちらかの板ばねに接着等の手段で固定しておいて板ばねがスライド移動する際に動かないようにしておくのが好ましい。また特に図示しないが、すべり摩擦抵抗材は、上記クリップ53を取りつけた部分以外でも、親板ばね51と子板ばねとがスライド移動する際に両者が接する部分であれば取りつけることができる。
【0037】
すべり摩擦抵抗材57、58は、2枚の板ばねの作用するエネルギーを低減するために、振動吸収効果或いは摩擦抵抗効果等を有する材料が用いられる。このようなすべり摩擦抵抗材として、例えば、板状或いは球状のゴム、軟鉄、銅、アルミニウム、発泡金属等が挙げられる。
【0038】
子板ばね52が親板ばね51に両端をクリップ53により挟持されて取付けられているため、子板ばね52の両端部は親板ばね51に沿ってスライド移動可能であり、伸張時の摩擦抵抗によるばね効率を高め、自由振動が抑制される。
【0039】
上記の子板ばね52がスライド移動可能な構造の重ね板ばね5は、建築物が変形する際、最初の小さい変形力を親板ばね51で受け、それに続く大きな変形を親板ばね51と子板ばね52の双方で受けるようにできる。これによって建築物の小さな変形から大きな変形までを比較的安価なばねで対応が可能である。
【0040】
また重ね板ばねのクリップ53に設けられたすべり摩擦抵抗材は、重ね板ばね5を構成する2枚の板ばねである、親板ばね51と子板ばね52との摩擦を増大させることで、板ばねどうしがスライドする際の動きを更に拘束して、上記のばねに加わるエネルギーを良好に吸収することができる。またすべり摩擦抵抗材は、板ばねに加わる小さな振動も吸収することができる。
【0041】
図3(a)に示すように、充填材4として塑性変形が可能な材料が、重ね板ばね5が架け渡される各構造材間、ずなわち梁11と柱12と重ね板ばね5とにより囲まれて形成される三角形状の空間に充填されていて、重ね板ばね5の動きを拘束する。なお図3(a)、(b)に示す態様では、充填材4は三角形状の空間を全て満たすように充填されているが、重ね板ばね5の動きを拘束することが可能であれば、前記空間を完全に満たさずに充填して、三角形状の空間に空隙があってもよい。要するに、構造材間に圧縮作用を受けた際に、充填材が塑性変形することでエネルギーを吸収可能であれば、該充填材の充填状態は特に限定されない。
【0042】
充填材4として三角形状の空間に充填される材料としては、合成樹脂、合成樹脂発泡体、ゴム、柔らかい金属等のある一定以上の応力が加わった場合に変形可能な粘弾性を有するものが用いられる。充填材4は、補強構造が圧縮変形を受けた際のエネルギー吸収に効果的である。
【0043】
また図3(b)に示す態様では、充填材4の厚さ(幅)は、構造材間に固定した際、梁11又は柱12等の構造材の幅方向と面一になるように形成されているが、建築物の構造に応じて適宜変更可能である。充填材4として用いられる合成樹脂発泡体の合成樹脂は、前記した重ね板ばねの表裏に積層される合成樹脂発泡体の説明で例示した樹脂を用いることができる。
【0044】
また充填材4として合成樹脂発泡体等を用いた場合には、圧縮状態で空間に取り付けることができる。充填材4として用いる合成樹脂発泡体の厚みは、取り付けられる構造材の厚みに対して20〜100%であることが好ましく、且つ50〜200mmであることが好ましい。
【0045】
合成樹脂発泡体が三角形状の空間内に圧縮状態で固定されていると、建築物が応力を受けた際に建築物の揺れを小さくする働きと、建築物の揺れを吸収して早期に揺れを小さくする効果を良好に発揮できる。
【0046】
合成樹脂発泡体を三角形状の空間に圧縮状態で取り付けるには、圧縮変形可能な合成樹脂発泡体を、取り付けようとする空間部の面積よりも幾らか大きく成形し、固定する際に合成樹脂発泡体を三角形状空間に配置しながら重ね板ばね5を押し付けることで、合成樹脂発泡体を圧縮して変形させて固定することができる。
【0047】
圧縮変形可能な合成樹脂発泡体としては、5%圧縮時の圧縮応力が2000kPa以下であることが好ましく、1500kPa以下であることがより好ましい。また5%圧縮時の圧縮応力の下限値は、50kPa以上であることが好ましく、80kPa以上であることがより好ましい。5%圧縮時の圧縮応力があまりにも小さくなりすぎると建築物が応力を受けた際に、揺れを小さくする働きと、揺れを吸収して早期に揺れを小さくする働きとが乏しくなる虞がある。
【0048】
また、合成樹脂発泡体が三角形状の空間内に圧縮状態で固定される際、長期間にわたってその圧縮状態が維持されることになる為、合成樹脂発泡体の圧縮永久歪が12%以下であることが好ましく、10%以下であることがより好ましい。
【0049】
上記の合成樹脂発泡体の圧縮永久歪は、JIS K 6767-1977に従って測定された値である。但し、試験片の厚さの25%圧縮する際の圧縮スピードは10mm/分とする。また、上記5%圧縮時の圧縮応力は、JIS K 6767-1977における圧縮硬さ測定方法に従って、試験片を初めの厚さの10%圧縮して得られた圧縮応力−歪曲線から5%圧縮時の圧縮応力を読み取ったものである。
【0050】
ポリプロピレン系樹脂(ポリプロピレン系樹脂組成物も含む)発泡体は、軽量な上に5%圧縮時の圧縮応力及び圧縮永久歪を上記した特定数値範囲内にすることが容易であるので、圧縮変形可能な合成樹脂発泡体として最も好ましいものの一つである。5%圧縮時の圧縮応力及び圧縮永久歪が上記特定範囲内のポリプロピレン系樹脂発泡体は、例えば、株式会社ジェイエスピーから商品名「ピーブロック」として市販されている商品の中で、発泡倍率(=基材樹脂の密度/発泡体の見かけ密度)が5〜30倍のものがある。
【0051】
三角形状の空間内に充填材4が充填されていると、建築物に応力が加わった際に、揺れを小さくできると共に、充填材のクッション性が建築物の揺れを吸収して早期に揺れを小さくする働きをする。また、構造材の相互に接する箇所に応力が加わった場合、充填材4のクッション性により、補強部材である重ね板ばね5に加わる負荷が軽減される。また充填材4によって、構造材に対するねじれ変形等を一層小さくすることができる。
【0052】
また図5に示すように、ばね鋼1を含む補強部材の側面に金属板等の側面板を接合一体化して、構造材全体を補強すると同時にばね鋼1の動きを拘束することができる。この場合側面板は、補強部材面の左右いずれかの側面のみに取り付けても、或いは左右両側面に取付けてもいずれでも良い。また、側面板7の取り付けは、構造材A及び/又は構造材Bの一部に固定して一体化するように取付けても良いし、構造材に固定されないように補強部材とだけ一体化してもよい。側面板としては、鉄、銅、ステンレス板等の金属板が用いられる。
【0053】
図5に示すように、オイルダンパー3、合成樹脂発泡体からなる充填材4、重ね板ばね5、側面板7等の各構成部材を予め接合して一体化してなる補強部材を形成し、該補強部材を所定の構造材A、B間に取付けることができる。また、これらの各々の構成部材を、現場で構造材間に夫々取り付けて、構造材間に補強構造を形成してもよい。
【0054】
補強部材を構造材A、B間へ取り付けるには、例えば図6(a)に示す如き補強部材取り付け用のボルトユニット6を用いることができる。また、特に図示しないが、構造材側にボルトを挿通するための孔(挿通孔)等を穿設し、そこに補強部材側からボルト等を挿通して固定してもよい。
【0055】
また構造材に補強部材等を固定する際、構造材内(ボルト等を通すために構造材に設けられた貫通孔内)に接着剤を充填して構造材と固定具とが接着一体化されていることが好ましく、そのように接着一体化されていると、構造材に固定具を通すための穴を設けたことによる強度低下を極力防止することができる。
【0056】
図6(a)に示すようにボルトユニット6は、取りつけ部64と2本のボルト部61、62及び貫通孔63から構成されている。該ボルトユニット6は、同図(b)に示すように、溶接部材65等で柱12等の構造材に接合一体化されている。この際、柱12に予めボルト等が突出して設けられているようであれば、そのボルトをボルトユニット6の貫通孔63に嵌合してナット等を締結すれば、ユニット6を強固に固定できる。
【0057】
建築物として鉄筋若しくは鉄骨造りの既存の柱や、梁等の構造材を利用する場合は、これらの構造材A、Bに鋼板を巻き立てて補強鋼板を取り付けておく。そして構造材A、Bに取り付けた補強鋼板に、図6(a)に示す如きボルトユニット6を溶接する。そしてこのボルトユニット6のボルト61、62等を、前記補強部材の重ね板ばね5に設けたボルト用孔55に挿入し、ボルト用孔から出たボルト61、62等の先端をナット等で締結して固定する。また、図5に示すようにオイルダンパー3にも両端に固定部30を設け、該固定部30にボルト用孔31を設けておいて、該ボルト孔31に前記ボルトユニット6のボルト61、62を挿通してナットで締結して固定することができる。
【0058】
また、オイルダンパー3、充填材4及び重ね板ばね5、側面板7等から構成される補強構造を構成する部材(補強部材)の外表面を、炭素繊維シート或いは硝子繊維シート等の網状体により覆い、その上からモルタル等の含浸材等を用いて、該網状体を上記補強部材と一体化して、重ね板ばねの動きを拘束することができる。
【0059】
このような網状体と含浸材とを用いて補強構造を拘束する場合、図5に示す様に予めオイルダンパー3、充填材4、重ね板ばね5、及び側面板7等の構成部材を一体化しておいて、その外面である周囲を網状体で覆い、合成樹脂等の含浸材で固定して、予め補強部材をユニット状に形成しておいて、この補強部材ユニットを現場で所定の構造材間に取り付けることができる。このように構成した場合、予め工場等の他の場所で補強部材ユニットを製造しておくことが可能であり、現場での取付け作業が極めて容易に行える利点がある。
【0060】
また、現場で各部材を構造材A、構造材B間に夫々取付けた後、構造材A、Bを含めて外面側から網状体を巻回した後、構造材A、構造材Bと補強構造が一体になるよう含浸材を塗工して全体を拘束しても良い。この場合、構造材A、Bが一体となって拘束されるために、更に強度に優れた補強構造を構成することができる。
【0061】
本発明の補強構造は、壁面の中の構造材間に取付けて、補強構造が壁板により覆われて直接外側から見えないように取付けることもできる。
【0062】
本発明補強構造は、建築物の水平方向に走る構造材間に設けた場合には、横揺れに対する耐性向上効果が得られる。また補強構造が、建築物の水平方向に走る構造材と垂直方向に走る構造材間に設けた場合には、横揺れ及び縦揺れに対する耐性を増すことになる。そのため本発明補強構造は、水平方向に走る構造材間、及び水平方向に走る構造材と垂直方向に走る構造材間との双方に設けることが好ましい。
【0063】
【作用】
表1に図3に示す態様の補強構造のエネルギー吸収メカニズムを示す。
表1は、補強構造が(a)圧縮作用した状態、(b)圧縮から開放された状態、(c)引っ張られた状態について、それぞれ各構成部材がどのように機能するかを示した。すなわち表1に示すように、補強構造が(a)圧縮作用した状態では、合成樹脂発泡体は圧縮変形によってエネルギーを吸収する、板ばねは圧縮変形によってエネルギーを蓄積する、クリップはすべり摩擦抵抗によりエネルギーを吸収する、オイルダンパーは、シャフト変位を受ける油圧ポンプにてエネルギーを吸収する、その結果エネルギー吸収は大きくなる。
【0064】
また(b)圧縮から開放された状態では、合成樹脂発泡体は反撥エネルギー(負のエネルギー)を有する、板ばねは反撥エネルギーが大きい、クリップはすべり摩擦抵抗によりエネルギーを吸収する、オイルダンパーは、シャフト変位を受ける油圧ポンプにてエネルギーを吸収する、その結果、板ばねと合成樹脂発泡体の反撥エネルギー(負のエネルギー)と、クリップとオイルダンパーのエネルギー差が小さなマイナスとして働く。
【0065】
また(c)引っ張られた状態では、合成樹脂発泡体はエネルギー吸収がほとんどない、板ばねは引っ張り変形エネルギーを吸収する、クリップはすべり摩擦抵抗によりエネルギーを吸収する、オイルダンパーは、シャフト変位を受ける油圧ポンプにてエネルギーを吸収する、その結果、板ばねが延びるエネルギーを、クリップとオイルダンパーが中程度吸収する。
【0066】
【表1】

Figure 0003912743
【0067】
【発明の効果】
本発明補強構造は、一方の構造材の途中から他方の構造材の途中に補強部材としてばね鋼が架け渡されて構造材に固定されている為、ばね鋼からなる補強部材は復元力が強く、強風又は地震のような応力が加わる場合に、水平応力の強弱による変位に対し、揺れに対する干渉作用(オイルダンパー或いはすべり摩擦抵抗材の場合)を有していることで、その変形が素早く元に戻るので、建築物の揺れも速やかに収まると共に、建築物にゆがみが起こりにくく、建築物の揺れを小さくできると共に、建築物の揺れを吸収して早期に揺れを小さくすることができる。
【0068】
更に本発明補強構造は、ばね鋼の動きを拘束する手段を備えている為、RC造り或いはSRC造り等の木造、鉄骨造りなどと比較して建物に許容される仕口変形量が小さい場合であっても、補強部材によるエネルギー吸収が十分可能であり、制振構造を用いて耐震性能を高めた建築物の補強構造が得られる。
【図面の簡単な説明】
【図1】 本発明の補強構造を設ける部位を示す説明図である。
【図2】 本発明の補強構造を設ける部位を示す説明図である。
【図3】 本発明の補強構造の1例を示し、(a)は補強構造の側面図、(b)は補強構造の正面側から見た(a)のA-A線断面図である。
【図4】 図3(a)、(b)の重ね板ばねを示し、(a)は側面図、(b)は子板ばね側から見た正面図、(c)は(a)の端部付近の外観を示す要部拡大図、(d)は(c)のクリップを示す端面図、(e)は(c)に示すエネルギー吸収剤の平面図である。
【図5】 重ね板ばね、オイルダンパー、充填材、側面板等からなる補強構造の分解斜視図である。
【図6】 補強部材取り付けに用いるボルトユニットを示し、(a)は正面図であり、(b)は構造材に取りつけた状態を示す説明図である。
【図7】 従来の補強構造の一例を示す斜視図である。
【符号の説明】
1 補強部材
2a,2b 合成樹脂発泡体
3 オイルダンパー
4 充填材
5 重ね板ばね
6 ボルトユニット
7 側面材
11 梁(一方の構造材)
12 柱(他方の構造材)
13 土台
14 基礎
15 水平方向の構造材A
16 水平方向の構造材B
51 親板ばね
52 子板ばね
53 クリップ
54 親板ばねの端部
55 ボルト用孔
56 溝
57,58 すべり摩擦抵抗材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforcing structure for a building or a building and a reinforcing material used therefor, and more particularly, to a reinforcing structure for a building or a building having enhanced vibration resistance and earthquake resistance. Especially, it is optimally used for buildings such as RC or SRC.
[0002]
[Prior art]
Structural materials such as pillars, studs, foundations, beams and trunk differences in wooden frame buildings, structural materials such as square members in wooden frame wall construction buildings, and structural materials such as steel frames in steel buildings, among these structural materials A reinforcing structure is known in which a reinforcing material such as braces or braces is bridged between two structural materials that are in contact with each other. As a specific such structure, for example, as shown in FIG. 7, a wooden or metal reinforcing member 103 such as a fired material is slanted from the middle of one structural material 101 to the middle of the other structural material 102. A reinforcement structure is known in which both ends are fixed to the structural members 101 and 102 to reinforce the building.
[0003]
A building or a building having the above-mentioned reinforcing structure (hereinafter simply referred to as a building. In the present invention, the term “building” includes a meaning of a building unless otherwise specified) has no reinforcing member. The earthquake resistance is improved compared to the structure of the building. In addition, in such a reinforcing structure, the applicant of the present application has proposed Japanese Patent Application No. 2001-287022 and Japanese Patent Application No. 2001-287022 in order to further improve the seismic performance by using the damping structure.
[0004]
Specifically, the reinforcing structure according to the invention of the above application is formed by fixing a reinforcing member made of spring steel from the middle of one structural material (structural material A) to the middle of the other structural material (structural material B). Or a structure in which a synthetic resin foam is fixed in a compressed state in a space formed by the structural material A, the structural material B, and the reinforcing member. Such a structure is a kind of flexible seismic reinforcement structure.
[0005]
According to the above invention, in a wooden or steel structure building, even when a large displacement occurs, energy due to shaking can be absorbed well, torsional deformation and the like can be reduced, and durability can be improved.
[0006]
[Problems to be solved by the invention]
By the way, in RC construction or SRC construction, compared to wooden construction, steel construction, etc., the amount of joint deformation allowed in a building is small. That is, in RC construction or SRC construction, even if the displacement such as shaking is small, the building will crack. Therefore, the reinforcing structure in such a case is required to work effectively even when the amount of deformation of the joint is small.
[0007]
In the conventional reinforcing structure, when a displacement such as shaking is large, the reinforcing member follows and can absorb the energy. However, it has been found that there is a problem that energy absorption by the conventional reinforcing member is insufficient when the allowable displacement must be designed to be small, such as in RC or SRC.
[0008]
The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and uses a damping structure even when the amount of deformation of a joint such as an RC structure or an SRC structure is small. An object of the present invention is to provide a building or a reinforcing structure for a building that can improve seismic performance.
[0009]
[Means for Solving the Problems]
  The present invention
(1)In two structural materials that touch or cross each otherSpring steel is laid as a reinforcing member from the middle of one structural material to the middle of the other structural material and fixed to the structural material, and means for restraining the movement of the spring steel is provided, and the reinforcing member is structured. Installed between materialsIn the building or the reinforcing structure of a building, the means for restraining the movement of the spring steel is any one of the following [1] to [6] or a combination of any of the above.It is characterized by,Reinforced structure of buildings or structures,
[1] Attach an oil damper between the structural members spanned by spring steel
[2] A spring steel is formed by laminating a plurality of leaf springs and pressed by a fixing member, and a sliding friction resistance material is provided between the leaf springs.
[3] A spring leaf is a lap leaf spring composed of a parent leaf spring that is bridged and fixed between the structural members, and a child leaf spring that slides relative to the parent leaf spring, A fixing member that slidably presses the parent leaf spring and the child leaf spring and a sliding friction resistance material provided between the fixing member and the overlap leaf spring are provided.
[4] Fill the space formed by the spring steel with each structural material spanning the spring steel.
[5] The outer surface side of the spring steel is covered with a mesh body, and the mesh body is integrated with the spring steel using an impregnating material.
[6] A side plate is joined and integrated to at least one of both sides in the short direction of the spring steel that is fixed to the two structural members at both ends in the longitudinal direction and curves to the front and back surfaces.
(2) When the space side formed by spring steel and structural material is the back side of the spring steel and the direction opposite to the space side is the surface side of the spring steel, a synthetic resin foam is laminated on at least the surface side of the spring steel. With thatMoreThe building or the reinforcing structure of the building according to the above (1), which restrains the movement of the spring steel,
Is a summary.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the reinforcing structure of a building according to the present invention has a structure in which a beam 11 as one structural material (structural material A) and a column 12 as the other structural material (structural material B) intersect. The spring steel 1 is bridged between the middle of the column 12 and the middle of the column 12, and both ends of the spring steel 1 are respectively fixed to the beam 11 and the column 12 using a fixing tool such as a bolt, A means (not shown in FIG. 1) for restraining the movement of the spring steel 1 is provided, and a reinforcing member including the spring steel 1 is attached between the structural materials A and B.
[0011]
The reinforcing structure of the present invention is a structural material such as a steel structure, a steel frame in a reinforced steel structure, a concrete column, a concrete beam, a structural material such as a column, a stud, a foundation, a beam, and a trunk difference in a wooden framed building. It is provided in a structural material such as a square member in a wooden frame wall construction method.
[0012]
Specifically, the place where the structural members A and B are overlaid with the spring steel 1 and the reinforcing structure is provided, as shown in FIG. 1, is the place where the beam 11 and the column 12 abut or cross each other, or on the building foundation 14 For example, a place where the horizontal structure material and the vertical structure material contact or cross each other, such as a place where the base 13 and the pillar 12 are provided in contact with each other. Further, as shown in FIG. 2, the horizontal structural member A (beam) 15 and the horizontal structural member B (beam) 16 may contact or cross each other. In short, the reinforcing structure can be formed at any location where the structural members abut or cross each other.
[0013]
  In the present invention, when the structural material A and the structural material B are referred to, the horizontal structural material and the horizontal structural material, or the horizontal structural material and the vertical structural material are in contact with each other. It means two structural materials, that is, a crossing part or a crossing part. In addition, as is apparent from FIGS. 1 and 2, the middle of the structural material is between the point of intersection between one structural member and the other structural member and the other point of intersection.Structural materialThe middle position in the longitudinal direction. In other words, it means that the part where the structural material is in contact (intersect) is in the middle of another part (intersect). In this case, it is common that the structural materials A and B are crossed so as to be orthogonal to each other, or are in contact with each other at a right angle. It is not limited to right angles only.
[0014]
As means for restraining the movement of the spring steel 1, the following means (a) to (f) can be used. These means may be used alone or may be constituted by appropriately combining a plurality of each means.
(a) A synthetic resin foam is laminated on the front surface and / or back surface of the spring steel.
(b) Install an oil damper between the structural members that span the spring steel.
(c) When a spring steel is used in which a plurality of leaf springs are overlapped and pressed with a fixing member, between the portion where the fixing member and the leaf spring are in contact and / or between the leaf springs. Provide a sliding friction resistance material.
(d) Filling a space formed by the spring steel with each structural material spanning the spring steel.
(e) The outer surface side of the spring steel is covered with a mesh body, and the mesh body is integrated with the spring steel using an impregnation material.
(f) A side plate is joined and integrated on the side surface of the spring steel.
[0015]
Hereinafter, various means for restraining the movement of the spring steel will be described with reference to the drawings. 3 (a) and 3 (b) show an example of the reinforcing structure of the present invention.
In the reinforcing structure shown in FIG. 3, a laminated leaf spring 5 is spanned as a spring steel between structural members A and B composed of a beam 11 and a column 12, and is fixed between the beam 11 and the column 12, and the laminated leaf spring 5 The synthetic resin foams 2a and 2b are laminated on the front surface side and the back surface side, and the oil damper 3 is attached between the beam 11 and the column 12, and is surrounded by the overlap leaf spring 5, the beam 11 and the column 12. The triangular space is filled with the filler 4. The overlap leaf spring 5 is fixed between the beam 11 and the column 12 using a bolt unit 6 for attaching a reinforcing member.
[0016]
In this embodiment, the synthetic resin foam is laminated on both the front surface side and the back surface side of the laminated leaf spring 5, but by laminating the synthetic resin foam at least on the front surface side of the spring steel, It is preferable to restrain the movement.
[0017]
In the present invention, “the surface side of spring steel” means the opposite side of the space formed by the spring steel and the structural material, and “the back side of spring steel” means the space formed by the spring steel and the structural material. Say the side. That is, the “front and back surfaces” of the spring steel 1 (lap spring 5) are the front and back surfaces of the stack spring 5 in the bending direction. Incidentally, the synthetic resin foam 2a on the upper side in the drawing of the laminated leaf spring 5 shown in FIG. 3 (b) is a synthetic resin foam laminated on the “surface side of the spring steel”, and the laminated leaf spring 5 shown in FIG. The lower synthetic resin foam 2b in the figure is a synthetic resin foam laminated on the “back side of spring steel”.
[0018]
Further, the “side surface of the spring steel” means both sides in the width direction (short direction) of the spring steel 1, and in the laminated leaf spring 5 shown in FIG. 3 (b), the laminated leaf spring 5 shown as the left and right sides in the drawing. It is the both sides.
[0019]
In the reinforcing structure shown in FIGS. 3 (a) and 3 (b), the laminated leaf spring 5 is one in which the leaf spring is formed in a curved shape in advance. This bend is such that the triangular space formed by the structural materials A and B and the laminated leaf spring 5 is narrowed, that is, bends toward the corner 17 that is the intersection of the beam 11 and the column 12. State. Further, when the plate spring is formed in a curved shape by using the flat plate spring 5 having no curve, the plate spring can be formed in a curved shape so that a triangular space is narrowed during attachment.
[0020]
When the spring steel 1 has a curved shape and is fixed to the structural material so that the triangular space formed by the structural materials A and B and the spring steel 1 is narrowed, the reinforcing effect becomes very large. Further, when the arch-shaped curve is formed, the reinforcing effect is further improved.
[0021]
As shown in FIG. 3, the laminated leaf spring 5 is attached such that the width direction (short direction) coincides with the width direction of the structural material and the longitudinal direction coincides with the longitudinal direction of the structural materials A and B. By being attached in this way, the force to suppress the deformation of the leaf spring and the force to return to the original shape effectively relieve stress such as vertical vibration and horizontal vibration on the structural materials A and B. And can absorb.
[0022]
  As shown in FIGS. 3 (a) and 3 (b), the synthetic resin foams 2a and 2b are front and rear in the direction in which the laminated leaf spring 5 is curved,IeThe beam 11 and the column 12 of the laminated leaf spring 5 contact each otherCorner 17And the opposite direction. The synthetic resin foams 2a and 2b function as a resistance force against the bending of the laminated leaf spring, thereby restricting the movement of the leaf spring. In particular, the synthetic resin foam 2a laminated on the surface side of the laminated leaf spring 5 can effectively absorb the energy that the laminated leaf spring 5 tries to compress by its compression deformation.
[0023]
3 (a) and 3 (b) show a mode in which the synthetic resin foam is laminated on both the front and back surfaces of the spring steel 1, the synthetic resin foam laminated on the spring steel in the present invention is a spring steel Although it may be laminated | stacked only on either the surface side or the back surface side of spring steel, it is preferable to laminate | stack on the surface side of spring steel.
[0024]
It is preferable that the synthetic resin foams 2a and 2b and the laminated leaf spring 5 or the synthetic resin foams 2a and 2b and the structural material A and the structural material B are bonded. At that time, an adhesive is usually used. However, when the laminated leaf spring 5 and the synthetic resin foams 2a and 2b can be thermally bonded, the thermal adhesive resin or the thermal adhesive resin is used. It is also possible to directly bond without any problem. In addition, when a reinforcing member formed by previously bonding the synthetic resin foams 2a and 2b and the leaf spring is used, the attachment work between the structural materials A and B is easy.
[0025]
The following synthetic resins are used as the resin for forming the synthetic resin foams 2a and 2b. Styrene homopolymer resin, styrene copolymer resin produced from styrene and other monomers, styrene homopolymer resin or / and mixture of styrene copolymer resin and styrene-butadiene block copolymer A rubber-modified styrene resin (impact polystyrene) obtained by polymerizing a styrene monomer in the presence of a rubber-like polymer, or the above-mentioned styrenic resin and another resin or / and a rubber-like polymer A polystyrene-based resin or polystyrene-based resin composition having a styrene component ratio of 50% by weight or more, such as a mixture of ethylene; an ethylene homopolymer resin, an ethylene copolymer resin produced from ethylene and another monomer, ethylene Homopolymer resin or / and ethylene copolymer resin impregnated with vinyl monomer such as styrene monomer Polyethylene resin or polyethylene resin having an ethylene component ratio of 50% by weight or more, such as a graft-modified ethylene resin obtained by polymerization, or a mixture of the ethylene resin and other resins or / and rubber-like polymers Composition: propylene homopolymer resin, propylene copolymer resin produced from propylene and other monomers, propylene homopolymer resin or / and vinyl monomer such as styrene monomer in propylene copolymer resin A polypropylene-based resin having a propylene component ratio of 50% by weight or more, such as a graft-modified propylene-based resin obtained by impregnating and polymerizing, or a mixture of the above-mentioned propylene-based resin and another resin or / and a rubber-like polymer Or polypropylene resin composition; thermoplastic polyester resin; polycarbonate resin; polyamide Resin; polyphenylene ether resin; or a mixture of two or more of the above-described resins.
[0026]
As shown in FIG. 3 (a), the oil damper 3 is located between the beam 11 and the column 12 at a position between the structural materials A and B in the direction of the curved radius of the laminated leaf spring 5 (the surface side of the spring steel). Installed. The oil damper 3 assists energy absorption by the laminated leaf spring 5 and also has a function of adjusting the speed of the vibration and swaying periods of the building. When the oil damper 3 is attached, a speed difference is generated in vibration and vibration acting on the joint (joined portion). As a result, an interference action acts on the vibration and shaking directions of the structural members, and the vibration and shaking of the building are reduced. Also, the sliding action interference material 57 and 58 of the clip 53 used for the laminated leaf spring 5 to be described later can provide the same interference action in the shaking direction as described above.
[0027]
The oil damper 3 has a piston structure similar to a shock absorber or the like widely used for vehicles. The piston-structured oil damper is the same structure as a water gun or syringe, and the oil inside the damper flows due to external forces such as vibration, and its fluid resistance acts as a damping force that absorbs the shaking of the building, and a damping characteristic depending on the speed Indicates. This type of oil damper exhibits a damping force corresponding to the amplitude from a small amplitude to a large amplitude as a speed-dependent damping mechanism. By assuming a damping force proportional to speed, the performance can be set in the form of a damping constant, and the effect can be grasped relatively easily through the response spectrum.
[0028]
  As shown in FIGS. 4 (a) and 4 (b), the leaf spring 5 is a clip that is a fixing member in the vicinity of both ends in the longitudinal direction of the child leaf spring 52. 53 is attached and superposed leaf spring 52 andParent leaf spring 51Are integrally formed by sandwiching them with a clip 53.
[0029]
  Also, as shown in FIGS. 4 (a) and 4 (b), the outer side in the longitudinal direction from the portion sandwiched by the clip 53 of the main leaf spring 51 is formed as a fixing portion 54 for fixing the laminated leaf spring 5 to the structural material. Has been. As shown in Figure 4 (b)Fixed part 54Are formed in a flat plate shape, and are provided with bolt holes 55 and the like for inserting bolts provided on the structural material side or the like when the reinforcing member is attached.
[0030]
In order to sandwich and clamp the leaf spring 5 with the clip 53, as shown in FIG. 4 (b), the rivet 60 is used to insert the rivet into the through-hole provided in the clip 53 provided on the slave plate spring side. Press through 60 to restrain and fix the leaf springs.
[0031]
The leaf springs such as the parent leaf spring 51 and the child leaf spring 52 used for the overlap leaf spring 5 are preferably made of metal because they are lightweight and can provide high strength. The metal leaf spring can directly heat-bond a synthetic resin foam made of polypropylene resin to the leaf spring. Each leaf spring may be made of reinforced plastic. The spring steel used in the present invention can be used without limitation as long as it can be used as a reinforcing member even if it is other than the above-described laminated leaf spring.
[0032]
Moreover, the steel materials prescribed | regulated to JIS G4801 can be used for spring steels, such as a leaf | plate spring. Spring steel, such as leaf springs, has a strong restoring force, so that its deformation can be quickly restored to displacement due to the strength of horizontal stress, so that the vibrations converge on the building or building, making it difficult to cause distortion. Improve durability. In particular, when a leaf spring is used as the spring steel, it can be a spring having a strong force for its thickness, and a laminated leaf spring formed by stacking a plurality of leaf springs can cope with a large stress as a reinforcing member.
[0033]
  The overlapping leaf spring 5 can be the same as the parent leaf spring 51, and a plurality of types of full length plates or child spring plates having different spring forces can be prepared. Then, depending on the degree of reinforcement of the building,Parent leaf spring 51 InSince a full length plate or a child spring plate having an arbitrary spring force can be combined, it is possible to reduce the number of parts.
[0034]
As shown in FIGS. 4 (c) and 4 (d), the clip 53 is wound around the stacked leaf springs 51 and 52, and the wound ends are separated to form a groove 56, which is formed into a cover metal shape. ing. Further, as shown in FIG. 4 (d), a sliding friction resistance material 57 is attached to the upper inner surface and the side inner surface of the clip, which are the surfaces in contact with the parent plate spring 51 on the inner surface side of the clip 53.
[0035]
Further, as shown in FIG. 4 (c), a sliding friction resistance material 58 is attached to a portion where the main plate spring 51 and the sub plate spring 52 are in contact with each other where the clip 53 is attached. As shown in FIG. 4 (e), this sliding friction resistance material 58 is formed in an H shape as a planar shape, and is provided with notches 59 at both ends, into which the clip 53 fits, and is slightly wider than the leaf spring. Is formed.
[0036]
The sliding friction resistance material 58 is fixed to either of the leaf springs by means such as adhesion so that sliding friction resistance is reliably generated between the parent leaf spring 51 and the child leaf spring 52. It is preferable not to move when sliding. Although not particularly illustrated, the sliding friction resistance material can be attached to any portion where the main plate spring 51 and the sub plate spring are in contact with each other other than the portion where the clip 53 is attached.
[0037]
The sliding friction resistance members 57 and 58 are made of a material having a vibration absorption effect or a friction resistance effect in order to reduce energy applied by the two leaf springs. Examples of such sliding friction resistance materials include plate-like or spherical rubber, soft iron, copper, aluminum, and foam metal.
[0038]
Since the child leaf spring 52 is attached to the parent leaf spring 51 with both ends being clamped by the clips 53, both ends of the child leaf spring 52 are slidable along the parent leaf spring 51. This improves the spring efficiency and suppresses free vibration.
[0039]
The laminated leaf spring 5 having a structure in which the child leaf spring 52 is slidably movable receives the first small deformation force by the parent leaf spring 51 when the building is deformed, and the subsequent large deformation is caused by the parent leaf spring 51 and the child spring. It can be received by both leaf springs 52. As a result, it is possible to deal with small to large deformations of buildings with relatively inexpensive springs.
[0040]
Further, the sliding friction resistance material provided on the clip 53 of the laminated leaf spring increases the friction between the parent leaf spring 51 and the child leaf spring 52, which are two leaf springs constituting the laminated leaf spring 5, The movement when the leaf springs slide can be further restrained, and the energy applied to the spring can be absorbed well. Further, the sliding friction resistance material can absorb small vibrations applied to the leaf spring.
[0041]
As shown in FIG. 3 (a), a material that can be plastically deformed as the filler 4 is formed between the structural members around which the laminated leaf spring 5 is bridged, that is, the beam 11, the column 12, and the laminated leaf spring 5. The triangular space formed by being enclosed is filled, and the movement of the overlap leaf spring 5 is constrained. In the embodiment shown in FIGS. 3 (a) and 3 (b), the filler 4 is filled so as to fill all the triangular spaces, but if it is possible to restrain the movement of the overlapping leaf spring 5, The space may be filled without completely filling, and there may be a space in the triangular space. In short, the filling state of the filler is not particularly limited as long as it can absorb energy by plastic deformation of the filler when subjected to a compression action between the structural materials.
[0042]
As the material for filling the triangular space as the filler 4, a material having a viscoelasticity that can be deformed when a certain level of stress is applied, such as a synthetic resin, a synthetic resin foam, rubber, or a soft metal, is used. It is done. The filler 4 is effective in absorbing energy when the reinforcing structure is subjected to compressive deformation.
[0043]
3B, the thickness (width) of the filler 4 is formed so as to be flush with the width direction of the structural material such as the beam 11 or the column 12 when fixed between the structural materials. However, it can be appropriately changed according to the structure of the building. As the synthetic resin of the synthetic resin foam used as the filler 4, the resin exemplified in the description of the synthetic resin foam laminated on the front and back of the above-described laminated leaf spring can be used.
[0044]
When a synthetic resin foam or the like is used as the filler 4, it can be attached to the space in a compressed state. The thickness of the synthetic resin foam used as the filler 4 is preferably 20 to 100% with respect to the thickness of the structural material to be attached, and preferably 50 to 200 mm.
[0045]
If the synthetic resin foam is fixed in a triangular shape in a compressed state, it will reduce the shaking of the building when the building is stressed, and it will shake early by absorbing the shaking of the building. The effect of reducing the thickness can be satisfactorily exhibited.
[0046]
In order to attach a synthetic resin foam in a triangular space in a compressed state, the synthetic resin foam that can be compressed and deformed is molded slightly larger than the area of the space to be attached, and the synthetic resin foam is fixed when fixed. The synthetic resin foam can be compressed and deformed and fixed by pressing the laminated leaf spring 5 while placing the body in the triangular space.
[0047]
As the synthetic resin foam that can be compressed and deformed, the compressive stress at 5% compression is preferably 2000 kPa or less, and more preferably 1500 kPa or less. The lower limit of the compressive stress at 5% compression is preferably 50 kPa or more, and more preferably 80 kPa or more. If the compressive stress at the time of 5% compression becomes too small, there is a risk that the function of reducing the vibration and the function of absorbing the vibration and reducing the vibration early will be poor when the building is under stress. .
[0048]
In addition, when the synthetic resin foam is fixed in a triangular space in a compressed state, the compression state of the synthetic resin foam is 12% or less because the compressed state is maintained over a long period of time. It is preferably 10% or less.
[0049]
The compression set of the synthetic resin foam is a value measured according to JIS K 6767-1977. However, the compression speed when compressing 25% of the specimen thickness is 10 mm / min. The compression stress at the time of 5% compression is 5% compression from the compression stress-strain curve obtained by compressing the test piece by 10% of the initial thickness according to the compression hardness measurement method in JIS K 6767-1977. It is a reading of the compressive stress of time.
[0050]
Polypropylene resin foam (including polypropylene resin composition) is lightweight and can easily be compressed and deformed because the compression stress and compression set at the time of 5% compression are within the specified numerical range. It is one of the most preferable as a synthetic resin foam. Polypropylene-based resin foams having compression stress and compression set at the time of 5% compression within the above specified range are, for example, foaming ratio ( = Density of base resin / apparent density of foam) is 5 to 30 times.
[0051]
When the filler 4 is filled in the triangular space, the vibration can be reduced when stress is applied to the building, and the cushioning property of the filler absorbs the shaking of the building and quickly shakes it. It works to make it smaller. In addition, when stress is applied to the portions of the structural material that are in contact with each other, the load applied to the laminated leaf spring 5 that is a reinforcing member is reduced due to the cushioning property of the filler 4. Further, the filler 4 can further reduce torsional deformation and the like with respect to the structural material.
[0052]
Further, as shown in FIG. 5, a side plate such as a metal plate can be joined and integrated to the side surface of the reinforcing member including the spring steel 1 to reinforce the entire structural material and simultaneously restrain the movement of the spring steel 1. In this case, the side plate may be attached only to either the left or right side of the reinforcing member surface, or may be attached to both the left and right side surfaces. Further, the side plate 7 may be attached so as to be fixed and integrated with a part of the structural material A and / or the structural material B, or only with the reinforcing member so as not to be fixed to the structural material. Also good. As the side plate, a metal plate such as iron, copper, or stainless steel plate is used.
[0053]
As shown in FIG. 5, a reinforcing member is formed by previously joining and integrating the constituent members such as the oil damper 3, the filler 4 made of synthetic resin foam, the laminated leaf spring 5, and the side plate 7, The reinforcing member can be attached between the predetermined structural materials A and B. In addition, each of these constituent members may be attached between the structural materials on site to form a reinforcing structure between the structural materials.
[0054]
In order to attach the reinforcing member between the structural materials A and B, for example, a bolt unit 6 for attaching the reinforcing member as shown in FIG. 6 (a) can be used. Although not particularly illustrated, a hole (insertion hole) for inserting a bolt or the like may be formed on the structural material side, and the bolt or the like may be inserted and fixed thereto from the reinforcing member side.
[0055]
In addition, when fixing a reinforcing member or the like to the structural material, the structural material (in the through hole provided in the structural material for passing a bolt or the like) is filled with an adhesive so that the structural material and the fixture are bonded and integrated. It is preferable to be bonded and integrated in such a manner, so that a decrease in strength due to the provision of a hole for passing a fixture through the structural material can be prevented as much as possible.
[0056]
As shown in FIG. 6 (a), the bolt unit 6 includes an attaching portion 64, two bolt portions 61 and 62, and a through hole 63. As shown in FIG. 2B, the bolt unit 6 is joined and integrated to a structural material such as a column 12 by a welding member 65 or the like. At this time, if a bolt or the like is projected in advance on the column 12, the unit 6 can be firmly fixed by fitting the bolt into the through hole 63 of the bolt unit 6 and fastening a nut or the like. .
[0057]
When existing structural members such as reinforcing bars or steel frames or beams are used as a building, a steel plate is wound around these structural materials A and B and a reinforcing steel plate is attached. Then, a bolt unit 6 as shown in FIG. 6 (a) is welded to the reinforcing steel plates attached to the structural materials A and B. Then, the bolts 61, 62, etc. of this bolt unit 6 are inserted into the bolt holes 55 provided in the overlap plate spring 5 of the reinforcing member, and the tips of the bolts 61, 62, etc. coming out of the bolt holes are fastened with nuts, etc. And fix. Further, as shown in FIG. 5, the oil damper 3 is also provided with fixing portions 30 at both ends, the fixing portion 30 is provided with bolt holes 31, and the bolt holes 61, 62 of the bolt unit 6 are inserted into the bolt holes 31. And can be fastened and fixed with a nut.
[0058]
Further, the outer surface of a member (reinforcing member) constituting a reinforcing structure composed of the oil damper 3, the filler 4, the laminated leaf spring 5, the side plate 7 and the like is made of a net-like body such as a carbon fiber sheet or a glass fiber sheet. The mesh body can be integrated with the reinforcing member by using an impregnating material such as mortar and the like, and the movement of the laminated leaf spring can be restricted.
[0059]
When the reinforcing structure is constrained using such a net and impregnating material, components such as the oil damper 3, the filler 4, the laminated leaf spring 5, and the side plate 7 are integrated in advance as shown in FIG. The periphery of the outer surface is covered with a mesh, fixed with an impregnating material such as a synthetic resin, and a reinforcing member is formed in a unit shape in advance. Can be installed in between. When comprised in this way, it is possible to manufacture a reinforcement member unit in other places, such as a factory, beforehand, and there exists an advantage which can perform attachment work on the spot very easily.
[0060]
In addition, after attaching each member between the structural material A and the structural material B on site, after winding the mesh body from the outer surface side including the structural materials A and B, the structural material A and the structural material B and the reinforcing structure The whole may be constrained by applying an impregnating material so as to be integrated. In this case, since the structural materials A and B are integrally restrained, it is possible to configure a reinforcing structure with further excellent strength.
[0061]
The reinforcing structure of the present invention can be attached between the structural members in the wall so that the reinforcing structure is covered with the wall plate and cannot be directly seen from the outside.
[0062]
When the reinforcing structure of the present invention is provided between structural members that run in the horizontal direction of a building, an effect of improving resistance to rolling can be obtained. Further, when the reinforcing structure is provided between the structural material that runs in the horizontal direction of the building and the structural material that runs in the vertical direction, resistance to roll and pitch is increased. For this reason, the reinforcing structure of the present invention is preferably provided between the structural materials that run in the horizontal direction and between the structural material that runs in the horizontal direction and the structural material that runs in the vertical direction.
[0063]
[Action]
Table 1 shows the energy absorption mechanism of the reinforcing structure of the embodiment shown in FIG.
Table 1 shows how each component functions in the state where the reinforcing structure is (a) compressed, (b) released from compression, and (c) pulled. That is, as shown in Table 1, when the reinforcing structure is compressed (a), the synthetic resin foam absorbs energy by compressive deformation, the leaf spring stores energy by compressive deformation, and the clip by sliding friction resistance. The oil damper that absorbs energy absorbs energy by the hydraulic pump that receives the shaft displacement, and as a result, the energy absorption increases.
[0064]
Also, (b) in a state released from compression, the synthetic resin foam has repulsive energy (negative energy), the leaf spring has large repellent energy, the clip absorbs energy by sliding friction resistance, The energy is absorbed by the hydraulic pump that receives the shaft displacement. As a result, the repulsive energy (negative energy) of the leaf spring and the synthetic resin foam and the energy difference between the clip and the oil damper work as a small minus.
[0065]
(C) In the pulled state, the synthetic resin foam absorbs little energy, the leaf spring absorbs tensile deformation energy, the clip absorbs energy by sliding friction resistance, and the oil damper receives shaft displacement. The energy is absorbed by the hydraulic pump, and as a result, the energy that the leaf spring extends is moderately absorbed by the clip and the oil damper.
[0066]
[Table 1]
Figure 0003912743
[0067]
【The invention's effect】
In the reinforcing structure of the present invention, since the spring steel is spanned as a reinforcing member from the middle of one structural material to the middle of the other structural material and fixed to the structural material, the reinforcing member made of spring steel has a strong restoring force. When a stress such as strong winds or earthquakes is applied, it has an interference action against shaking (in the case of oil damper or sliding friction resistance material) against the displacement due to the strength of horizontal stress, so that the deformation can be quickly restored. Therefore, the shaking of the building is quickly settled, the building is hardly distorted, the shaking of the building can be reduced, and the shaking of the building can be absorbed to reduce the shaking early.
[0068]
Furthermore, since the reinforcing structure of the present invention is provided with means for restraining the movement of spring steel, it can be used when the amount of joint deformation allowed in the building is small compared to wooden structures such as RC structures or SRC structures, and steel structures. Even if it exists, the energy absorption by a reinforcement member is possible enough, and the reinforcement structure of the building which improved the earthquake resistance using the damping structure is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a portion where a reinforcing structure of the present invention is provided.
FIG. 2 is an explanatory view showing a portion where a reinforcing structure of the present invention is provided.
FIGS. 3A and 3B show an example of a reinforcing structure of the present invention, in which FIG. 3A is a side view of the reinforcing structure, and FIG. 3B is a cross-sectional view taken along line AA in FIG.
FIGS. 4A and 4B show the stacked leaf springs of FIGS. 3A and 3B, where FIG. 3A is a side view, FIG. 4B is a front view as viewed from the side leaf spring side, and FIG. FIG. 4 is an enlarged view of a main part showing an appearance in the vicinity of the part, (d) is an end view showing the clip of (c), and (e) is a plan view of the energy absorbent shown in (c).
FIG. 5 is an exploded perspective view of a reinforcing structure including a laminated leaf spring, an oil damper, a filler, a side plate, and the like.
6A and 6B show a bolt unit used for attaching a reinforcing member, where FIG. 6A is a front view, and FIG. 6B is an explanatory view showing a state where the bolt unit is attached to a structural material.
FIG. 7 is a perspective view showing an example of a conventional reinforcing structure.
[Explanation of symbols]
1 Reinforcing member
2a, 2b Synthetic resin foam
3 Oil damper
4 Filler
5 Lap leaf spring
6 bolt unit
7 Side material
11 Beam (one structural material)
12 pillars (the other structural material)
13 foundation
14 Basics
15 Horizontal structural material A
16 Horizontal structural material B
51 Parent leaf spring
52 Child leaf spring
53 clips
54 End of main leaf spring
55 Bolt hole
56 Groove
57,58 Sliding friction resistance material

Claims (2)

相互に当接または交叉している2つの構造材における一方の構造材の途中から他方の構造材の途中に補強部材としてばね鋼が架け渡されて構造材に固定されていると共に、ばね鋼の動きを拘束する手段が設けられて、補強部材が構造材間に取り付けられている建築物又は建造物の補強構造であって、上記ばね鋼の動きを拘束する手段が、下記[1]〜[6]のいずれかの手段又はいずれか複数を組み合わせた手段であることを特徴とする建築物又は建造物の補強構造。
[1]ばね鋼が架け渡された前記構造材間にオイルダンパーを取り付ける
[2]ばね鋼が、複数枚の板ばねが重ね合わされて固定部材で圧締されてなるものであり、板ばね同士の間にすべり摩擦抵抗材を設ける
[3]ばね鋼が、前記構造材間に架け渡されて固定される親板ばねと、該親板ばねに対してスライド移動する子板ばねとからなる重ね板ばねであって、さらに、前記親板ばねと子板ばねとを互いにスライド可能に圧締する固定部材と、該固定部材と前記重ね板ばねとの間に設けられたすべり摩擦抵抗材とを備えている
[4]ばね鋼が架け渡される各構造材とばね鋼とにより囲まれて形成される空間に充填材を充填する
[5]ばね鋼の外面側を網状体により覆い含浸材を用いて該網状体をばね鋼と一体化する
[6]長手方向の両端が前記2つの構造材にそれぞれ固定されて表裏面側に湾曲する前記ばね鋼の、短手方向の両側のうち少なくとも一方に、側面板を接合一体化する
In the two structural materials that are in contact with each other or crossing each other, spring steel is laid as a reinforcing member from the middle of one structural material to the middle of the other structural material and fixed to the structural material. Means for restraining the movement is provided, and the reinforcing member is a reinforcing structure of the building or the building in which the reinforcing member is attached between the structural members , and the means for restraining the movement of the spring steel includes the following [1] to [ [6] A structure or a reinforcing structure of a building , which is a means obtained by combining any one of the means described in [6] .
[1] Attach an oil damper between the structural members spanned by spring steel
[2] A spring steel is formed by laminating a plurality of leaf springs and pressed by a fixing member, and a sliding friction resistance material is provided between the leaf springs.
[3] A spring leaf is a lap leaf spring composed of a parent leaf spring that is bridged and fixed between the structural members, and a child leaf spring that slides relative to the parent leaf spring, A fixing member that slidably presses the parent leaf spring and the child leaf spring and a sliding friction resistance material provided between the fixing member and the overlap leaf spring are provided.
[4] Fill the space formed by the spring steel with each structural material spanning the spring steel.
[5] The outer surface side of the spring steel is covered with a mesh body, and the mesh body is integrated with the spring steel using an impregnating material.
[6] A side plate is joined and integrated to at least one of both sides in the short direction of the spring steel which is fixed to the two structural members at both ends in the longitudinal direction and curves to the front and back sides.
ばね鋼及び構造材により形成される空間側をばね鋼の裏面側とし空間側と反対方向をばね鋼の表面側とした場合、ばね鋼の少なくとも表面側に合成樹脂発泡体を積層することで、更にばね鋼の動きを拘束するものである請求項1記載の建築物又は建造物の補強構造。When the space side formed by the spring steel and the structural material is the back side of the spring steel and the direction opposite to the space side is the surface side of the spring steel, by laminating the synthetic resin foam on at least the surface side of the spring steel, Furthermore , the reinforcement structure of the building or building of Claim 1 which restrains a motion of spring steel.
JP2002174999A 2002-06-14 2002-06-14 Reinforced structure of building or building Expired - Fee Related JP3912743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174999A JP3912743B2 (en) 2002-06-14 2002-06-14 Reinforced structure of building or building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174999A JP3912743B2 (en) 2002-06-14 2002-06-14 Reinforced structure of building or building

Publications (2)

Publication Number Publication Date
JP2004019226A JP2004019226A (en) 2004-01-22
JP3912743B2 true JP3912743B2 (en) 2007-05-09

Family

ID=31173806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174999A Expired - Fee Related JP3912743B2 (en) 2002-06-14 2002-06-14 Reinforced structure of building or building

Country Status (1)

Country Link
JP (1) JP3912743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174198A (en) * 2008-01-24 2009-08-06 Kozo Keikaku Engineering Inc Vibration control device, vibration control structure, and vibration control panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307508A (en) * 2005-04-27 2006-11-09 Nakamura Bussan Kk Reinforcement structure for wooden building or steel building
IT1391630B1 (en) * 2008-07-15 2012-01-11 Michele Miceli STRUCTURAL ELEMENTS INCLINED TO ATTACK THE FEET OF THE PILLARS TO THE FOUNDATIONS TO IMPROVE THE RESISTANCE OF THE BUILDINGS TO THE EARTHQUAKES.
JP5374113B2 (en) * 2008-10-27 2013-12-25 株式会社竹中工務店 Clean room with frame vibration control device and floor vibration control device on the floor
TWI477678B (en) * 2011-10-17 2015-03-21 Univ Nat Kaohsiung Applied Sci Seismic building structure
WO2019182184A1 (en) * 2018-03-23 2019-09-26 ㈜한국레저마케팅 Buttress member for lateral-pressure support of prefabricated truss temporary structure and temporary structure installation method using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174198A (en) * 2008-01-24 2009-08-06 Kozo Keikaku Engineering Inc Vibration control device, vibration control structure, and vibration control panel

Also Published As

Publication number Publication date
JP2004019226A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4431051B2 (en) Reinforcement structure of building
KR101186448B1 (en) Lintel beam type hysteretic damper using interstory drift of rahmen frame
US6223483B1 (en) Vibration damping mechanism and anti-earthquake wall material
JP2008088641A (en) Reinforcing member of building or structure
JP3912743B2 (en) Reinforced structure of building or building
JP5104436B2 (en) Damping panel and frame structure using the same
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JPH10169245A (en) Damper
JP4585470B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP2001262859A (en) Damping equipment
JP2006307508A (en) Reinforcement structure for wooden building or steel building
JP6277234B2 (en) Damping device and building
JP2002070943A (en) Slip support device for base isolation
JP4956340B2 (en) Building or building reinforcement
JP2003020729A (en) Reinforcing structure of building or structure and reinforcing material
JP3941028B2 (en) Damping damper
JP3493495B2 (en) Beam-to-column connection with energy absorption mechanism
JP6244053B1 (en) Vibration control device
JPH10299284A (en) Damper device
JP2003129691A (en) Vibration control stud
JP2003119946A (en) High-rigid panel and method for reducing vibrations thereof
JP2016159765A (en) Vehicular frame
JP7278587B2 (en) Bracing hardware and joint structure of wooden building using it
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP3150716U (en) Reinforcement structure of buildings and structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Ref document number: 3912743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees