JP3912641B2 - Fuel injection nozzle - Google Patents

Fuel injection nozzle Download PDF

Info

Publication number
JP3912641B2
JP3912641B2 JP24697698A JP24697698A JP3912641B2 JP 3912641 B2 JP3912641 B2 JP 3912641B2 JP 24697698 A JP24697698 A JP 24697698A JP 24697698 A JP24697698 A JP 24697698A JP 3912641 B2 JP3912641 B2 JP 3912641B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection
valve member
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24697698A
Other languages
Japanese (ja)
Other versions
JP2000073915A (en
Inventor
展久 掛橋
崇満 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24697698A priority Critical patent/JP3912641B2/en
Priority to DE1999141357 priority patent/DE19941357A1/en
Publication of JP2000073915A publication Critical patent/JP2000073915A/en
Application granted granted Critical
Publication of JP3912641B2 publication Critical patent/JP3912641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/06Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being furnished at seated ends with pintle or plug shaped extensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
エンジン負荷に応じて噴霧角を調整する燃料噴射ノズルに関する。
【0002】
【従来の技術】
噴孔を開閉する弁部材のリフト量が所定量以下の場合に燃料噴射量を抑えて初期噴射を行い、弁部材のリフト量が所定量を越えると燃料噴射量を増加して主噴射を行う燃料噴射ノズルとして、実開昭59−141164号公報および特開昭60−119368号公報に開示されるものが知られている。このような燃料噴射ノズルでは、初期噴射において予め少量の燃料を噴射して燃焼させておくことにより、主噴射における急激な燃焼を防止しエンジンからの騒音発生を防止している。前述した両公報に開示される燃料噴射ノズルは、弁部材のリフト量が小さい初期噴射において噴霧角を大きくし、弁部材のリフト量が大きい主噴射において噴霧角を小さくしている。以下、噴霧角の大きい噴射を広角噴射、噴霧角の小さい噴射を狭角噴射という。
【0003】
エンジンの低負荷時において少量の燃料を噴射し、エンジンの高負荷時において低負荷時よりも多くの燃料を噴射する燃料噴射ノズルとして、前述した公報に開示された燃料噴射ノズルを用いることができる。つまり、低負荷時に初期噴射を行い、高負荷時に主に主噴射を行えばエンジン負荷に応じて燃料噴射量を調整することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、低負荷時においては僅かなエンジン負荷の変動や弁部材先端部へのカーボン付着により弁部材のリフト量が変動することがある。したがって、エンジンの低負荷時において広角噴射を行うと、弁部材のリフト量の僅かな変動により噴霧角が大幅に変動してしまう。すると、噴霧形状が不安定となり、燃焼状態がばらつき、結果として未燃成分が排気ガス中に排出され、排気ガスの悪化を招く恐れがある。
【0005】
また、弁部材のリフト量が大きく燃料噴射量が多いエンジンの高負荷時において狭角噴射を行うと、狭角噴射により燃料噴霧の直進力が大きくなるので、副燃焼室または主燃焼室の壁面に燃料が付着して液滴化し、この液滴化した燃料が未燃成分となって排気ガス中に排出され、排気ガスの悪化を招く恐れがある。また、未燃成分が生じると、燃料の噴射量よりも燃焼量が減少するので、エンジンの出力低下を招く。
【0006】
本発明の目的は、エンジン負荷の高低に関わらず排気ガス中に排出される未燃成分を低減する燃料噴射ノズルを提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1記載の燃料噴射ノズルによると、低負荷時に狭角噴射を行うことにより、低負荷時においてエンジン負荷が変動したり、弁部材先端にカーボンが付着しても噴霧角の変動が少なく燃焼状態のばらつきを防止する。これにより、未燃成分の発生を低減できる。
【0008】
また高負荷時に広角噴射を行うことにより、燃料の直進力を抑制し、副燃焼室または主燃焼室の内壁に燃料が付着して液滴化することを防止している。高負荷時における燃料の液滴化を防止することにより、排気ガス中の未燃成分の発生を低減できるとともに、エンジンの出力低下を防止できる。
【0009】
さらに、本発明の請求項記載の燃料噴射ノズルによると、弁部材は当接部の燃料噴射側にピン部を有している。ピン部は、円柱部と、円柱部の燃料噴射側に燃料噴射方向に向けて拡径する円錐台部とを有し、円柱部および円錐台部の周方向同一位置に弁部材の軸方向に沿って切欠を形成している。弁部材のリフト量が小さい低負荷時において、噴孔を形成する弁ボディの内周壁と、円柱部に設けた切欠との間に形成された流路の抵抗は、噴孔を形成する弁ボディの内周壁と切欠以外の円柱部の外周壁に形成される流路の抵抗よりも小さい。したがって、噴孔を形成する弁ボディの内周壁と円柱部に設けた切欠との間を燃料が軸方向に沿って通過し、この燃料が円錐台部に殆ど衝突することなく円錐台部に設けた切欠に沿って弁部材の軸方向に噴射されることにより、低負荷時において燃料が狭角に噴射される。
【0010】
また、高負荷時において弁部材の円柱部が噴孔を形成する弁ボディの内壁と対向しない位置まで弁部材がリフトすると、燃料が弁部材の全周から噴孔に流入するので、燃料が円錐台部に衝突し、燃料が広角に噴射される。
【0011】
本発明の請求項記載の燃料噴射ノズルによると、平面で切欠を形成することにより、細径のピン部に切欠を容易に形成できる。
本発明の請求項記載の燃料噴射ノズルによると、円柱部と円錐台部との間に円柱部よりも小径の連結部を有することにより、狭角噴射と広角噴射との間で噴霧角が変動する遷移領域が形成される。連結部の長さや円錐台部の切欠量を調整することにより遷移領域の範囲をエンジン要求特性に応じて任意に設定できる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例を図に基づいて説明する。
(第1実施例)
本発明の第1実施例による燃料噴射ノズルを図1に示す。
弁ボディ10は、弁部材としてのノズルニードル20を往復自在に収容している。弁ボディ10の噴射側端部内周壁に、噴射方向に向けて縮径しノズルニードル20の当接部21が着座可能な弁座としてのテーパ面11が形成されている。テーパ面11のさらに噴射側に同一内径の円筒面12が形成されている。円筒面12は噴孔13を形成している。
【0013】
ノズルニードル20は、当接部21の噴射側に噴孔13に貫挿されているピン部22を有している。ピン部22は、円柱部23、縮径部24、円錐台部26を当接部21から噴射方向に向けてこの順で形成している。円柱部23の外径d2は、噴孔13の内径d1よりも僅かに小さい。円柱部23と縮径部24との境界25からテーパ面11と円筒面12との境界14までの距離Lをスロットル距離という。図示しない高圧燃料ポンプからノズルニードル周囲に供給される燃料圧力によりテーパ面11から離座する方向にノズルニードル20が受ける力と、ノズルニードル20をテーパ面11に向けて付勢する図示しないスプリングの付勢力との釣り合いによりノズルニードル20のリフト量は規定される。燃料圧力が低い、つまり低負荷の場合ノズルニードル20のリフト量は小さくなり、噴孔13から噴射される燃料量は少なくなる。燃料圧力が高い、つまり高負荷の場合ノズルニードル20のリフト量は大きくなり、噴孔13から噴射される燃料量は多くなる。
【0014】
図2に示すように、円柱部23および円錐台部26には、周方向同一位置にノズルニードル20の軸に沿って切欠としての平面23a、26aがそれぞれ一箇所形成されている。平面23aと平面26aとは互いに平行であり、径方向の幅は等しいかまたは平面26aの方が平面23aよりも広い。さらに、平面26aは平面23aよりもノズルニードル20の軸中心に近くなるように形成されている。平面23aと円筒面12とが形成する流路は、横断面が弓状をしており、平面23aを除く円柱部23の外周面と円筒面12とが形成する流路の抵抗よりも流路抵抗が小さい。
【0015】
次に、エンジン負荷に応じたノズルニードル20のリフト量と噴霧角との関係について説明する。
当接部21がテーパ面11に着座した状態からノズルニードル20の周囲に供給されている燃料の圧力が上昇すると、当接部21がテーパ面11から離座し、ピン部22の周囲に燃料が流入する。このとき、前述したように平面23aと円筒面12とが形成する流路の抵抗は平面23aを除く円柱部23の外周面と円筒面12とが形成する流路の抵抗よりも小さい。したがって、ピン部22の周囲に流入した燃料は平面23aと円筒面12との間を流れる。平面26aは平面23aよりも軸中心に近く、平面26aの径方向の幅は平面23aの径方向の幅と等しいか広いので、平面23aと円筒面12との間を流れた燃料は円錐台部26の外周面に衝突することなく平面26aに沿ってノズルニードル20の軸方向に噴射される。低負荷の場合、ノズルニードル20はスロットル距離L以上リフトしないので、狭角噴射が行われる。
【0016】
高負荷の場合、図3に示すようにノズルニードル20はスロットル距離Lよりもリフトし、円錐台部26の周囲全体に燃料が流入する。円錐台部26の周囲全体に流入した燃料は円錐台部26に衝突するので、広角噴射が行われる。
【0017】
(第2実施例)
本発明の第2実施例を図4に示す。第1実施例と実質的に同一構成部分に同一符号を付し説明を省略する。
【0018】
ノズルニードル30は、当接部21の噴射側に噴孔13に貫挿されているピン部31を有している。ピン部31は、円柱部23、縮径部24、連結部32、円錐台部26を当接部21から噴射方向に向けてこの順で形成している。連結部32は円柱状に形成されており、円柱部23よりも径が小さい。
【0019】
低負荷の場合、ノズルニードル30はスロットル距離L以上リフトしないので、第1実施例と同様に狭角噴射が行われる。
高負荷の場合、ノズルニードル30がスロットル距離Lよりもリフトすると、縮径部24および連結部32の外周を通り燃料が円錐台部26の周囲全体に衝突するようになり、図5に示すように噴霧角が広がっていく。
【0020】
第2実施例では、円柱部23と円錐台部26との間に連結部32を設けているので、図5に示すように噴霧角が狭角噴射と広角噴射との間で変動する遷移領域が形成される。連結部32の長さ、または平面26aの切欠量をエンジンの要求特性に応じて調整することにより、遷移領域の範囲を調整することができる。
【0021】
以上説明した本発明の実施の形態を示す上記複数の実施例では、低負荷時において狭角噴射を行うことにより、ノズルニードルのリフト量が変動したりノズルニードルの先端部にカーボン等が付着しても、噴霧角の変動が小さく燃焼状態のばらつきを低減できる。したがって、未燃成分が排ガス中に排出されることを防止できる。
【0022】
さらに高負荷時において広角噴射を行うことにより、燃料噴霧の過度の直進力を抑制し、例えば副燃焼室の内壁に燃料噴霧が付着して液滴化することを防止している。したがって、液滴化した燃料が未燃成分になり排ガス中に排出されることを防止するとともに、エンジンの出力低下を防止する。
【0023】
上記複数の実施例ではピン部の円柱部および円錐台部の周方向にそれぞれ一箇所切欠としての平面を形成したが、周方向に複数個所平面を設けてもよい。平面ではなく、切欠として例えば凹部を形成してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施例による燃料噴射ノズルを示す断面図である。
【図2】第1実施例のノズルニードル先端部を示す図1のII方向矢視図である。
【図3】第1実施例においてノズルニードルがリフトした状態を示す断面図である。
【図4】本発明の第2実施例による燃料噴射ノズルを示す断面図である。
【図5】第1実施例および第2実施例におけるリフト量と噴霧角との関係を示す特性図である。
【符号の説明】
10 弁ボディ
11 テーパ面(弁座)
13 噴孔
20、30 ノズルニードル(弁部材)
21 当接部
22、31 ピン部
23 円柱部
23a 平面(切欠)
26 円錐台部
26a 平面(切欠)
32 連結部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection nozzle that adjusts a spray angle according to an engine load.
[0002]
[Prior art]
When the lift amount of the valve member that opens and closes the nozzle hole is equal to or less than a predetermined amount, the initial injection is performed while suppressing the fuel injection amount. When the lift amount of the valve member exceeds the predetermined amount, the fuel injection amount is increased and the main injection is performed. As fuel injection nozzles, those disclosed in Japanese Utility Model Laid-Open Nos. 59-141164 and 60-119368 are known. In such a fuel injection nozzle, a small amount of fuel is injected and burned in advance in initial injection, thereby preventing rapid combustion in main injection and noise generation from the engine. The fuel injection nozzles disclosed in both of the above publications increase the spray angle in the initial injection with a small lift amount of the valve member and decrease the spray angle in the main injection with a large lift amount of the valve member. Hereinafter, injection with a large spray angle is referred to as wide-angle injection, and injection with a small spray angle is referred to as narrow-angle injection.
[0003]
The fuel injection nozzle disclosed in the aforementioned publication can be used as a fuel injection nozzle that injects a small amount of fuel when the engine is under low load and injects more fuel when the engine is under high load than when under low load. . That is, if the initial injection is performed at a low load and the main injection is mainly performed at a high load, the fuel injection amount can be adjusted according to the engine load.
[0004]
[Problems to be solved by the invention]
However, when the load is low, the lift amount of the valve member may fluctuate due to slight fluctuations in engine load or carbon adhering to the valve member tip. Therefore, when the wide angle injection is performed at a low load of the engine, the spray angle greatly varies due to a slight variation in the lift amount of the valve member. Then, the spray shape becomes unstable, the combustion state varies, and as a result, unburned components are discharged into the exhaust gas, which may cause deterioration of the exhaust gas.
[0005]
Also, if the narrow angle injection is performed at high engine load when the lift amount of the valve member is large and the fuel injection amount is large, the straight traveling force of the fuel spray is increased by the narrow angle injection, so the wall surface of the auxiliary combustion chamber or the main combustion chamber The fuel adheres to the liquid and forms droplets, and the fuel that is formed into droplets becomes an unburned component and is discharged into the exhaust gas, which may cause deterioration of the exhaust gas. Further, when unburned components are generated, the combustion amount is reduced rather than the fuel injection amount, which causes a reduction in engine output.
[0006]
An object of the present invention is to provide a fuel injection nozzle that reduces unburned components discharged into the exhaust gas regardless of the engine load.
[0007]
[Means for Solving the Problems]
According to the fuel injection nozzle of claim 1 of the present invention, by performing narrow angle injection at low load, the engine load varies at low load, or the spray angle varies even if carbon adheres to the valve member tip. There are few, and the variation of a combustion state is prevented. Thereby, generation | occurrence | production of an unburned component can be reduced.
[0008]
Further, by performing wide-angle injection at a high load, the straight running force of the fuel is suppressed, and the fuel is prevented from adhering to the inner wall of the sub-combustion chamber or the main combustion chamber to form droplets. By preventing the fuel from becoming droplets at high loads, it is possible to reduce the generation of unburned components in the exhaust gas and to prevent a decrease in engine output.
[0009]
Furthermore, according to the fuel injection nozzle according to the first aspect of the present invention, the valve member has a pin portion to the fuel injection side of the contact portion. The pin portion has a cylindrical portion and a truncated cone portion that expands in the fuel injection direction on the fuel injection side of the cylindrical portion, and the axial direction of the valve member is the same in the circumferential direction of the cylindrical portion and the truncated cone portion. A notch is formed along. The resistance of the flow path formed between the inner peripheral wall of the valve body that forms the nozzle hole and the notch provided in the cylindrical portion at the time of low load when the lift amount of the valve member is small is the valve body that forms the nozzle hole It is smaller than the resistance of the flow path formed in the outer peripheral wall of the cylindrical portion other than the inner peripheral wall and the notch. Therefore, the fuel passes along the axial direction between the inner peripheral wall of the valve body forming the nozzle hole and the notch provided in the cylindrical portion, and the fuel is provided in the truncated cone portion with almost no collision with the truncated cone portion. The fuel is injected at a narrow angle at low load by being injected along the notch in the axial direction of the valve member.
[0010]
Further, when the valve member is lifted to a position where the cylindrical portion of the valve member does not face the inner wall of the valve body forming the injection hole at a high load, the fuel flows into the injection hole from the entire circumference of the valve member. It collides with the platform and fuel is injected at a wide angle.
[0011]
According to the fuel injection nozzle of claim 2 of the present invention, the notch can be easily formed in the pin portion having a small diameter by forming the notch in the plane.
According to the fuel injection nozzle of claim 3 of the present invention, the spray angle between the narrow angle injection and the wide angle injection is reduced by having the connecting portion having a smaller diameter than the cylindrical portion between the cylindrical portion and the truncated cone portion. A variable transition region is formed. By adjusting the length of the connecting portion and the notch amount of the truncated cone portion, the range of the transition region can be arbitrarily set according to the engine required characteristics.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A fuel injection nozzle according to a first embodiment of the present invention is shown in FIG.
The valve body 10 accommodates a nozzle needle 20 as a valve member in a reciprocating manner. A tapered surface 11 is formed on the inner peripheral wall of the injection side end of the valve body 10 as a valve seat that is reduced in diameter in the injection direction and on which the contact portion 21 of the nozzle needle 20 can be seated. A cylindrical surface 12 having the same inner diameter is formed further on the ejection side of the tapered surface 11. The cylindrical surface 12 forms a nozzle hole 13.
[0013]
The nozzle needle 20 has a pin portion 22 that is inserted into the injection hole 13 on the injection side of the contact portion 21. The pin part 22 forms the column part 23, the reduced diameter part 24, and the truncated cone part 26 in this order from the contact part 21 toward the injection direction. The outer diameter d 2 of the cylindrical portion 23 is slightly smaller than the inner diameter d 1 of the injection hole 13. A distance L from a boundary 25 between the cylindrical portion 23 and the reduced diameter portion 24 to a boundary 14 between the tapered surface 11 and the cylindrical surface 12 is referred to as a throttle distance. A force received by the nozzle needle 20 in a direction away from the tapered surface 11 due to fuel pressure supplied from a high pressure fuel pump (not shown) around the nozzle needle, and a spring (not shown) that urges the nozzle needle 20 toward the tapered surface 11. The lift amount of the nozzle needle 20 is defined by the balance with the urging force. When the fuel pressure is low, that is, when the load is low, the lift amount of the nozzle needle 20 is small, and the amount of fuel injected from the nozzle hole 13 is small. When the fuel pressure is high, that is, when the load is high, the lift amount of the nozzle needle 20 increases, and the amount of fuel injected from the injection hole 13 increases.
[0014]
As shown in FIG. 2, the cylindrical portion 23 and the truncated cone portion 26 are each formed with one plane 23 a and 26 a as a notch along the axis of the nozzle needle 20 at the same position in the circumferential direction. The plane 23a and the plane 26a are parallel to each other, and the radial widths are equal or the plane 26a is wider than the plane 23a. Furthermore, the flat surface 26a is formed closer to the axial center of the nozzle needle 20 than the flat surface 23a. The flow path formed by the flat surface 23a and the cylindrical surface 12 has an arcuate cross section, and the flow path is larger than the resistance of the flow path formed by the outer peripheral surface of the cylindrical portion 23 excluding the flat surface 23a and the cylindrical surface 12. Resistance is small.
[0015]
Next, the relationship between the lift amount of the nozzle needle 20 according to the engine load and the spray angle will be described.
When the pressure of the fuel supplied to the periphery of the nozzle needle 20 rises from the state where the contact portion 21 is seated on the tapered surface 11, the contact portion 21 is separated from the taper surface 11 and the fuel around the pin portion 22 is fueled. Flows in. At this time, as described above, the resistance of the flow path formed by the flat surface 23a and the cylindrical surface 12 is smaller than the resistance of the flow path formed by the outer peripheral surface of the column portion 23 excluding the flat surface 23a and the cylindrical surface 12. Therefore, the fuel that has flowed into the periphery of the pin portion 22 flows between the flat surface 23 a and the cylindrical surface 12. The plane 26a is closer to the axial center than the plane 23a, and the radial width of the plane 26a is equal to or larger than the radial width of the plane 23a, so that the fuel that flows between the plane 23a and the cylindrical surface 12 is the truncated cone portion. The nozzle needle 20 is injected in the axial direction along the flat surface 26 a without colliding with the outer peripheral surface of the nozzle 26. In the case of a low load, the nozzle needle 20 does not lift more than the throttle distance L, so narrow angle injection is performed.
[0016]
In the case of a high load, as shown in FIG. 3, the nozzle needle 20 is lifted more than the throttle distance L, and the fuel flows into the entire periphery of the truncated cone portion 26. Since the fuel that has flowed into the entire periphery of the truncated cone part 26 collides with the truncated cone part 26, wide-angle injection is performed.
[0017]
(Second embodiment)
A second embodiment of the present invention is shown in FIG. Components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0018]
The nozzle needle 30 has a pin portion 31 that is inserted into the injection hole 13 on the injection side of the contact portion 21. The pin part 31 is formed in this order with the cylindrical part 23, the reduced diameter part 24, the connecting part 32, and the truncated cone part 26 from the contact part 21 toward the injection direction. The connecting portion 32 is formed in a columnar shape and has a smaller diameter than the columnar portion 23.
[0019]
In the case of a low load, the nozzle needle 30 does not lift more than the throttle distance L, so that narrow-angle injection is performed as in the first embodiment.
In the case of a high load, when the nozzle needle 30 is lifted more than the throttle distance L, the fuel passes through the outer periphery of the reduced diameter portion 24 and the connecting portion 32 and collides with the entire periphery of the truncated cone portion 26, as shown in FIG. The spray angle spreads.
[0020]
In the second embodiment, since the connecting portion 32 is provided between the cylindrical portion 23 and the truncated cone portion 26, the transition region where the spray angle varies between the narrow angle injection and the wide angle injection as shown in FIG. Is formed. The range of the transition region can be adjusted by adjusting the length of the connecting portion 32 or the cutout amount of the flat surface 26a in accordance with the required characteristics of the engine.
[0021]
In the above-described embodiments showing the embodiment of the present invention described above, by performing narrow angle injection at low load, the lift amount of the nozzle needle fluctuates or carbon or the like adheres to the tip of the nozzle needle. However, variation in the spray angle is small, and variations in the combustion state can be reduced. Therefore, it is possible to prevent unburned components from being discharged into the exhaust gas.
[0022]
Further, by performing wide-angle injection at high load, the excessive straight traveling force of the fuel spray is suppressed, and for example, the fuel spray is prevented from adhering to the inner wall of the sub-combustion chamber to form droplets. Accordingly, it is possible to prevent the fuel droplets from becoming unburned components and being discharged into the exhaust gas, and to prevent a decrease in engine output.
[0023]
In the above embodiments, a plane as a notch is formed in the circumferential direction of the cylindrical portion and the truncated cone portion of the pin portion, but a plurality of planes may be provided in the circumferential direction. For example, a recess may be formed as a notch instead of a flat surface.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a fuel injection nozzle according to a first embodiment of the present invention.
FIG. 2 is a view taken in the direction of the arrow II in FIG. 1 showing the nozzle needle tip of the first embodiment.
FIG. 3 is a cross-sectional view showing a state in which the nozzle needle is lifted in the first embodiment.
FIG. 4 is a cross-sectional view showing a fuel injection nozzle according to a second embodiment of the present invention.
FIG. 5 is a characteristic diagram showing the relationship between the lift amount and the spray angle in the first embodiment and the second embodiment.
[Explanation of symbols]
10 Valve body 11 Tapered surface (valve seat)
13 Injection hole 20, 30 Nozzle needle (valve member)
21 Contact part 22, 31 Pin part 23 Cylindrical part 23a Plane (notch)
26 truncated cone part 26a plane (notch)
32 connecting part

Claims (3)

噴孔から噴射する燃料を断続する弁部材と、
前記噴孔を形成し、前記弁部材が着座することにより燃料噴射が遮断され、前記弁部材が離座することにより燃料が噴射される弁座を有する弁ボディとを備え、
前記弁部材は、前記弁座に着座可能な当接部と、前記当接部の燃料噴射側に設けられ前記噴孔に貫挿されるピン部とを有し、前記ピン部は、円柱部と、前記円柱部の燃料噴射側に設けられ燃料噴射方向に向けて拡径する円錐台部とを有し、前記円柱部および前記円錐台部の周方向同一位置に前記弁部材の軸方向に沿って切欠を形成しており、
エンジンの低負荷時に狭角噴射を行い、高負荷時に広角噴射を行うことを特徴とする燃料噴射ノズル。
A valve member for intermittently injecting fuel injected from the nozzle hole;
A valve body having a valve seat that forms the nozzle hole, shuts off fuel injection when the valve member is seated, and injects fuel when the valve member is seated;
The valve member includes an abutting portion that can be seated on the valve seat, and a pin portion that is provided on a fuel injection side of the abutting portion and is inserted into the nozzle hole. And a truncated cone part that is provided on the fuel injection side of the cylindrical part and expands in the fuel injection direction, and is located along the axial direction of the valve member at the same circumferential position of the cylindrical part and the truncated cone part. Forming a notch,
A fuel injection nozzle that performs narrow-angle injection when the engine is under a low load and performs a wide-angle injection when the engine is under a high load.
前記両切欠は互いに平行な平面であることを特徴とする請求項1記載の燃料噴射ノズル。The fuel injection nozzle according to claim 1, wherein the two notches are planes parallel to each other. 前記円柱部と前記円錐台部との間に前記円柱部よりも小径の連結部を有することを特徴とする請求項1または2記載の燃料噴射ノズル。The fuel injection nozzle according to claim 1, further comprising a connecting portion having a smaller diameter than the columnar portion between the columnar portion and the truncated cone portion.
JP24697698A 1998-09-01 1998-09-01 Fuel injection nozzle Expired - Fee Related JP3912641B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24697698A JP3912641B2 (en) 1998-09-01 1998-09-01 Fuel injection nozzle
DE1999141357 DE19941357A1 (en) 1998-09-01 1999-08-31 Fuel injection nozzle comprises body with spray hole for fuel injection and valve seat together with valve component having part locating on valve seat to stop fuel injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697698A JP3912641B2 (en) 1998-09-01 1998-09-01 Fuel injection nozzle

Publications (2)

Publication Number Publication Date
JP2000073915A JP2000073915A (en) 2000-03-07
JP3912641B2 true JP3912641B2 (en) 2007-05-09

Family

ID=17156529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697698A Expired - Fee Related JP3912641B2 (en) 1998-09-01 1998-09-01 Fuel injection nozzle

Country Status (2)

Country Link
JP (1) JP3912641B2 (en)
DE (1) DE19941357A1 (en)

Also Published As

Publication number Publication date
DE19941357A1 (en) 2000-03-02
JP2000073915A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US9803536B2 (en) Auxiliary chamber type internal combustion engine
US7104475B2 (en) Low pressure fuel injector nozzle
US20060097075A1 (en) Low pressure fuel injector nozzle
US7438241B2 (en) Low pressure fuel injector nozzle
JP3912641B2 (en) Fuel injection nozzle
JP2976973B1 (en) Fuel injection valve for internal combustion engine
US6840465B2 (en) Manufacturing method of a fuel injection valve; and a fuel injection valve and an internal combustion engine equipped therewith
JP2017141681A (en) Fuel injection nozzle
JPH10281041A (en) Fuel injection valve
US7082922B2 (en) Fuel injection method of internal combustion engine, fuel injection valve of the same, and internal combustion engine
US20030094518A1 (en) Fuel injector
JP4100345B2 (en) In-cylinder injection spark ignition internal combustion engine
JP3849224B2 (en) Fuel injection valve
JP6695476B2 (en) Fuel injector
KR102412062B1 (en) Fuel Injection Nozzle of Diesel Engine
JP2003120474A (en) Fuel injection nozzle
JP3748116B2 (en) Fuel injection device
JP4062049B2 (en) In-cylinder direct injection internal combustion engine
JP2991809B2 (en) Fuel injection nozzle
WO2016170999A1 (en) Fuel injection device
JPH10288129A (en) Injection valve
JPH07127549A (en) Fuel injection nozzle
JPH0222235B2 (en)
KR200161086Y1 (en) Pilot fuel injection valve for a diesel engine
KR200252304Y1 (en) Air shroud injector with thread passages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees