JP3912171B2 - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- JP3912171B2 JP3912171B2 JP2002125712A JP2002125712A JP3912171B2 JP 3912171 B2 JP3912171 B2 JP 3912171B2 JP 2002125712 A JP2002125712 A JP 2002125712A JP 2002125712 A JP2002125712 A JP 2002125712A JP 3912171 B2 JP3912171 B2 JP 3912171B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- light emitting
- light
- wave
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Discharge Lamps And Accessories Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、可視および紫外線の点状の放射源に関し、特に大出力となる紫外線の点状の放射源に関する。
【0002】
【従来の技術】
半導体や液晶といった電子産業分野において、半導体基板や液晶基板への微細回路パターンの転写露光のため、紫外線露光が行われ、その光源装置には、点状の光源を有する紫外線光源が使用される。
近年、露光される面積の大型化、生産ラインの高スループット化の市場要求が高まりつつある。現状、大面積露光用の紫外線光源としては、水銀蒸気の発光を利用した水銀ランプが使用されている。これは、石英ガラスバルブ内に一対の高融点金属電極を配置し、バルブ内に数mg〜数10mg/cc以上の水銀とバッファガスとしてアルゴン等の希ガスを封入した放電ランプである。しかし、電極を有するため、出力としては10kWが限界とされている。それは陽極側の電極が、加熱され蒸発してしまい、バルブ内の黒化による放射光の減少や電極の融解により放電自体の持続が不可能になるからである。
【0003】
また、レーザを用いたプラズマ発光が考えられている。しかし、これはレーザのエネルギ変換効率が低く、実用にはなっていない。また、マイクロ波励起の光源が、例えば無電極ランプのように検討されているが、点光源化が困難な状況にある。それは次の理由による。マイクロ波は波長が1cm以上と長いため、波長程度以下に集中させることができない。
また、点状のプラズマ化ができないのである。
【0004】
可視光点光源も大出力化が望まれている。耐候試験の目的で、繊維や太陽電池の大面積一様照射の用途に、現在はキセノンランプが使用されている。しかし、大出力化は7kWまでにとどまる。大出力の可視光光源としてはボルテックスアークという発光源があるが、これは電極交換が頻繁に必要であり、メンテナンスが面倒であるという欠点があった。
【0005】
ところで最近、ミリ波サブミリ波発生装置の、投入電力に対するミリ波、サブミリ波変換効率の向上は目覚しく、例えば、投入電力からの変換効率が50%に達する装置としてジャイロトロンというミリ波サブミリ波発生装置が注目を集めている。例えば 応用物理 第70巻 第3号 2001年 322頁〜326頁 にその実例が示される。当文献に基本的構成と動作原理が示される。このミリ波サブミリ波はマイクロ波のように導波管は必要とせず、空中で電力を伝播できる。発明者はこのミリ波サブミリ波発生装置の点状の放射源への応用について、鋭意検討を行った結果、本発明に至った。
【0006】
【発明の解決しようとする課題】
先に述べた大面積の露光のためには出力15kW以上、約10mm程度にまで点状光源化した紫外線源が望まれる。また、可視光源においても20kW以上の大出力のものが耐光試験用途で望まれている。そこで、本発明の目的は、電極の寿命に関係なく、連続的に大出力の光放射を行える点状光源を実現することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明は、ミリ波サブミリ波発生源からの波長0.1mm〜10mmの電磁波を電磁波拡大反射鏡または電磁波拡大レンズで一旦拡大させた後に電磁波収束反射鏡または電磁波収束レンズで収束し、その収束点付近に収束電磁波と放射光を透過する気密容器に封入された気体をプラズマ化し、発光させ、その発光を反射鏡を用いて集光させる光放射装置であって、
電磁波の収束点位置に対して、電磁波の導入側と反対側に、電磁波の収束立体角と同程度の大きさの、波長0.1mm〜10mmの電磁波を吸収する電磁波の吸収体を設けたことを特徴とする光放射装置とするものである。
【0008】
請求項2に記載の発明は、前記発光する気体が希ガスを主成分とすることを特徴とする請求項1に記載の光放射装置とするものである。
【0009】
請求項3に記載の発明は、前記発光する気体中に水銀・亜鉛・インジュウムから選ばれた金属か、金属ハロゲン化物か、イオウかの何れかを含有することを特徴とする請求項1に記載の光放射装置とするものである。
【0014】
請求項4に記載の発明は、電磁波を収束し、その焦点位置付近で気体放電させる領域の近傍に始動用補助アンテナを設けたことを特徴とする請求項1乃至請求項3の何れかに記載の光放射装置とするものである。
【0015】
【作用】
本発明の構成によれば、入力電力に対して50%以上の変換効率が実現されているミリ波、サブミリ波を一旦拡大させた後に収束し、その焦点位置でプラズマ化し、発光させ、点状の放射源となる。反射鏡を設けることでプラズマからの光を小さい窓部に集めて入射電磁波の散乱による漏洩を防止できる。
【0016】
発光する気体として希ガスを主成分とすると、希ガスは低い入射電磁波のエネルギで発光開始できるので始動が容易になる。
【0017】
また、希ガスの他に別の放射種を加えると、用途に合わせた波長の放射が得られる。気密容器内に気体を収容することで、高気圧での発光が可能となり、放射出力を高めることができる。
【0019】
電磁波の収束点位置に対して電磁波の吸収体を電磁波の導入側と反対側に設けることにより、発光開始まで電磁波が放射装置の外部に漏れるのを防ぐことができる。
【0022】
【発明の実施の形態】
次に図面を用いて本発明の光放射装置の実施形態を説明する。図1は第一の実施例であり、金属製の筐体100内にミリ波サブミリ波発生源1から384GHz、10kWの出力のビーム状サブミリ波が導入され、導電率の高い金属製の電磁波拡大反射鏡2でサブミリ波は一旦拡大され、電磁波収束反射鏡3でサブミリ波は0.6ステラジアンの立体角(θ1)によって短焦点で収束される。
【0023】
収束点sは、例えば石英ガラス製のガラス容器10の中心に位置し、肉厚3.5mm、外径100mmのガラス容器10内にはアルゴンAr約10kPa、水銀Hg20mg/ccが封入されている。光源サイズは約10mmである。不図示であるが、ガラス容器10は強制空冷されて使用される。
【0024】
ガラス容器10はガラス支持棒15によって支持されている。なお、本願の図面においてガラス容器10以外の部材(例えば電磁波拡大反射鏡2)を支持する支持部材は便宜上、省略している。
【0025】
電磁波の収束点sに対して電磁波吸収体11を電磁波の導入側と反対側に設けることにより、発光開始まで電磁波が放射装置の外部に漏れるのを防ぐことができる。電磁波吸収体11は例えばカーボンブラックからなる。収束点sでプラズマが生じる段階までサブミリ波を吸収するものである。この電磁波吸収体11は冷却機構(不図示)を具備する場合がある。
【0026】
集光反射鏡4で反射され、筐体5の窓部6にいたる。そして例えば純粋な石英ガラスからなる窓部材7を透過し、光放射装置100から装置外部に放射される。窓部材7は、純粋な石英ガラス以外にも、ミリ波サブミリ波の吸収のために石英ガラスに20ppmのTiO2をドープした材料でもいい。また、窓部材7は水のセルであってもよい。
【0027】
発光は、従来の超高圧水銀ランプと同等で短波長域が強い発光となる。
【0031】
一旦、プラズマが生成すると、キセノン原子が励起されて発光する。その現出する光源サイズは約8mm程度になる。そして光の波長は 紫外域から可視域に亘る連続スペクトルである。
【0032】
ガラス容器10内に封入する希ガスとしてはキセノンのほかにもヘリウムHe、ネオンNe、アルゴンAr、クリプトンKrを選択でき、さらには水銀Hg、亜鉛Zn、インジュウムInなどの金属や金属ハロゲン化物、イオウSのような発光種を添加することもできる。そうすることで、用途に合わせた波長の放射が得られる。発光スペクトルとしては従来の放電ランプの発光スペクトルと略同じである。
【0033】
図3は本発明の第二実施例として光放射装置の構成を示したものである。この実施例においては、電磁波拡大反射鏡2、電磁波収束反射鏡3に替えて、それぞれ、電磁波拡大レンズ41および電磁波収束レンズ42を使用する。電磁波拡大レンズ41は電磁波の吸収が少なく屈折率が高い、例えば窒化珪素製や水晶製であり、電磁波収束レンズ42は例えば水晶製である。
【0034】
金属製の筐体100内にミリ波サブミリ波発生源1からは41GHz、20kWのミリ波が導入され、電磁波拡大レンズ41でミリ波は一旦拡大され、電磁波収束レンズ42でミリ波は0.2ステラジアンの立体角(θ3)によって短焦点で収束される。ガラス容器10内に封入する発光種としては、第一実施例と略同様に水銀Hg23mg/ccと10kPaのアルゴンArとした。光源サイズは約10mm、発光は従来の超高圧水銀ランプと同等で短波長域が強い発光となる。
【0035】
図4は本発明の第三実施例として光放射装置の構成を示したものである。この実施例においては、電磁波拡大反射鏡2と電磁波収束反射鏡3および電磁波収束レンズ42を組合わせている。第一の実施例との違いは電磁波収束反射鏡3が第一の実施例においては、アルミニウムであるのに対し、第三の実施例においては、金メッキアルミニウムである点である。
【0036】
ミリ波サブミリ波発生源1からは41GHz、20kWのミリ波が導入され、電磁波拡大反射鏡2でミリ波は一旦拡大され、電磁波収束レンズ42でミリ波は短焦点で収束される。ガラス容器10内に封入する発光種としては、第一実施例と略同様に水銀Hg23mg/ccと10kPaのアルゴンArとした。光源サイズは約10mm、発光は従来の超高圧水銀ランプと同等で短波長域が強い発光となる。
【0037】
そして、光を取り出す窓部6にはロッドインテグレータ8を具える。ロッドインテグレータを使用することで、利用光の収束と電磁波が光放射装置100の外部に漏れないように遮蔽ができる。
【0040】
図7は、始動用補助アンテナ30を具備した第四の実施例である。始動用補助アンテナ30は、その先端部30Aを除き、絶縁体50に覆われている。始動用補助アンテナ30は高電圧部60と接続されている。始動用補助アンテナの無い場合と比較して、約20%の低い電力からプラズマが発生するため放電開始が容易であり、放電開始電力範囲を低電力側へ広げることができる。
【0041】
ミリ波サブミリ波発生源1からは384GHz、30kWのサブミリ波が導入され、電磁波拡大反射鏡2でサブミリ波は一旦拡大され、電磁波収束反射鏡3でサブミリ波は短焦点で収束される。ガラス容器10内に封入する発光種としては、キセノンXe1MPaとした。現出する光源サイズは約8mm程度になる。そして光の波長は紫外域から可視域に亘る連続スペクトルである。
【0042】
以上、本発明の説明においてはミリ波サブミリ波発生源としてジャイロトロンを使用する例で説明してきたが、ジャイロトロンのほかにもクライストロン、バーカトールなどがある。
【0043】
【発明の効果】
本発明の請求項1の発明によれば、ミリ波、サブミリ波を収束し、その焦点位置でプラズマ化し、発光させ、点状の放射源とする技術により、大出力のUV、可視の点状光源を実現することができる。反射鏡を設けることでプラズマからの光を小さい窓部に集めて入射電磁波の散乱による漏洩を防止できる。そして、気密容器内に気体を収容することで、高気圧での発光が可能となり、放射出力を高めることができる。そして、電磁波の収束点位置に対して電磁波の吸収体を電磁波の導入側と反対側に設けることにより、発光開始まで電磁波が放射装置の外部に漏れるのを防ぐことができる。
【0044】
特に請求項2の発明によれば、発光する気体として希ガスを主成分とすると、希ガスは低い入射電磁波のエネルギで発光開始できるので始動が容易になる。
【0047】
請求項3の発明によれば、希ガスの他に別の放射種を加え、用途に合わせた波長の放射が得られる。
【0050】
請求項4の発明によれば、始動補助手段を設けることで、放電開始電力を広く取ることができる。
【図面の簡単な説明】
【図1】本発明の光放射装置の第一実施例を示す。
【図2】光放射装置の例を示す。
【図3】本発明の光放射装置の第二実施例を示す。
【図4】本発明の光放射装置の第三実施例を示す。
【図5】光放射装置の例を示す。
【図6】光放射装置の例を示す。
【図7】本発明の光放射装置の第四実施例を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a visible and ultraviolet spot radiation source, and more particularly to an ultraviolet spot radiation source having a large output.
[0002]
[Prior art]
In the electronic industry field such as semiconductors and liquid crystals, ultraviolet exposure is performed for transfer exposure of a fine circuit pattern onto a semiconductor substrate or a liquid crystal substrate, and an ultraviolet light source having a point light source is used for the light source device.
In recent years, market demands for increasing the exposed area and increasing the throughput of production lines are increasing. At present, as an ultraviolet light source for large area exposure, a mercury lamp using light emission of mercury vapor is used. This is a discharge lamp in which a pair of refractory metal electrodes are arranged in a quartz glass bulb, and several mg to several tens mg / cc or more of mercury and a rare gas such as argon are enclosed in the bulb as a buffer gas. However, since it has electrodes, the output is limited to 10 kW. This is because the electrode on the anode side is heated and evaporates, and the discharge itself cannot be sustained due to the decrease in radiated light due to blackening in the bulb and the melting of the electrode.
[0003]
Plasma emission using a laser is also considered. However, this is not practical because the energy conversion efficiency of the laser is low. Further, although a microwave excitation light source has been studied as an electrodeless lamp, for example, it is difficult to make a point light source. The reason is as follows. Since the microwave has a long wavelength of 1 cm or more, it cannot be concentrated below the wavelength.
In addition, it cannot be converted into a point plasma.
[0004]
A visible light point light source is also desired to have a large output. For the purpose of weathering tests, xenon lamps are currently used for large area uniform irradiation of fibers and solar cells. However, the increase in output is limited to 7 kW. As a high-power visible light source, there is a light source called a vortex arc. However, this has a drawback in that electrode replacement is frequently required and maintenance is troublesome.
[0005]
Recently, the millimeter wave and submillimeter wave generators have dramatically improved the conversion efficiency of millimeter waves and submillimeter waves with respect to the input power. For example, a millimeter wave submillimeter wave generator called a gyrotron has a conversion efficiency of 50% from the input power. Has attracted attention. For example, Applied Physics Vol. 70, No. 3, 2001, pages 322 to 326, an example is shown. This document shows the basic configuration and operating principle. This millimeter wave submillimeter wave does not require a waveguide unlike microwaves, and can propagate power in the air. The inventor has intensively studied the application of the millimeter wave submillimeter wave generator to a point-like radiation source, and as a result, has reached the present invention.
[0006]
[Problem to be Solved by the Invention]
For the exposure of a large area as described above, an ultraviolet light source that is converted into a point light source to an output of about 15 kW or more and about 10 mm is desired. Further, a visible light source having a high output of 20 kW or more is desired for a light resistance test application. Accordingly, an object of the present invention is to realize a point light source capable of continuously emitting high-power light regardless of the life of the electrode.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that an electromagnetic wave having a wavelength of 0.1 mm to 10 mm from a millimeter wave sub-millimeter wave generation source is once magnified by an electromagnetic wave magnifying reflector or an electromagnetic wave magnifying lens and then converged. Light radiation that converges with a reflecting mirror or electromagnetic wave converging lens, turns the gas sealed in an airtight container that transmits the converging electromagnetic wave and radiation near the convergence point into plasma, emits light, and collects the emitted light using a reflecting mirror A device,
An electromagnetic wave absorber that absorbs an electromagnetic wave having a wavelength of 0.1 mm to 10 mm and having a size comparable to the solid angle of convergence of the electromagnetic wave is provided on the side opposite to the electromagnetic wave introduction point with respect to the electromagnetic wave convergence point position. A light emitting device characterized by the above.
[0008]
According to a second aspect of the present invention, there is provided the light emitting device according to the first aspect, wherein the light emitting gas contains a rare gas as a main component.
[0009]
The invention described in
[0014]
The invention according to
[0015]
[Action]
According to the configuration of the present invention, the millimeter wave and the submillimeter wave, which have achieved conversion efficiency of 50% or more with respect to the input power, are once enlarged and then converged, converted into plasma at the focal position, emitted, and dotted. Becomes a radiation source. By providing the reflecting mirror, it is possible to collect light from the plasma in a small window and prevent leakage due to scattering of incident electromagnetic waves.
[0016]
When a rare gas is a main component as a light emitting gas, the rare gas can start to emit light with a low incident electromagnetic wave energy, so that starting is facilitated.
[0017]
Further, when another radioactive species is added in addition to the rare gas, radiation having a wavelength suitable for the application can be obtained. By containing the gas in the hermetic container, light emission at high atmospheric pressure is possible, and the radiation output can be increased.
[0019]
By providing the electromagnetic wave absorber on the side opposite to the electromagnetic wave introduction side with respect to the electromagnetic wave convergence point position, it is possible to prevent the electromagnetic wave from leaking outside the radiation device until the start of light emission.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the light emitting device of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment, in which a beam-like submillimeter wave with an output of 384 GHz and 10 kW is introduced from a millimeter wave submillimeter wave generation source 1 into a
[0023]
The convergence point s is located at the center of a
[0024]
The
[0025]
By providing the
[0026]
The light is reflected by the
[0027]
The light emission is equivalent to that of a conventional ultra-high pressure mercury lamp, and light emission is strong in the short wavelength region.
[0031]
Once the plasma is generated, the xenon atoms are excited and emit light. The appearing light source size is about 8 mm. The wavelength of light is a continuous spectrum from the ultraviolet to the visible range.
[0032]
In addition to xenon, helium He, neon Ne, argon Ar, and krypton Kr can be selected as the rare gas to be enclosed in the
[0033]
FIG. 3 shows the configuration of a light emitting device as a second embodiment of the present invention. In this embodiment, an electromagnetic
[0034]
A millimeter wave of 41 GHz and 20 kW is introduced from the millimeter wave submillimeter wave generation source 1 into the
[0035]
FIG. 4 shows the configuration of a light emitting device as a third embodiment of the present invention. In this embodiment, the electromagnetic wave enlarging reflecting
[0036]
A millimeter wave of 41 GHz and 20 kW is introduced from the millimeter wave / submillimeter wave generation source 1, the millimeter wave is once expanded by the electromagnetic
[0037]
The
[0040]
FIG. 7 shows a fourth embodiment having a starting
[0041]
A submillimeter wave of 384 GHz and 30 kW is introduced from the millimeter wave submillimeter wave generation source 1, the submillimeter wave is once magnified by the electromagnetic
[0042]
In the above description of the present invention, an example in which a gyrotron is used as a millimeter wave submillimeter wave generation source has been described. However, there are a klystron, a barkator and the like in addition to the gyrotron.
[0043]
【The invention's effect】
According to the first aspect of the present invention, high-power UV and visible dot-like shapes can be obtained by a technique in which millimeter waves and sub-millimeter waves are converged, converted into plasma at the focal position, and emitted as a point-like radiation source. A light source can be realized. By providing the reflecting mirror, it is possible to collect light from the plasma in a small window and prevent leakage due to scattering of incident electromagnetic waves. And by accommodating gas in an airtight container, light emission at a high atmospheric pressure becomes possible and radiation output can be increased. By providing an electromagnetic wave absorber on the side opposite to the electromagnetic wave introduction side with respect to the electromagnetic wave convergence point position, it is possible to prevent the electromagnetic wave from leaking to the outside of the radiation device until the start of light emission.
[0044]
In particular, according to the second aspect of the present invention, when a rare gas is a main component as a light emitting gas, the rare gas can start to emit light with a low incident electromagnetic wave energy, so that starting is facilitated.
[0047]
According to the invention of
[0050]
According to the invention of
[Brief description of the drawings]
FIG. 1 shows a first embodiment of a light emitting device of the present invention.
FIG. 2 shows an example of a light emitting device .
FIG. 3 shows a second embodiment of the light emitting device of the present invention.
FIG. 4 shows a third embodiment of the light emitting device of the present invention.
FIG. 5 shows an example of a light emitting device.
FIG. 6 shows an example of a light emitting device.
FIG. 7 shows a fourth embodiment of the light emitting apparatus of the present invention.
Claims (4)
電磁波の収束点位置に対して、電磁波の導入側と反対側に、電磁波の収束立体角と同程度の大きさの、波長0.1mm〜10mmの電磁波を吸収する電磁波の吸収体を設けたことを特徴とする光放射装置。An electromagnetic wave having a wavelength of 0.1 mm to 10 mm from a millimeter-wave sub-millimeter wave source is once magnified by an electromagnetic wave magnifying reflector or an electromagnetic wave magnifying lens, and then converged by an electromagnetic wave converging reflector or an electromagnetic wave converging lens, and converges near the convergence point. A gas emission device that converts a gas sealed in an airtight container that transmits radiated light into plasma, emits light, and collects the emitted light using a reflecting mirror,
An electromagnetic wave absorber that absorbs an electromagnetic wave having a wavelength of 0.1 mm to 10 mm and having a size comparable to the solid angle of convergence of the electromagnetic wave is provided on the side opposite to the electromagnetic wave introduction point with respect to the electromagnetic wave convergence point position. A light emitting device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002125712A JP3912171B2 (en) | 2002-04-26 | 2002-04-26 | Light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002125712A JP3912171B2 (en) | 2002-04-26 | 2002-04-26 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003317675A JP2003317675A (en) | 2003-11-07 |
JP3912171B2 true JP3912171B2 (en) | 2007-05-09 |
Family
ID=29540352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002125712A Expired - Fee Related JP3912171B2 (en) | 2002-04-26 | 2002-04-26 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3912171B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI457715B (en) * | 2008-12-27 | 2014-10-21 | Ushio Electric Inc | Light source device |
JP5252586B2 (en) * | 2009-04-15 | 2013-07-31 | ウシオ電機株式会社 | Laser drive light source |
EP2534672B1 (en) | 2010-02-09 | 2016-06-01 | Energetiq Technology Inc. | Laser-driven light source |
DE102010015495B4 (en) * | 2010-04-16 | 2012-04-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for generating UV light |
US8853655B2 (en) * | 2013-02-22 | 2014-10-07 | Kla-Tencor Corporation | Gas refraction compensation for laser-sustained plasma bulbs |
IL234729B (en) | 2013-09-20 | 2021-02-28 | Asml Netherlands Bv | Laser-operated light source and method including mode scrambler |
IL234727B (en) | 2013-09-20 | 2020-09-30 | Asml Netherlands Bv | Laser-operated light source in an optical system corrected for aberrations and method of designing the optical system |
US9741553B2 (en) | 2014-05-15 | 2017-08-22 | Excelitas Technologies Corp. | Elliptical and dual parabolic laser driven sealed beam lamps |
US10186416B2 (en) | 2014-05-15 | 2019-01-22 | Excelitas Technologies Corp. | Apparatus and a method for operating a variable pressure sealed beam lamp |
EP3143638B1 (en) | 2014-05-15 | 2018-11-14 | Excelitas Technologies Corp. | Laser driven sealed beam lamp |
US9576785B2 (en) | 2015-05-14 | 2017-02-21 | Excelitas Technologies Corp. | Electrodeless single CW laser driven xenon lamp |
US10008378B2 (en) | 2015-05-14 | 2018-06-26 | Excelitas Technologies Corp. | Laser driven sealed beam lamp with improved stability |
US10057973B2 (en) | 2015-05-14 | 2018-08-21 | Excelitas Technologies Corp. | Electrodeless single low power CW laser driven plasma lamp |
CN106298435B (en) * | 2015-06-02 | 2018-04-24 | 上海业力生物科技有限公司 | For the system of chromatographic isolation, ultraviolet source and UV detection devices |
US10109473B1 (en) | 2018-01-26 | 2018-10-23 | Excelitas Technologies Corp. | Mechanically sealed tube for laser sustained plasma lamp and production method for same |
US11587781B2 (en) | 2021-05-24 | 2023-02-21 | Hamamatsu Photonics K.K. | Laser-driven light source with electrodeless ignition |
-
2002
- 2002-04-26 JP JP2002125712A patent/JP3912171B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003317675A (en) | 2003-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3912171B2 (en) | Light emitting device | |
US5998934A (en) | Microwave-excited discharge lamp apparatus | |
JP4932124B2 (en) | Plasma lamp having dielectric waveguide and light emitting method thereof | |
JP4714868B2 (en) | Discharge lamp equipment | |
JP3580205B2 (en) | Electromagnetic energy excitation point light source lamp device | |
EA016810B1 (en) | Light source | |
EP0076648A2 (en) | Electrodeless fluorescent light source | |
JP3202910B2 (en) | Microwave discharge lamp | |
US9805925B1 (en) | Electrodeless high intensity discharge lamp with field suppression probes | |
JP2007080705A (en) | Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp | |
US6737810B2 (en) | Electrodeless discharge lamp apparatus with adjustable exciting electrodes | |
JP3400796B2 (en) | Electrodeless discharge lamp device | |
US9177779B1 (en) | Low profile electrodeless lamps with an externally-grounded probe | |
JPH0750151A (en) | Excimer discharge lamp | |
JP6263788B2 (en) | Microwave electrodeless lamp and light irradiation device using the same | |
US7417375B2 (en) | Mercury free metal halide lamp | |
US6670759B1 (en) | Electrodeless discharge lamp | |
JP2011086383A (en) | Light source device and projection display device | |
JPWO2009019978A1 (en) | Discharge lamp | |
US8102107B2 (en) | Light-emitting devices having excited sulfur medium by inductively-coupled electrons | |
JPH09293482A (en) | Metal vapor discharge lamp | |
JP2006344383A (en) | Light irradiation device | |
JPH0750153A (en) | Metallic vapor discharge lamp device | |
Kando et al. | Application of an antenna excited high pressure microwave discharge to compact discharge lamps | |
JP2004227820A (en) | Discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |