JP3912155B2 - Thermoforming method of resin film and manufacturing method of decorative resin molding - Google Patents

Thermoforming method of resin film and manufacturing method of decorative resin molding Download PDF

Info

Publication number
JP3912155B2
JP3912155B2 JP2002082965A JP2002082965A JP3912155B2 JP 3912155 B2 JP3912155 B2 JP 3912155B2 JP 2002082965 A JP2002082965 A JP 2002082965A JP 2002082965 A JP2002082965 A JP 2002082965A JP 3912155 B2 JP3912155 B2 JP 3912155B2
Authority
JP
Japan
Prior art keywords
film
resin
layer
hygroscopic
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082965A
Other languages
Japanese (ja)
Other versions
JP2003276077A (en
Inventor
陽介 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002082965A priority Critical patent/JP3912155B2/en
Publication of JP2003276077A publication Critical patent/JP2003276077A/en
Application granted granted Critical
Publication of JP3912155B2 publication Critical patent/JP3912155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを賦形するための熱成形方法に関するものである。本発明はまた、こうして賦形された樹脂フィルムが表面に一体貼合された樹脂成形体の製造方法にも関係している。
【0002】
【従来の技術】
樹脂フィルムはさまざまな分野で利用されているが、近年、成形体の印刷代替として、印刷や着色が施された樹脂フィルムを用い、それを成形品の表面に一体貼合する技術が注目されている。このような成形体の表面加飾に用いられる樹脂フィルムには、例えば、絵柄や文字などの印刷層を有するアクリル系樹脂フィルムや、透明アクリル系樹脂と着色アクリル系樹脂の積層フィルム、また、アクリル系樹脂/ABS(アクリロニトリル−ブタジエン−スチレン共重合)樹脂、アクリル系樹脂/ポリプロピレンのような異種樹脂の積層フィルムがある。
【0003】
かかる加飾フィルムを成形体表面に一体貼合するにあたっては、真空成形や圧空成形などの熱成形によりフィルムに予備賦形を施した後、射出成形用の金型に挿入するか、あるいはインモールド成形機能を有する射出成形金型内で真空成形などの熱成形により予備賦形し、その状態で当該加飾フィルムの片面に熱可塑性樹脂を射出する方法が一般に採用される。そして例えば、特表平 2-503077 号公報には、アクリル系樹脂とフッ素化ポリマーを含む層を透明表層として、自動車外装部品を被覆することが記載され、また特開平 8-323934 号公報や特開平 10-279766号公報には、ゴム粒子が配合されたアクリル系樹脂を射出成形体の加飾フィルムとして用いることが記載されている。さらに、特開平 11-207896号公報や特開 2001-310427号公報には、表面加飾に用いる積層フィルムであって、溶融樹脂が射出される側(バッキング層)にポリプロピレン系の樹脂を配した積層フィルムが記載されている。
【0004】
加飾フィルムの片面に溶融樹脂を射出するに先立って行われる加飾フィルムの熱成形においては、当該加飾フィルムをヒーターで加熱するか、熱板を接触させて加熱する方法が一般に採用されている。ところが、アクリル系樹脂や、ABS樹脂、ポリカーボネート樹脂などは、一般的に吸湿性を有し、時間の経過とともに樹脂中に水分を吸収する。そして、吸湿した状態のままで加飾フィルムを加熱すると、フィルム表面に発泡などの不良が発生する。そのため、熱成形温度まで加熱する前に予備乾燥を行い、フィルム中に含まれる水分を除去することが必要であった。
【0005】
【発明が解決しようとする課題】
予備賦形工程である熱成形において、予備乾燥なしで、室温から成形温度まで直接フィルムを昇温できれば、製造工程の簡略化、生産効率の向上の観点から好ましい。
【0006】
そこで本発明の目的の一つは、吸湿性樹脂からなるか、又は吸湿性樹脂の層を含むフィルムを賦形するための熱成形において、吸湿した状態の樹脂フィルムから、予備乾燥を施すことなく良好な外観を有する賦形品を得ることができる方法を提供することにある。本発明のもう一つの目的は、フィルムを成形温度まで昇温する際の加熱条件に工夫を加えることで、予備乾燥を施すことなく良好な外観を有する賦形品を得ることにある。さらに本発明のもう一つの目的は、こうして賦形された樹脂フィルムを用いて、それを他の熱可塑性樹脂からなる成形体の表面に一体貼合し、良好な表面状態の樹脂成形体を製造することにある。
【0007】
【課題を解決するための手段】
本発明者は、かかる目的のもとで鋭意研究を行った結果、熱成形温度までフィルムを加熱する際、吸湿性樹脂層の水分の減少速度を適当な範囲にすることで、たとえ吸湿した状態の吸湿性樹脂層を含むフィルムであっても、これを予備乾燥することなく、良好な外観の賦形品が得られることを見出した。この知見をもとに、さらに種々の検討を加えて本発明を完成するに至った。
【0008】
すなわち、本発明は、吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを、その吸湿性樹脂層中の含水率が 0.25重量%以上の状態から、その吸湿性樹脂層中の水分が0.001〜0.009重量%/秒の割合で減少するように成形温度まで加熱し、次いで成形する方法を提供するものである。
【0009】
また本発明は、吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを、その吸湿性樹脂層中の含水率が 0.25重量%以上の状態から、その吸湿性樹脂層中の水分が0.001〜0.009重量%/秒の割合で減少するように成形温度まで加熱し、次いで成形し、得られる賦形フィルムを射出成形金型の一方の面に配置して金型キャビティーに溶融樹脂を射出することにより、上記樹脂フィルムで表面が加飾された樹脂成形体を製造する方法をも提供するものである。
【0010】
【発明の実施の形態】
本発明においては、吸湿性の熱可塑性樹脂が熱成形の対象となる。本明細書でいう吸湿性樹脂とは、 JIS K 7209 に規定されるA法(23℃の水に浸漬後、吸水量を測定する方法)により測定したときの吸水率が 0.05重量%以上であるものとする。かかる吸湿性の樹脂として、アクリル系樹脂、ABS(アクリロニトリル−ブタジエン−スチレン共重合)樹脂、ポリカーボネート樹脂などが挙げられるが、これらの例示に限定されるものではない。一方、代表的な熱可塑性樹脂の一つであるポリプロピレンなどのポリオレフィン系樹脂は、通常、吸湿性を示さない。吸湿性樹脂と非吸湿性樹脂の両方を含有する混合樹脂組成物であっても、混合物全体の吸水率が上記範囲であれば、本明細書でいう吸湿性樹脂に該当する。
【0011】
アクリル系樹脂は、アクリル酸又はメタクリル酸のエステルから誘導される重合体を主成分とする樹脂である。本発明では、吸湿性樹脂からなるか、又は吸湿性樹脂の層を含む積層フィルムが熱成形の対象となるが、かかる吸湿性樹脂として、アクリル系樹脂、特にメタクリル酸メチルを主体とする重合体(通常、アクリル樹脂とかメタクリル樹脂とか呼ばれるもの)は、適当なものの一つである。アクリル系樹脂は、例えば、前述の特表平 2-503077 号公報に記載されるようなフッ素化ポリマーが混合されたものでもよく、同じく前述の特開平 8-323934 号公報や特開平 10-279766号公報に記載されるようなゴム粒子が配合されたものでもよい。
【0012】
本発明により成形されるフィルムは、吸湿性樹脂からなる層を少なくとも一層有するものであり、吸湿性樹脂からなる単層構造の樹脂フィルムであってもよいし、同種、異種をとわず複数の層から構成される多層構造の樹脂フィルムであってもよい。また、吸湿性の樹脂からなる層と、実質的に非吸湿性の樹脂からなる層とが積層された、複層構成の多層フィルムでもよい。
【0013】
多層フィルムとする場合は、アクリル系樹脂を意匠面、すなわち、他の熱可塑性樹脂を片面に射出して成形体としたときの最表層とするのが、加飾状態における意匠性の面で好ましい。特に、透明なアクリル系樹脂を意匠面とし、その裏側に着色樹脂層を配したり、あるいは裏側のフィルムに印刷を施したりすれば、その裏側に他の熱可塑性樹脂を射出して一体貼合したときに、透明なアクリル系樹脂フィルム側から見て深みのある外観を呈し、高い意匠性を与える。適当な多層フィルムの例として、透明アクリル系樹脂/着色アクリル系樹脂の二層構成からなるもの、透明アクリル系樹脂/着色ABS樹脂の二層構成からなるもの、透明アクリル系樹脂/着色アクリル系樹脂/ABS樹脂の三層構成からなるもの、透明アクリル系樹脂/着色アクリル系樹脂/接着剤/ポリプロピレン系樹脂の四層構成からなるものなどを挙げることができる。
【0014】
成形に供される樹脂フィルムの全体厚みは、一般的には25〜1,000μm程度であり、好ましくは50μm 以上、さらに好ましくは100μm 以上であり、また好ましくは900μm 以下、さらに好ましくは800μm 以下である。樹脂フィルムの厚みがあまり小さくなると、加飾に用いる場合の意匠性の点で劣るため、好ましくない。一方、フィルムの厚みがあまり大きくなると、賦形が困難になるため、好ましくない。
【0015】
以上のような吸湿性樹脂からなる層を少なくとも一層有する樹脂フィルムを成形温度まで加熱し、成形するのであるが、この際本発明では、吸湿性樹脂層中の水分が0.001〜0.009重量%/秒の割合で減少するように加熱する。加熱による水分の減少速度は、加熱開始前の吸湿性樹脂層の含水率及び加熱終了直後(成形温度に達した状態)の吸湿性樹脂層の含水率を求め、重量%表示での両者の差(単位は重量%)を、加熱開始からフィルムの表面温度が成形温度に達するまでの時間(秒)で除して、求めることができる。加熱速度ないし水分の減少速度は必ずしも一定である必要はなく、加熱開始から成形温度に達して加熱を終了するまでの間を平均した水分の減少速度が上記の範囲となるようにすればよい。
【0016】
吸湿性樹脂層中の水分の減少速度が 0.009重量%/秒を越えるように加熱すると、成形後の予備賦形体に発泡などの不良が生じやすく、延いては、その予備賦形体を金型の一方の面に配置して他の熱可塑性樹脂の射出成形を行ったときに、その表面不良がそのまま射出成形品の貼合フィルム表面に残存することになる。一方、吸湿性樹脂層中の水分の減少速度が 0.001重量%/秒を下回るように加熱することは、加熱昇温に長時間を要することから、実用的でない。
【0017】
樹脂フィルムが吸湿性の樹脂からなる層と非吸湿性の樹脂からなる層とを含む積層フィルムである場合には、吸湿性樹脂層における含水率を、上記水分減少速度の基準とする。樹脂フィルムが吸湿性樹脂からなる層を複数有する場合には、それらの吸湿性樹脂からなる層全体での含水率を、上記水分減少速度の基準とする。また本発明では、予備乾燥を省略して、樹脂フィルムを熱成形温度まで加熱することから、加熱開始温度は、一般に常温、具体的には40℃以下とされる。加熱に供される樹脂フィルムは、吸湿性の熱可塑性樹脂からなる層を少なくとも一層含むので、この吸湿性樹脂からなる層は通常、吸湿している。この吸湿性樹脂からなる層は、一般に0.25重量%以上の含水率となっている。
【0018】
本発明において、加熱方法は特に限定されるものでなく、例えば、遠赤外線ヒーターのような加熱ヒーターを用いて加熱する方法や、加熱した熱板をフィルムに接触させて加熱する方法などを採用することができる。
【0019】
このように本発明では、樹脂フィルムの熱成形に際して、常温での加熱開始から成形温度に到達するまで、0.001〜0.009重量%/秒というゆっくりした速度で水分が減少するように加熱する。一般に昇温速度を小さくすることにより、このような緩い速度での水分の減少(蒸発)を達成することができるが、吸湿性樹脂の種類や、積層フィルムである場合には各層の組合せなどによって、水分の減少(蒸発)速度と昇温速度の関係は大きく変化するので、簡単な予備実験を行って、適当な昇温速度を定めればよい。
【0020】
成形温度まで加熱された樹脂フィルムは、次いで熱成形される。熱成形には、真空成形法、圧空成形法、プレス成形法など、各種公知の方法が採用できる。熱成形の形態は、フィルムを連続的に加熱しながら供給し、連続的に成形する方法であってもよいし、バッチ式にフィルムを加熱して供給し、バッチ式に成形する方法であってもよい。
【0021】
成形温度は特に限定されないが、一般には樹脂フィルムを構成する樹脂の最高ガラス転移温度以上であり、好ましくは、この最高ガラス転移温度より少なくとも10℃高い温度とされる。例えば、樹脂フィルムが事実上メチルメタクリレート主体のアクリル系樹脂のみからなる場合は、110℃以上、とりわけ130〜190℃程度の範囲である。樹脂フィルムがABS樹脂からなるか又はABS樹脂層を含む多層フィルムである場合は、110℃以上、とりわけ120〜190℃程度の範囲である。また、樹脂フィルムがポリプロピレン系樹脂層を含む多層フィルムである場合は、90℃以上、とりわけ110〜180℃程度の範囲である。
【0022】
かくして予備賦形されたフィルムは、次いで射出成形金型の一方の面に密着させて配置し、その金型キャビティーに溶融熱可塑性樹脂を射出することにより、当該フィルムが表面に一体貼合され、それが加飾層となった射出成形体を製造することができる。そして本発明によれば、フィルムの予備乾燥を省略しながら加熱条件を制御することで、表面不良の極めて少ない賦形フィルムを得ることができ、その一方の面に他の熱可塑性樹脂を射出した成形体も、表面状態の良好なものとなる。
【0023】
【実施例】
以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特記ないかぎり重量基準である。なお、樹脂フィルムの含水率、加熱による水分の減少速度、及び予備賦形体の意匠面の不良個数は、以下の方法で求めた。
【0024】
〔樹脂フィルムの含水率〕
フィルムから所定寸法のサンプルを切り出し、それを電子精密天秤で精秤して含水状態の重量aを求める。次に、そのサンプルを120℃の真空乾燥機で3日間乾燥し、常温まで冷却した後に再度精秤して、含水率が0%である状態の重量bを求める。これらの重量a及び重量bから、下式(I)により樹脂の含水率を求める。フィルムが吸湿性樹脂と非吸湿性樹脂との積層品である場合には、その積層フィルムから吸湿性樹脂層を分離し、その吸湿性樹脂層について上と同様の操作を行って、含水率を求める。
含水率(%)=(重量a−重量b)÷重量b×100 (I)
【0025】
〔加熱による水分の減少速度〕
熱成形前の加熱開始直前と加熱終了直後の含水率(%)を求め、両者の%表示での差を加熱時間(秒)で除して、水分の減少速度を求める。試料の含水率が測定までの時間で変化しないように、採取した試料は直ちに防湿性の袋に保存し、測定直前に開封して測定に供する。
【0026】
〔予備賦形体の意匠面の不良個数〕
熱成形で賦形された予備賦形体の意匠面を観察し、100cm2 あたりの発泡状不良個数を数える。
【0027】
実施例1
(a)アクリルフィルムの作製
ここでは、透明アクリル系樹脂層と着色アクリル系樹脂層の二層からなるアクリルフィルムを作製した。透明層には、住友化学工業(株)製で汎用グレードのメタクリル樹脂“スミペックス EX”を用いた。この樹脂は、JIS K 7209 のA法に従って23℃の水に24時間浸漬した後の吸水率が0.3 %であった。また着色層には、住友化学工業(株)製で耐衝撃グレードのメタクリル樹脂“スミペックス HT01X”97.99%と、東洋アルミニウム(株)製で平均粒子径38μmのアルミニウム粉末2%と、チタンイエロー染料0.01% とを溶融混練して作製したペレットを用いた。着色層に用いたメタクリル樹脂“スミペックス HT01X”は、 JIS K 7209 のA法に従って23℃の水に24時間浸漬した後の吸水率が
0.4%であった。
【0028】
それぞれの樹脂を、設定温度260℃の一軸押出機2台を用いて溶融し、設定温度280℃のフィードブロックで各層を逐次積層した後、設定温度280℃のTダイから押し出した。さらに、ロール温度70℃に設定された3本のポリシングロールからなる成形ロールを用い、そのうちの第一及び第二ロールが、押し出された溶融樹脂に両面から接して挟み込む状態で樹脂を冷却し、アクリル二層フィルムを作製した。得られた二層フィルムは、透明層の厚みが100μm 、着色層の厚みが200μm 、全厚みが300μm であった。
【0029】
(b)ABS樹脂フィルムの作製
日本エイアンドエル(株)製のABS樹脂“MTH-2 ”を、Tダイフィルム加工機に投入し、シリンダー設定温度260℃で押し出してフィルムとした。ここで用いたABS樹脂“MTH-2”は、JIS K 7209 のA法に従って23℃の水に24時間浸漬した後の吸水率が0.3% であった。また、得られたABS樹脂フィルムの厚みは200μm であった。
【0030】
(c)加飾フィルムの作製
上で作製したアクリル二層フィルムとABS樹脂フィルムとを、100℃に設定したラミネートロールを用いて貼合した。この際、意匠面を透明アクリル系樹脂層とし、着色アクリル系樹脂層とABS樹脂層が接するように積層した。得られた積層フィルム(加飾フィルム)の厚みは480μm であった。また、この加飾フィルムの含水率は 0.31%であった。
【0031】
(d)加飾フィルムの予備賦形
長さ1200mm、幅500mmの上記加飾フィルムを、真空圧空成形機(布施真空(株)製の“CUPF1015-PWB”)のクランプ枠に固定した。クランプ枠の上下には、それぞれ遠赤外線ヒーターパネルが備え付けられている。このヒーターパネルの概要及び、それとフィルムの配置の概要を図1に示した。すなわち、加飾フィルムの上下に配置される遠赤外線ヒーターパネル3,4は、図1(A)に模式的な平面図で示す如く、大きさ120mm×120mmの赤外線ヒーター5,5……が、縦に150mm間隔で7枚、横に150mm間隔で10枚、計70枚並べられたものである。ここで、赤外線ヒーター5,5……は、Elestein-Werk Steinmetz 社製の“HFS”(200V×400W)で構成されている。 この遠赤外線ヒーターパネル3,4は、図1(B)に模式的な縦断面図で示す如く、クランプ7,7にセットした加飾フィルム1の上方165mmの場所と、下方210mmの場所の両面に設置されている。
【0032】
上下のヒーターパネル3,4の設定温度を、それぞれ350℃及び300℃として、加飾フィルム1の加熱を行った。加熱開始前の加飾フィルム1の表面温度は20℃であった。ここから、加飾フィルム1の表面温度が160℃になるまで加熱した。160℃に到達するまでの加熱時間は44秒であり、したがって、昇温速度は 3.2℃/秒であった。その後、ヒーターパネル3,4を系外に退避させてから、真空成形用金型を加熱フィルムに接触させ、金型とフィルムとの間の空気を真空引きすることにより、加飾フィルムを賦形した。この際、透明アクリル樹脂層側から真空吸引し、ABS樹脂層側が凹面となるようにした。引き続き送風機により冷却した後、予備成形された加飾フィルムを取り出した。この予備賦形された加飾フィルムの意匠面を観察したところ、不良は認められず、良好な表面状態の予備賦形体を得ることができた。
【0033】
別途、上と同様の操作を行い、型賦形する直前の表面温度が熱成形温度に到達した状態のフィルムの含水率を測定したところ、0.17% であった。また、型賦形を行った後のフィルムの含水率も0.17% であった。
【0034】
実施例2
加熱時にフィルム上下に配置されるヒーターパネル3,4の設定温度を、それぞれ300℃及び250℃としたこと以外は、実施例1と同様の操作を行った。このとき、フィルム表面が160℃に到達するまでの加熱に要した時間は83秒であり、したがって、昇温速度は1.7℃/秒 であった。加熱開始前のフィルムの含水率は0.31%、型賦形直前のフィルムの含水率は0.20%、賦形後のフィルムの含水率は0.20% であった。得られた予備賦形フィルムの意匠面を観察したところ、不良は認められず、良好な表面状態の予備賦形体を得ることができた。
【0035】
実施例3
実施例1において、ABS樹脂フィルムの貼合を行わず、アクリル二層フィルムを単独で加飾フィルムとした。また、加熱時にフィルム上下に配置されるヒーターパネル3,4の設定温度を、それぞれ400℃及び350℃とし、フィルム表面の温度が130℃になるまで加熱した。それ以外は実施例1と同様の操作を行った。このとき、フィルム表面が130℃に到達するまでの加熱に要した時間は13.5秒であり、したがって、昇温速度は8.1℃/秒であった。加熱開始前のフィルムの含水率は0.45%、型賦形直前のフィルムの含水率は0.35%、賦形後のフィルムの含水率は0.35% であった。得られた予備賦形フィルムの意匠面を観察したところ、認められた不良数は2個/100cm2 と少なく、良好な表面状態の予備賦形体を得ることができた。
【0036】
実施例4
この例では、実施例1の(a)と同様の方法で作製したアクリル二層フィルムに、ポリプロピレン系樹脂フィルムを積層したフィルムを用いた。
【0037】
(a)ポリプロピレン系樹脂フィルムの作製
住友化学工業(株)製でエチレン含量15%のプロピレン−エチレン共重合体樹脂“住友ノーブレン FH1016”(230℃、2.16kg荷重でのメルトフローレート0.5g/10分)が27% 、住友化学工業(株)製でブテン含量22%のエチレン−ブテン共重合体“エスプレン SPO N0416”(230℃、2.16kg 荷重でのメルトフローレート13g/10分)が30%、及び、林化成(株)製のタルク“JR46”とプロピレンホモポリマー(230℃、2.16kg 荷重でのメルトフローレート120g/10分)との重量比70:30混合物であるタルクマスターバッチが43%からなる樹脂組成物をドライブレンドした後、Tダイフィルム加工機に投入し、シリンダー設定温度260℃で押し出して、ポリプロピレン系樹脂フィルムを作製した。得られたフィルムの厚みは200μm であった。このフィルムは、 JIS K 7209 のA法に従って23℃の水に24時間浸漬した後の吸水率が 0.03%であり、吸湿性を示さなかった。
【0038】
(b)アクリル二層フィルムとポリプロピレン系樹脂フィルムの貼合
東洋モートン(株)製のポリウレタン系接着剤である“TKS 3989”100部に対して、東洋モートン(株)製のイソシアネート系硬化剤である“CAT-RT”4部を加え、さらにトルエンで希釈して塗布量が7g/m2になるようにしたものを、接着剤とした。アクリル二層フィルムの着色層側に上記接着剤を所定量塗布し、80℃で約1分間乾燥させた。一方、上の(a)で得たポリプロピレン系樹脂フィルムの片面にコロナ処理を施して、このコロナ処理面を上記アクリル二層フィルムの接着剤塗布面に重ね、90℃に設定したラミネートロールを用いて貼合した。その後、40℃で72時間養生して、積層フィルムを得た。この積層フィルムの厚みは500μm であった。
【0039】
(c)積層フィルムの予備賦形
上の(b)で得た積層フィルムを用い、実施例1の(d)に示した方法に準ずるが、加熱時にフィルム上下に配置されるヒーターパネル3,4の設定温度を、それぞれ320℃及び300℃とし、フィルム表面の温度が180℃になるまで加熱した。その後は実施例1と同様の操作を行って、予備賦形されたフィルムを作製した。なお、真空吸引は透明アクリル樹脂層側から行い、ポリプロピレン系樹脂層側が凹面となるように賦形した。このとき、フィルムの表面温度が180℃に到達するまでの加熱に要した時間は92秒であり、したがって、昇温速度は1.7℃/秒 であった。加熱開始前の積層フィルムにおけるアクリル二層フィルム部分の含水率は 0.83%、型賦形直前のアクリル二層フィルム部分の含水率は 0.27%、賦形後のアクリル二層フィルム部分の含水率は 0.27%であった。得られた予備賦形フィルムの意匠面を観察したところ、不良は認められず、良好な表面状態の予備賦形体を得ることができた。
【0040】
比較例1
実施例1の(a)〜(c)と同様の方法で作製されたアクリル二層フィルムとABS樹脂フィルムの積層フィルムを用いた。ただし、ここで用いた積層フィルムは、加熱開始前の含水率が0.43% であった。この積層フィルムを、実施例1の(d)に示したのと同様の配置で、ただし、上下のヒーターパネル3,4の設定温度をそれぞれ400℃及び350℃とし、積層フィルムの表面温度が20℃から180℃になるまで加熱した。このとき、フィルム表面が180℃に到達するまでの加熱に要した時間は37秒であり、したがって、昇温速度は 4.3℃/秒であった。引き続き、実施例1の(d)と同様の方法で真空成形を行い、予備賦形されたフィルムを得た。型賦形直前のフィルムの含水率は 0.07%、賦形後のフィルムの含水率は0.07% であった。得られた予備賦形フィルムの意匠面を観察したところ、320個/100cm2 と非常に多くの不良が認められ、良好な表面状態の予備賦形体が得られなかった。
【0041】
参考例1
比較例1で用いたのと同じアクリル二層フィルムとABS樹脂フィルムの積層フィルム(初期含水率0.43%)を、 予め80℃に設定した熱風循環オーブンにて3時間予備乾燥を行った。予備乾燥後、オーブンから取り出して室温雰囲気に置くと、フィルム温度は数分で室温まで下がった。この状態でフィルムの含水率を測定したところ、0.23% であった。この予備乾燥後のフィルムを比較例1と同様に、その上下に配置されるそれぞれ400℃及び350℃に設定されたヒーターパネル3,4により、フィルムの表面温度が20℃から180℃になるまで加熱した。このとき、フィルム表面が180℃に到達するまでの加熱に要した時間は38秒であり、したがって昇温速度は4.2℃/秒 であった。引き続き比較例1と同様に真空成形を行い、予備賦形された加飾フィルムを得た。型賦形直前のフィルムの含水率は 0.12%、賦形後のフィルムの含水率は 0.12%であった。得られた予備賦形フィルムの意匠面を観察したところ、不良は認められず、良好な表面状態の予備賦形体を得ることができた。
【0042】
以上の実施例1〜4、比較例1及び参考例1の結果を表1にまとめた。
【0043】
【表1】

Figure 0003912155
【0044】
実施例5
以上の各例で作製した予備賦形加飾フィルムを用いて射出成形体を製造した。すなわち、各例で予備賦形した加飾フィルムを、形状を合わせて作製された射出成形用金型キャビティーの内面に挿入し、金型の型締めを行った後、実施例1及び2、比較例1並びに参考例1についてはABS樹脂層側に、また実施例3については着色アクリル樹脂層側に、それぞれABS樹脂を射出して、射出樹脂の表面に加飾フィルムが一体貼合された成形体を得た。一方、実施例4については、そのポリプロピレン系樹脂層側にポリプロピレン樹脂を射出して、同様の成形体を得た。その結果、予備賦形時に表面不良が事実上発生しなかった実施例1〜4及び参考例1については、表面の意匠性の高い成形体が得られたのに対し、予備賦形時に表面不良が発生した比較例1については、表面不良が残存したままで、外観不良を有する成形体となった。
【0045】
以上のように、フィルムの加熱前に予備乾燥を行った参考例1では、発泡状の表面不良が発生しないが、予備乾燥なしで室温から成形温度まで 0.010%/秒の水分減少速度で加熱した比較例1では、表面不良が多数発生する。これに対し、室温から成形温度まで加熱する際の水分減少速度を 0.010%/秒より小さくした実施例1〜4では、予備乾燥を省略しながら、良好な表面状態の賦形品が得られる。
【0046】
【発明の効果】
本発明によれば、吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを賦形するための熱成形において、その樹脂フィルムを予備乾燥することなく、吸湿性樹脂層が吸湿した状態のままで、成形温度まで加熱する工程に付すことができる。そして、このように予備乾燥を省略しながら、良好な外観を有する賦形フィルム、さらにはそれを用いた外観良好な成形品を得ることができる。そのため、賦形フィルムの製造、さらにはそれを用いた成形品の製造において、工程の簡素化及び生産効率の向上が期待される。
【図面の簡単な説明】
【図1】実施例における成形前の加熱状態の概要を示すものであって、(A)は加熱に用いたヒーターパネルの概要を示す平面図、(B)はヒーターパネルとフィルムの配置の概要を示す縦断面図である。
【符号の説明】
1……フィルム、
3,4……ヒーターパネル、
5……赤外線ヒーター、
7……クランプ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoforming method for shaping a resin film having at least one layer made of a hygroscopic thermoplastic resin. The present invention also relates to a method for producing a resin molded body in which the resin film thus shaped is integrally bonded to the surface.
[0002]
[Prior art]
Resin films are used in a variety of fields. Recently, as a printing alternative to molded products, resin films that have been printed or colored have been attracting attention, and the technology of integrally bonding them to the surface of molded products has attracted attention. Yes. Examples of the resin film used for decorating the surface of such a molded body include an acrylic resin film having a printing layer such as a pattern and characters, a laminated film of a transparent acrylic resin and a colored acrylic resin, and an acrylic film. There are laminated films of different types of resins such as acrylic resin / ABS (acrylonitrile-butadiene-styrene copolymer) resin and acrylic resin / polypropylene.
[0003]
When the decorative film is integrally bonded to the surface of the molded body, the film is pre-shaped by thermoforming such as vacuum forming or pressure forming, and then inserted into an injection mold or in-mold. In general, a method is used in which a preforming is performed by thermoforming such as vacuum forming in an injection mold having a forming function, and a thermoplastic resin is injected onto one side of the decorative film in that state. For example, Japanese Patent Laid-Open No. 2-503077 discloses that a layer containing an acrylic resin and a fluorinated polymer is used as a transparent surface layer to coat an automobile exterior part. Kaihei 10-279766 describes the use of an acrylic resin containing rubber particles as a decorative film for an injection molded article. Furthermore, JP-A-11-207896 and JP-A-2001-310427 are laminated films used for surface decoration, in which a polypropylene resin is disposed on the side (backing layer) on which the molten resin is injected. A laminated film is described.
[0004]
In the thermoforming of the decorative film that is performed prior to injecting the molten resin on one side of the decorative film, a method of heating the decorative film with a heater or contacting a hot plate is generally employed. Yes. However, acrylic resins, ABS resins, polycarbonate resins, and the like generally have hygroscopicity and absorb moisture into the resin over time. And if a decorating film is heated in the state which absorbed moisture, defects, such as foaming, will generate | occur | produce on the film surface. Therefore, it was necessary to perform preliminary drying before heating to the thermoforming temperature to remove moisture contained in the film.
[0005]
[Problems to be solved by the invention]
In thermoforming, which is a pre-shaping step, it is preferable from the viewpoint of simplifying the manufacturing process and improving production efficiency if the film can be heated directly from room temperature to the forming temperature without pre-drying.
[0006]
Accordingly, one of the objects of the present invention is to form a film comprising a hygroscopic resin or a film containing a hygroscopic resin layer without forming a pre-drying from the hygroscopic resin film in thermoforming. The object is to provide a method capable of obtaining a shaped product having a good appearance. Another object of the present invention is to obtain a shaped product having a good appearance without pre-drying by adding a device to the heating conditions for raising the film to the molding temperature. Furthermore, another object of the present invention is to produce a resin molded body having a good surface state by using the resin film thus shaped and integrally bonding it to the surface of a molded body made of another thermoplastic resin. There is to do.
[0007]
[Means for Solving the Problems]
As a result of diligent research under such a purpose, the present inventor, when heating the film to the thermoforming temperature, by setting the moisture reduction rate of the hygroscopic resin layer to an appropriate range, even if the moisture is absorbed. It was found that a shaped article having a good appearance can be obtained without pre-drying the film even if the film contains a hygroscopic resin layer. Based on this knowledge, various studies were further made to complete the present invention.
[0008]
That is, the present invention provides a resin film having at least one layer made of a hygroscopic thermoplastic resin, in a state where the moisture content in the hygroscopic resin layer is 0.25% by weight or more, in the hygroscopic resin layer. The present invention provides a method of heating to a molding temperature so that the water content decreases at a rate of 0.001 to 0.009% by weight / second, and then molding.
[0009]
Further, the present invention provides a resin film having at least one layer composed of a hygroscopic thermoplastic resin from a state where the moisture content in the hygroscopic resin layer is 0.25% by weight or more, the moisture in the hygroscopic resin layer. Is heated to a molding temperature so as to decrease at a rate of 0.001 to 0.009% by weight / second, then molded, and the resulting shaped film is placed on one surface of an injection mold to form a mold cavity. The present invention also provides a method for producing a resin molded body whose surface is decorated with the resin film by injecting a molten resin into a tee.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a hygroscopic thermoplastic resin is the object of thermoforming. The hygroscopic resin referred to in this specification is a water absorption rate of 0.05% by weight or more when measured by Method A (method of measuring water absorption after being immersed in water at 23 ° C.) defined in JIS K 7209. Suppose that Examples of such hygroscopic resins include acrylic resins, ABS (acrylonitrile-butadiene-styrene copolymer) resins, and polycarbonate resins, but are not limited to these examples. On the other hand, polyolefin resins such as polypropylene, which is one of typical thermoplastic resins, usually do not exhibit hygroscopicity. Even if it is a mixed resin composition containing both a hygroscopic resin and a non-hygroscopic resin, if the water absorption rate of the whole mixture is the said range, it corresponds to the hygroscopic resin as used in this specification.
[0011]
The acrylic resin is a resin whose main component is a polymer derived from an ester of acrylic acid or methacrylic acid. In the present invention, a laminated film made of a hygroscopic resin or including a hygroscopic resin layer is an object of thermoforming. As the hygroscopic resin, a polymer mainly composed of an acrylic resin, particularly methyl methacrylate. (Usually called acrylic resin or methacrylic resin) is one of suitable ones. The acrylic resin may be, for example, a mixture of a fluorinated polymer as described in the above-mentioned Japanese National Publication No. 2-503077. Similarly, the above-mentioned Japanese Unexamined Patent Publication No. 8-323934 and Japanese Unexamined Patent Publication No. 10-279766. The rubber particles described in the publication may be blended.
[0012]
The film formed according to the present invention has at least one layer made of a hygroscopic resin, and may be a single-layer resin film made of a hygroscopic resin, or a plurality of films of the same type or different types. It may be a resin film having a multilayer structure composed of layers. Alternatively, a multilayer film having a multilayer structure in which a layer made of a hygroscopic resin and a layer made of a substantially non-hygroscopic resin are laminated may be used.
[0013]
In the case of a multilayer film, it is preferable in terms of design in the decorative state that an acrylic resin is used as a design surface, that is, the outermost layer when another thermoplastic resin is injected into one surface to form a molded body. . In particular, if a transparent acrylic resin is used as the design surface and a colored resin layer is arranged on the back side or printing is performed on the back side film, another thermoplastic resin is injected on the back side and integrally bonded. When it is done, it has a deep appearance as seen from the transparent acrylic resin film side and gives high designability. Examples of suitable multilayer films include those comprising a two-layer structure of transparent acrylic resin / colored acrylic resin, those comprising a two-layer structure of transparent acrylic resin / colored ABS resin, and transparent acrylic resin / colored acrylic resin. Examples thereof include those having a three-layer structure of / ABS resin and those having a four-layer structure of transparent acrylic resin / colored acrylic resin / adhesive / polypropylene resin.
[0014]
The total thickness of the resin film used for molding is generally about 25 to 1,000 μm, preferably 50 μm or more, more preferably 100 μm or more, and preferably 900 μm or less, more preferably 800 μm or less. is there. If the thickness of the resin film is too small, it is not preferable because it is inferior in design when used for decoration. On the other hand, if the thickness of the film is too large, shaping is difficult, which is not preferable.
[0015]
The resin film having at least one layer composed of the hygroscopic resin as described above is heated and molded to the molding temperature. At this time, in the present invention, the moisture in the hygroscopic resin layer is 0.001 to 0.009. Heat to decrease at a rate of weight% / second. The moisture reduction rate due to heating is obtained by calculating the moisture content of the hygroscopic resin layer before the start of heating and the moisture content of the hygroscopic resin layer immediately after the end of heating (in a state where the molding temperature has been reached). (Unit:% by weight) can be obtained by dividing by the time (seconds) from the start of heating until the surface temperature of the film reaches the molding temperature. The heating rate or the moisture reduction rate is not necessarily constant, and the moisture reduction rate averaged from the start of heating until reaching the molding temperature and finishing the heating may be within the above range.
[0016]
If the moisture reduction rate in the hygroscopic resin layer is heated so as to exceed 0.009% by weight / second, defects such as foaming are likely to occur in the preshaped object after molding, and as a result, the preshaped object is made of gold. When it is placed on one surface of the mold and injection molding of another thermoplastic resin is performed, the surface defect remains on the surface of the injection-molded film. On the other hand, it is impractical to heat the hygroscopic resin layer so that the water decrease rate is less than 0.001% by weight / second, because it takes a long time to raise the heating temperature.
[0017]
When the resin film is a laminated film including a layer made of a hygroscopic resin and a layer made of a non-hygroscopic resin, the moisture content in the hygroscopic resin layer is used as a reference for the moisture reduction rate. When the resin film has a plurality of layers made of a hygroscopic resin, the moisture content in the entire layer made of the hygroscopic resin is used as a reference for the moisture reduction rate. In the present invention, preliminary drying is omitted and the resin film is heated to the thermoforming temperature, so that the heating start temperature is generally room temperature, specifically 40 ° C. or less. Since the resin film to be heated includes at least one layer made of a hygroscopic thermoplastic resin, the layer made of the hygroscopic resin usually absorbs moisture. The layer made of the hygroscopic resin generally has a moisture content of 0.25% by weight or more.
[0018]
In the present invention, the heating method is not particularly limited, and for example, a method of heating using a heater such as a far infrared heater, a method of heating a heated hot plate in contact with a film, or the like is adopted. be able to.
[0019]
Thus, in the present invention, when thermoforming a resin film, heating is performed at a slow rate of 0.001 to 0.009% by weight / second from the start of heating at normal temperature until the molding temperature is reached. To do. In general, by reducing the rate of temperature rise, water can be reduced (evaporated) at such a slow rate. However, depending on the type of hygroscopic resin and the combination of each layer in the case of a laminated film, etc. Since the relationship between the moisture reduction (evaporation) rate and the temperature rising rate changes greatly, a simple preliminary experiment may be performed to determine an appropriate temperature rising rate.
[0020]
The resin film heated to the molding temperature is then thermoformed. Various known methods such as vacuum forming, pressure forming, and press forming can be employed for thermoforming. The form of thermoforming may be a method in which the film is supplied while being continuously heated and continuously formed, or a method in which the film is heated and supplied in a batch manner and is formed in a batch manner. Also good.
[0021]
Although the molding temperature is not particularly limited, it is generally at least the highest glass transition temperature of the resin constituting the resin film, and preferably at least 10 ° C. higher than this maximum glass transition temperature. For example, when the resin film is made of only an acrylic resin mainly composed of methyl methacrylate, the temperature is 110 ° C. or higher, particularly about 130 to 190 ° C. When the resin film is made of an ABS resin or is a multilayer film including an ABS resin layer, the temperature is 110 ° C. or higher, particularly about 120 to 190 ° C. Moreover, when the resin film is a multilayer film including a polypropylene resin layer, it is in the range of 90 ° C. or more, particularly about 110 to 180 ° C.
[0022]
The pre-shaped film is then placed in close contact with one surface of the injection mold, and the film is integrally bonded to the surface by injecting the molten thermoplastic resin into the mold cavity. An injection-molded body in which it becomes a decorative layer can be produced. And according to the present invention, by controlling the heating conditions while omitting the preliminary drying of the film, it is possible to obtain a shaped film with very few surface defects, and injecting another thermoplastic resin on one side thereof The molded body also has a good surface condition.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further more concretely, this invention is not limited by these examples. In the examples, “%” and “part” representing the content or amount used are based on weight unless otherwise specified. In addition, the moisture content of the resin film, the moisture reduction rate due to heating, and the number of defects on the design surface of the preshaped object were determined by the following methods.
[0024]
[Moisture content of resin film]
A sample of a predetermined size is cut out from the film, and it is precisely weighed with an electronic precision balance to determine the moisture content weight a. Next, the sample is dried with a vacuum dryer at 120 ° C. for 3 days, cooled to room temperature, and then weighed again to determine the weight b in a state where the moisture content is 0%. From these weights a and b, the water content of the resin is determined by the following formula (I). When the film is a laminate of a hygroscopic resin and a non-hygroscopic resin, the hygroscopic resin layer is separated from the laminated film, and the moisture content is reduced by performing the same operation as above. Ask.
Moisture content (%) = (weight a−weight b) ÷ weight b × 100 (I)
[0025]
[Moisture reduction rate due to heating]
The moisture content (%) immediately before the start of heating and immediately after the end of heating before thermoforming is determined, and the difference between the two in percentage is divided by the heating time (seconds) to determine the rate of moisture reduction. The collected sample is immediately stored in a moisture-proof bag so that the moisture content of the sample does not change with the time until measurement, and the sample is opened immediately before measurement and used for measurement.
[0026]
[Number of defects on the design surface of the preshaped object]
Observe the design surface of the pre-shaped object shaped by thermoforming, 100cm 2 Count the number of defective foams.
[0027]
Example 1
(A) Preparation of acrylic film
Here, an acrylic film comprising two layers of a transparent acrylic resin layer and a colored acrylic resin layer was produced. For the transparent layer, general-purpose grade methacrylic resin “SUMIPEX EX” manufactured by Sumitomo Chemical Co., Ltd. was used. This resin had a water absorption of 0.3% after being immersed in water at 23 ° C. for 24 hours in accordance with A method of JIS K 7209. The colored layer consists of 99.99% impact-resistant methacrylic resin “SUMIPEX HT01X” manufactured by Sumitomo Chemical Co., Ltd., 2% aluminum powder manufactured by Toyo Aluminum Co., Ltd. with an average particle size of 38 μm, and titanium yellow. Pellets prepared by melt-kneading 0.01% of the dye were used. Methacrylic resin “SUMIPEX HT01X” used for the colored layer has a water absorption rate after being immersed in water at 23 ° C. for 24 hours in accordance with A method of JIS K 7209.
It was 0.4%.
[0028]
Each resin was melted using two uniaxial extruders at a preset temperature of 260 ° C., and each layer was sequentially laminated with a feed block at a preset temperature of 280 ° C., and then extruded from a T-die having a preset temperature of 280 ° C. Furthermore, using a forming roll consisting of three polishing rolls set at a roll temperature of 70 ° C., the first and second rolls are cooled in a state where they are sandwiched in contact with both sides of the extruded molten resin, An acrylic bilayer film was prepared. The obtained bilayer film had a transparent layer thickness of 100 μm, a colored layer thickness of 200 μm, and a total thickness of 300 μm.
[0029]
(B) Production of ABS resin film
ABS resin “MTH-2” manufactured by Nippon A & L Co., Ltd. was put into a T-die film processing machine and extruded at a cylinder set temperature of 260 ° C. to obtain a film. The ABS resin “MTH-2” used here had a water absorption of 0.3% after being immersed in water at 23 ° C. for 24 hours in accordance with A method of JIS K 7209. The obtained ABS resin film had a thickness of 200 μm.
[0030]
(C) Production of decorative film
The acrylic two-layer film produced above and the ABS resin film were bonded using a laminate roll set at 100 ° C. At this time, the design surface was a transparent acrylic resin layer, and the colored acrylic resin layer and the ABS resin layer were laminated so as to contact each other. The thickness of the obtained laminated film (decorative film) was 480 μm. Moreover, the moisture content of this decorative film was 0.31%.
[0031]
(D) Pre-shaped decorative film
The decorative film having a length of 1200 mm and a width of 500 mm was fixed to a clamp frame of a vacuum / pressure forming machine (“CUPF1015-PWB” manufactured by Fuse Vacuum Co., Ltd.). Far infrared heater panels are respectively provided above and below the clamp frame. The outline of this heater panel and the outline of the arrangement of the heater panel are shown in FIG. That is, the far-infrared heater panels 3 and 4 arranged above and below the decorative film are 120 mm × 120 mm in size infrared heaters 5, 5... As shown in a schematic plan view in FIG. A total of 70 sheets are arranged, 7 sheets vertically at intervals of 150 mm and 10 sheets horizontally at intervals of 150 mm. Here, the infrared heaters 5, 5... Are composed of “HFS” (200 V × 400 W) manufactured by Elestein-Werk Steinmetz. The far-infrared heater panels 3 and 4 have both a 165 mm upper side and a 210 mm lower side of the decorative film 1 set on the clamps 7 and 7 as shown in a schematic longitudinal sectional view in FIG. Is installed.
[0032]
The set temperature of the upper and lower heater panels 3 and 4 was set to 350 ° C. and 300 ° C., respectively, and the decorative film 1 was heated. The surface temperature of the decorative film 1 before the start of heating was 20 ° C. From here, it heated until the surface temperature of the decorative film 1 became 160 degreeC. The heating time to reach 160 ° C. was 44 seconds, and therefore the rate of temperature increase was 3.2 ° C./second. Then, after the heater panels 3 and 4 are withdrawn from the system, the decorative film is shaped by bringing the vacuum forming mold into contact with the heating film and evacuating the air between the mold and the film. did. At this time, vacuum suction was performed from the transparent acrylic resin layer side so that the ABS resin layer side was concave. Subsequently, after cooling with a blower, the preformed decorative film was taken out. When the design surface of this preshaped decorative film was observed, no defects were observed, and a preshaped object with a good surface state could be obtained.
[0033]
Separately, the same operation as described above was performed, and the water content of the film in a state where the surface temperature just before the mold shaping reached the thermoforming temperature was measured and found to be 0.17%. In addition, the moisture content of the film after mold shaping was 0.17%.
[0034]
Example 2
The same operation as in Example 1 was performed except that the set temperatures of the heater panels 3 and 4 disposed above and below the film during heating were 300 ° C. and 250 ° C., respectively. At this time, the time required for heating until the film surface reached 160 ° C. was 83 seconds, and therefore the rate of temperature increase was 1.7 ° C./second. The moisture content of the film before the start of heating was 0.31%, the moisture content of the film immediately before mold shaping was 0.20%, and the moisture content of the film after shaping was 0.20%. When the design surface of the obtained preshaped film was observed, no defects were observed, and a preshaped object having a good surface state could be obtained.
[0035]
Example 3
In Example 1, the ABS resin film was not bonded, and the acrylic bilayer film was used alone as a decorative film. Moreover, the set temperature of the heater panels 3 and 4 arrange | positioned at the upper and lower sides of a film at the time of heating was 400 degreeC and 350 degreeC, respectively, and it heated until the temperature of the film surface became 130 degreeC. Otherwise, the same operation as in Example 1 was performed. At this time, the time required for heating until the film surface reached 130 ° C. was 13.5 seconds, and thus the rate of temperature increase was 8.1 ° C./second. The moisture content of the film before the start of heating was 0.45%, the moisture content of the film immediately before mold shaping was 0.35%, and the moisture content of the film after shaping was 0.35%. When the design surface of the obtained preshaped film was observed, the number of defects found was 2/100 cm. 2 Thus, it was possible to obtain a preshaped object having a good surface state.
[0036]
Example 4
In this example, a film obtained by laminating a polypropylene resin film on an acrylic two-layer film produced by the same method as in Example 1 (a) was used.
[0037]
(A) Production of polypropylene resin film
27% propylene-ethylene copolymer resin “Sumitomo Nobrene FH1016” (230 ° C., melt flow rate 0.5 g / 10 min load at 2.16 kg) manufactured by Sumitomo Chemical Co., Ltd. Ethylene-butene copolymer “Esprene SPO N0416” (230 ° C., melt flow rate 13 g / 10 min at 230 ° C., 2.16 kg load) with a butene content of 22% manufactured by Chemical Industry Co., Ltd. and Hayashi Kasei ( Resin composition comprising 43% talc masterbatch, which is a 70:30 weight ratio mixture of talc “JR46” manufactured by KK and propylene homopolymer (230 ° C., melt flow rate 120 g / 10 min at 2.16 kg load) After the product was dry blended, it was put into a T-die film processing machine and extruded at a cylinder set temperature of 260 ° C. to produce a polypropylene resin film. The thickness of the obtained film was 200 μm. This film had a water absorption of 0.03% after being immersed in water at 23 ° C. for 24 hours in accordance with A method of JIS K 7209, and did not exhibit hygroscopicity.
[0038]
(B) Bonding of acrylic two-layer film and polypropylene resin film
To 100 parts of “TKS 3989”, a polyurethane adhesive manufactured by Toyo Morton Co., Ltd., add 4 parts of “CAT-RT”, an isocyanate curing agent manufactured by Toyo Morton Co., Ltd., and dilute with toluene. The coating amount is 7g / m 2 The adhesive was used as an adhesive. A predetermined amount of the adhesive was applied to the colored layer side of the acrylic bilayer film and dried at 80 ° C. for about 1 minute. On the other hand, one side of the polypropylene resin film obtained in (a) above is subjected to corona treatment, and this corona treatment surface is overlaid on the adhesive application surface of the acrylic two-layer film, and a laminate roll set at 90 ° C. is used. And pasted. Thereafter, the film was cured at 40 ° C. for 72 hours to obtain a laminated film. The thickness of this laminated film was 500 μm.
[0039]
(C) Pre-shaping of laminated film
Using the laminated film obtained in the above (b), according to the method shown in (d) of Example 1, the set temperatures of the heater panels 3 and 4 placed above and below the film during heating are 320 ° C. and The film was heated to 300 ° C. until the film surface temperature reached 180 ° C. Thereafter, the same operation as in Example 1 was performed to produce a preshaped film. In addition, vacuum suction was performed from the transparent acrylic resin layer side, and it shape | molded so that the polypropylene resin layer side might become a concave surface. At this time, the time required for heating until the surface temperature of the film reached 180 ° C. was 92 seconds, and therefore the rate of temperature increase was 1.7 ° C./second. The moisture content of the acrylic bilayer film portion in the laminated film before the start of heating is 0.83%, the moisture content of the acrylic bilayer film portion immediately before mold shaping is 0.27%, and the acrylic bilayer film portion after shaping is The water content was 0.27%. When the design surface of the obtained preshaped film was observed, no defects were observed, and a preshaped object having a good surface state could be obtained.
[0040]
Comparative Example 1
A laminated film of an acrylic two-layer film and an ABS resin film produced by the same method as in Example 1 (a) to (c) was used. However, the laminated film used here had a moisture content of 0.43% before heating. This laminated film has the same arrangement as that shown in (d) of Example 1, except that the upper and lower heater panels 3 and 4 are set to 400 ° C. and 350 ° C., respectively, and the surface temperature of the laminated film is 20 It heated until it changed from 180 degreeC to 180 degreeC. At this time, the time required for heating until the film surface reached 180 ° C. was 37 seconds, and therefore the rate of temperature increase was 4.3 ° C./second. Subsequently, vacuum forming was performed in the same manner as in (d) of Example 1 to obtain a preshaped film. The moisture content of the film immediately before mold shaping was 0.07%, and the moisture content of the film after shaping was 0.07%. When the design surface of the obtained preshaped film was observed, 320 pieces / 100 cm 2 A large number of defects were observed, and a preshaped object having a good surface condition could not be obtained.
[0041]
Reference example 1
The same acrylic bilayer film and ABS resin film laminated film (initial moisture content 0.43%) used in Comparative Example 1 was pre-dried for 3 hours in a hot air circulating oven set at 80 ° C. in advance. After pre-drying, the film temperature dropped to room temperature in a few minutes when removed from the oven and placed in a room temperature atmosphere. When the moisture content of the film was measured in this state, it was 0.23%. In the same manner as in Comparative Example 1, the pre-dried film was heated up and down by heater panels 3 and 4 set at 400 ° C. and 350 ° C., respectively, until the film surface temperature was changed from 20 ° C. to 180 ° C. Heated. At this time, the time required for heating until the film surface reached 180 ° C. was 38 seconds, and thus the rate of temperature increase was 4.2 ° C./second. Subsequently, vacuum forming was performed in the same manner as in Comparative Example 1 to obtain a pre-shaped decorative film. The moisture content of the film immediately before mold shaping was 0.12%, and the moisture content of the film after shaping was 0.12%. When the design surface of the obtained preshaped film was observed, no defects were observed, and a preshaped object having a good surface state could be obtained.
[0042]
The results of Examples 1 to 4, Comparative Example 1 and Reference Example 1 are summarized in Table 1.
[0043]
[Table 1]
Figure 0003912155
[0044]
Example 5
An injection molded article was manufactured using the pre-shaped decorative film produced in each of the above examples. That is, after the decorative film pre-shaped in each example was inserted into the inner surface of an injection mold cavity produced by matching the shape and the mold was clamped, Examples 1 and 2 For Comparative Example 1 and Reference Example 1, ABS resin was injected to the ABS resin layer side, and for Example 3 to the colored acrylic resin layer side, and the decorative film was integrally bonded to the surface of the injection resin. A molded body was obtained. On the other hand, about Example 4, the polypropylene resin was inject | poured into the polypropylene resin layer side, and the same molded object was obtained. As a result, for Examples 1 to 4 and Reference Example 1 in which surface defects did not occur at the time of pre-shaping, molded products having a high surface design were obtained, whereas surface defects at the time of pre-shaping were obtained. In Comparative Example 1 in which the defect occurred, a molded article having a defective appearance was obtained with the surface defect remaining.
[0045]
As described above, in Reference Example 1 in which preliminary drying was performed before heating of the film, no foamy surface defect occurred, but at a moisture reduction rate of 0.010% / second from room temperature to molding temperature without preliminary drying. In the heated comparative example 1, many surface defects occur. On the other hand, in Examples 1 to 4, in which the moisture reduction rate when heating from room temperature to the molding temperature was smaller than 0.010% / second, a shaped article with a good surface condition was obtained while omitting preliminary drying. It is done.
[0046]
【The invention's effect】
According to the present invention, in thermoforming for shaping a resin film having at least one layer composed of a hygroscopic thermoplastic resin, the hygroscopic resin layer is in a state of absorbing moisture without pre-drying the resin film. As it is, it can be subjected to a step of heating to the molding temperature. And while pre-drying is omitted in this way, a shaped film having a good appearance and a molded product having a good appearance using it can be obtained. Therefore, simplification of the process and improvement of production efficiency are expected in the production of the shaped film and further in the production of the molded product using the shaped film.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows an outline of a heating state before molding in an embodiment, wherein (A) is a plan view showing an outline of a heater panel used for heating, and (B) is an outline of the arrangement of the heater panel and film. FIG.
[Explanation of symbols]
1 …… Film,
3, 4 ... Heater panel,
5 …… Infrared heater,
7 …… Clamp.

Claims (5)

吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを、該吸湿性樹脂層中の含水率が 0.25重量%以上の状態から、該吸湿性樹脂層中の水分が0.001〜0.009重量%/秒の割合で減少するように成形温度まで加熱し、次いで成形することを特徴とする、樹脂フィルムの熱成形方法。A resin film having at least one layer made of a hygroscopic thermoplastic resin is used in a state where the moisture content in the hygroscopic resin layer is 0.001 to 0.005% from the state where the moisture content in the hygroscopic resin layer is 0.25% by weight or more. A method for thermoforming a resin film, characterized by heating to a molding temperature so as to decrease at a rate of 0.009% by weight / second and then molding. 樹脂フィルムを構成する吸湿性の熱可塑性樹脂層が、アクリル系樹脂の層を含む請求項1記載の熱成形方法。The thermoforming method according to claim 1, wherein the hygroscopic thermoplastic resin layer constituting the resin film includes an acrylic resin layer. アクリル系樹脂が透明層と着色層の二層からなり、透明アクリル系樹脂層が樹脂フィルムの意匠面を構成している請求項2記載の熱成形方法。The thermoforming method according to claim 2, wherein the acrylic resin comprises two layers of a transparent layer and a colored layer, and the transparent acrylic resin layer constitutes the design surface of the resin film. 樹脂フィルムが、アクリル系樹脂と他の熱可塑性樹脂とが積層された多層フィルムであって、該アクリル系樹脂が、樹脂フィルムの意匠面を構成している請求項2又は3記載の熱成形方法。The thermoforming method according to claim 2 or 3, wherein the resin film is a multilayer film in which an acrylic resin and another thermoplastic resin are laminated, and the acrylic resin constitutes a design surface of the resin film. . 吸湿性の熱可塑性樹脂からなる層を少なくとも一層有する樹脂フィルムを、該吸湿性樹脂層中の含水率が 0.25重量%以上の状態から、該吸湿性樹脂層中の水分が0.001〜0.009重量%/秒の割合で減少するように成形温度まで加熱し、次いで成形し、得られる賦形フィルムを射出成形金型の一方の面に配置して金型キャビティーに溶融樹脂を射出することを特徴とする、上記樹脂フィルムで加飾された樹脂成形体の製造方法。A resin film having at least one layer made of a hygroscopic thermoplastic resin is used in a state where the moisture content in the hygroscopic resin layer is 0.001 to 0.005% from the state where the moisture content in the hygroscopic resin layer is 0.25% by weight or more. Heat to molding temperature to decrease at a rate of 0.009 wt% / second, then mold, place the resulting shaped film on one side of the injection mold and place the molten resin in the mold cavity A method for producing a resin molded body decorated with the resin film, wherein the resin film is injected.
JP2002082965A 2002-03-25 2002-03-25 Thermoforming method of resin film and manufacturing method of decorative resin molding Expired - Fee Related JP3912155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082965A JP3912155B2 (en) 2002-03-25 2002-03-25 Thermoforming method of resin film and manufacturing method of decorative resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082965A JP3912155B2 (en) 2002-03-25 2002-03-25 Thermoforming method of resin film and manufacturing method of decorative resin molding

Publications (2)

Publication Number Publication Date
JP2003276077A JP2003276077A (en) 2003-09-30
JP3912155B2 true JP3912155B2 (en) 2007-05-09

Family

ID=29206806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082965A Expired - Fee Related JP3912155B2 (en) 2002-03-25 2002-03-25 Thermoforming method of resin film and manufacturing method of decorative resin molding

Country Status (1)

Country Link
JP (1) JP3912155B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102687663B1 (en) * 2024-01-10 2024-07-24 주식회사 이원테크 Manufacturing method of recycled polypropylene film

Also Published As

Publication number Publication date
JP2003276077A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
KR100589472B1 (en) Paint film assembly with masking film
JP5363111B2 (en) Method for forming thermoplastic composite material
US10906275B2 (en) Wood sheet and method for manufacturing the same
SE428446B (en) PROCEDURE FOR THE MANUFACTURE OF DELETED FORMATED PANELS
JPH0250131B2 (en)
JP2001121561A (en) Thermoplastic resin molded article and method for making the same
KR20070063467A (en) Multilayer product made out of a substrate and on either side at least one cover layer, process for the manufacture of a multilayer product and painted multilayer product and process for painting a multilayer product
KR20020047270A (en) Backing Leather with Thermoplastics by Injection Molding
JP3912155B2 (en) Thermoforming method of resin film and manufacturing method of decorative resin molding
JP2003326554A (en) Acrylic film for surface decoration and molded object decorated thereby
WO2008093857A1 (en) Process for producing thermoplastic resin molding
JPH01195038A (en) Preparation of laminated skin material
WO2002000448A2 (en) Paint film with protective extensible mask and parts made therefrom
JP2888596B2 (en) Laminated molded article and method for producing the same
JP2003285347A (en) Laminate structure and method for manufacture thereof
CA2199106A1 (en) Glass matt reinforced thermoplastics suitable for the production of paintable parts and parts produced therefrom
JP2003147093A (en) Sheets for thermoforming, thermoformed article and laminated structure
TWI786254B (en) Decorative molded sheet, preformed molded body, and decorated molded body
KR19980060012U (en) Car ceiling
WO1990006848A1 (en) Thermoformable polyaryletherketone/polyvinyl fluoride laminates
JP2018016071A (en) Decorative film and method for producing decorative molded body using the same
JPS5849378B2 (en) Sekisouhouhou
JPH10166434A (en) Composite blow molded product and molding method
US20100065980A1 (en) Method for producing a thermoplastic resin molded article
JPH0564588B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130209

LAPS Cancellation because of no payment of annual fees