JP3912092B2 - Shape measurement method - Google Patents

Shape measurement method Download PDF

Info

Publication number
JP3912092B2
JP3912092B2 JP2001373078A JP2001373078A JP3912092B2 JP 3912092 B2 JP3912092 B2 JP 3912092B2 JP 2001373078 A JP2001373078 A JP 2001373078A JP 2001373078 A JP2001373078 A JP 2001373078A JP 3912092 B2 JP3912092 B2 JP 3912092B2
Authority
JP
Japan
Prior art keywords
angle
light
imaging
measurement
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001373078A
Other languages
Japanese (ja)
Other versions
JP2003172613A (en
Inventor
邦晃 柳澤
亮 西木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001373078A priority Critical patent/JP3912092B2/en
Publication of JP2003172613A publication Critical patent/JP2003172613A/en
Application granted granted Critical
Publication of JP3912092B2 publication Critical patent/JP3912092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パターン光投影法等の光切断法のように、測定対象物に対し光を投光し、その投光された測定対象物を撮像して、測定対象物の形状を測定する形状測定方法に関するものである。
【0002】
【従来の技術】
電子部品といった測定対象物を、無傷にて全数検査し、かつ検査を高速化するために、測定対象物の形状を非接触で測定したいという要求がある。そのような測定法の一つとして光切断法が知られている。
【0003】
上記光切断法は、測定台上の測定対象物に対してスリット光を投影し、測定対象物から反射される光切断像をカメラで画像データとして取り込み、三角測量の原理から測定対象物の表面における形状(凹凸の位置)を求めるという方法であり、アパレル用や医用の検査装置に用いられている。
【0004】
また、上記光切断法においては、スリット光は一本よりも、複数本のスリット光(以下、マルチスリット光)を同時に測定対象物に対して投影する方法(パターン光投影法)が有効である。これは、複数点の測定を同時に行えることにより、測定時間を大幅に短縮することができるからである。
【0005】
パターン光投影法といった光切断法では投光角度αと撮像角度βをあらかじめ設定しておく必要があるが、この設置角度が実際の値からずれると測定誤差となる。通常、段差が既知の基準段差片を測定し、測定結果から逆算して角度を較正(キャリブレーション)する方法が用いられる。
【0006】
【発明が解決しようとする課題】
従来のキャリブレーション方法は、投光角度αと撮像角度βを設置後、段差(高さ)が既知の基準段差片を測定して角度を較正していたが、一つの基準段差片では、αとβを分離して較正することはできなかった。従って、αとβとの間での相対的な角度(つまりα+βのみ)のみが算出可能であり、測定対象の水平軸(測定台の表面方向)との相関は取れなかった。
【0007】
その結果、測定の信頼性が低下するという問題点があった。もともと、アパレル用や医用等の分野で必要となる高さ分解能は数mmから数百μm程度のものが多く、前記した問題点はあまり重要ではなかった。
【0008】
しかし、電子部品自体や、電子部品に用いられる半田バンプ、導電性ペースト等の形状測定(凹凸や厚さ)には数μmから数十μmの高さ分解能が必要となってくるため、前記した問題点は無視できなくなる。
【0009】
【課題を解決するための手段】
本発明の形状測定方法は、上記課題を解決するために、投光部から投光角度αにて光を照射した測定対象物を撮像角度βの撮像部により撮像し、撮像した画像データから上記測定対象物の形状を測定する形状測定方法であって、投光部の投光角度α、及び撮像部の撮像角度βをα+βが略90度となるように設定し、基準段差片を用いて投光部の投光角度αを較正し、続いて、撮像角度βを所望する角度に設定し、その後、基準段差片を用いて撮像部の撮像角度βを較正することを特徴としている。
【0010】
上記較正方法は、投光部からの光は、スリット光であってもよい。上記較正方法は、投光部からの光は、互いに平行で、離間した複数のスリット光であってもよい。
【0011】
上記方法によれば、まず、投光部の投光角度α、及び撮像部の撮像角度βをα+βが略90度となるように設定することによって、投光角度αと撮像角度βとの設定誤差による測定精度に対する影響を抑制できる。特に、投光角度αが一定のときに、撮像角度βを変化させても、測定値に対する影響をはぼゼロにできる。これにより、上記方法では、投光角度αと撮像角度βとを互いに分離して、個別にそれぞれ較正することが可能となるので、形状(例えば、高さ情報)の測定を、高精度、高信頼性にて実現できる。
【0012】
【発明の実施の形態】
本発明の実施の形態に係る形状測定方法について図1ないし図8に基づいて説明すれば、以下の通りである。上記形状測定方法としては、スリット光を用いる光切断法や、複数のスリット光を用いるパターン光投影法が挙げられる。まず、本実施の形態では、光切断法に基づいた形状測定方法を用いる形状測定機を以下に説明する。
【0013】
光切断法による形状測定機では、測定台1上に載置されたワーク(測定対象物)2の検査表面2aに対して、投光角度αによって帯状のスリット光3を照射するスリット光投光部4が設けられている。スリット光投光部4は、投光角度αを変化できるように、例えば、中心がワーク2となる半円状のレール上を往復移動可能となっている。
【0014】
投光角度αは、検査表面2a上の法線と、上記光軸と上記検査表面2a上の法線との間にて形成される角度であり、通常、0度以上90度以下の間に設定される。上記検査表面2a上の法線とは、スリット光3の光軸と検査表面2aとの交点から、検査表面2aの表面方向に対し垂直な方向に延びる仮想線である。
【0015】
また、光切断法においては、ワーク2からの反射光を撮像する撮像部5が撮像角度βにて設けられている。撮像部5は、撮像角度β変化できるように、例えば、中心がワーク2となる半円状のレール上を往復移動可能となっている。
【0016】
撮像部5は、反射光を集光するレンズ5aと、レンズ5aにより集光した光を画像データ(アナログ電気信号)に変換するCCD(Charge Coupled Device)5bとを有し、レンズ5aの光軸がほぼ前記交点上を通るように設定されている。なお、上記のCCDに代えて、CMOS(Complementary Metal Oxide Semiconductor) 型撮像デバイスや撮像管等を用いてもよい。
【0017】
撮像角度βとは、前記検査表面2a上の法線とレンズ5aの光軸との間の角度であり、通常、0度以上90度以下の間に設定される。投光角度αと撮像角度βとは、検査表面2aが全反射する場合、α=βでもよいが、通常、検査対象(例えば塗布した導電性ペーストの厚さや、セラミックス表面の傷といった凹凸)に応じてα≠βである。
【0018】
図2では、スリット光3とレンズ5aとを含む平面上で、検査表面2aの表面方向の向きをX方向、前記法線方向をY方向、検査表面2aの表面方向に沿い、かつX方向に対し直交する方向をZ方向としている。X,Y,Zの少なくとも何れか表記した以下の各図面においても同様である。
【0019】
次に、光切断法における、前記画像データから奥行き情報(高さ情報)を導き出す方法を説明する。まず、光切断法の座標変換式を図3及び図4に基づき以下に示す。
【0020】
(1)定義
有効焦点距離 :f0 (mm)
対象物側焦点距離 :a (mm)
CCD側焦点距離 :b (mm)
光学倍率 :m=(b/a)
(1/a)+(1/b)=(1/f0
a=[1+(1/m)]・f0 (mm)
b=(1+m)・f0 (mm)
ただし、aの値は、レンズ5aと基準点との距離であり、レンズ5aと点Pとの距離ではない。
【0021】

Figure 0003912092
(2)座標変換式
この時の三次元座標は、
Figure 0003912092
で表される。この中で、Yの値が奥行き情報(高さ情報)となる。
【0022】
ただし、
Figure 0003912092
である。このようにして、CCD5bにて撮像された画像データから、検査表面2a上の凹凸(高さ情報)を抽出することができる。
【0023】
次に、このような光切断法に基づいた形状測定方法における投光角度α及び撮像角度βを個別に較正する較正方法の手順を図1に示すキャリブレーション方法を示すフローチャートに基づいて説明する。
【0024】
まず、例えば、検査対象に合わせて、例えばα=45度、β=0度に設置したい場合、まず、
▲1▼任意の投光角度α(例えばα=45度)にスリット光投光部4(図1では投光部と記す)を設置する(ステップ1、以下、ステップをSと略記する)。
▲2▼図5に示すようにα+β=略90度(例えばα=45度、β=45度)となるように撮像部5を設置する(S2)。
▲3▼基準段差片7を測定台1上の測定位置(基準段差片7のほぼ中央が前述の交点となる位置)に載置した後、上記基準段差片7を用い、αを順次変えることによって較正する(S3)。
▲4▼図6に示すように任意の撮像角度β(例えばβ=0度)に撮像部5を設置する(S4)。
▲5▼基準段差片7を用いてβを較正して、較正を完了する(S5)。
【0025】
この方法により、αとβとを互いに分離して、別々に較正可能となり、効率良くかつ効果的にパラメータの較正が可能となる。もちろん、他の条件においてもこの手順は効果的である。なお、上記では、α+β=略90度に設定する前に、投光角度αを先に設定したが、先に撮像角度βを設定し、投光角度αをα+β=略90度となるように設定してもよい。上記略90度とは、90度±10度程度を示すが、より好ましくは90度±2〜3度である。
【0026】
α+β=略90度にまず設定するのは以下の理由による。図7に示すように、投光角度αと撮像角度βは、α+β=略90の時に、測定精度に与える影響が最少であり、特に投光角度αが一定の時に撮像角度βの変化(ずれ)による測定値への影響は0である。
【0027】
このため、上記の手順に示すように、最初に、α+β=略90度にスリット光投光部4と撮像部5とを設置することで、撮像角度βの設定誤差は無視でき、投光角度αのみを精度良く較正できる。その後、所望する任意の角度に撮像部5を設置し撮像角度βを較正する。以上の手法によりαとβを互いに分離してそれぞれ高精度にて較正することが可能である。
【0028】
その結果、本発明の較正方法では、形状測定機に対して、高精度、高信頼性の形状測定(凹凸や厚さ測定)を実現できる。また、上記較正方法においては、較正を1つの基準段差片7のみを用いて実施することが可能であり、基準段差片7を交換する手間が1回だけで済む他、測定におけるコストの削減も可能となる。
【0029】
次に、本実施の形態の光切断法に代えて、パターン光投影法を用いた一変形例を説明する。図8は本発明で用いるパターン光投影法による形状測定機の構成である。なお、本変形例では、上記実施の形態と同様な機能を有する部材については、同一の部材番号を付与して、それらの説明を省いた。
【0030】
上記測定機において、上記実施の形態と異なる点は、スリット光投光部4に代えて、複数のスリット光からなるパターン光13を投光する投光部14が設けられていることである。上記パターン光13は、複数のスリット光を互いに平行で、等間隔に有するものである。これにより、検査速度を向上できる。
【0031】
また、パターン光13の基準となる位置(例えば、中心線)を基準として投光部14と撮像部5をそれぞれ投光角度α、及び撮像角度βに設置する場合の較正方法については、図1に示すキャリブレーション方法に準じて実施すればよい。
【0032】
【発明の効果】
本発明の形状測定方法は、以上に示したように、まず、投光角度α、及び撮像角度βをα+βが略90度となるように設定することによって、投光角度αと撮像角度βとをそれぞれ較正することができ、αとβとを互いに分離して高精度に較正・補正することができる。
【0033】
その結果、上記方法では、形状測定機として高精度、高信頼性の測定が実現できるという効果を奏する。また、この方法では1つの基準段差片のみで較正を実施することが可能であり、基準段差片を交換する手間が1回だけで済む他、コスト削減の効果も奏する。
【図面の簡単な説明】
【図1】本発明の形状測定方法に係る実施の形態の手順を示すフローチャートである。
【図2】上記形状測定方法に用いる形状測定機の概略構成図である。
【図3】上記形状測定方法の切断法の原理の一部を説明するための説明図である。
【図4】上記形状測定方法としての切断法の原理を説明する説明図であり、(a)はXY平面における説明図、(b)はZ−物体(ワーク)方向平面における説明図である。
【図5】上記形状測定方法における一手順の説明図である。
【図6】上記形状測定方法における他の手順の説明図である。
【図7】上記較正方法における、投光角度α及び撮像角度βの誤差が測定精度に関与する影響を示すグラフである。
【図8】上記形状測定方法の一変形例を示す概略構成図である。
【符号の説明】
1 測定台
2 ワーク(測定対象物)
2a 検査表面
3 スリット光
4 スリット光投光部(投光部)
5 撮像部
5a レンズ
5b CCD
α 投光角度
β 撮像角度[0001]
BACKGROUND OF THE INVENTION
The present invention, like a light cutting method such as a pattern light projection method, projects light onto a measurement object, images the projected measurement object, and measures the shape of the measurement object It relates to a measurement method.
[0002]
[Prior art]
There is a demand for measuring the shape of a measurement object in a non-contact manner in order to inspect all the measurement objects such as electronic parts without damage and to speed up the inspection. As one of such measurement methods, a light cutting method is known.
[0003]
In the above light cutting method, slit light is projected onto the measurement object on the measurement table, a light cut image reflected from the measurement object is captured as image data by the camera, and the surface of the measurement object is obtained from the principle of triangulation. This is a method for obtaining the shape (the position of the unevenness) in the above, and is used in apparel and medical inspection devices.
[0004]
In addition, in the light cutting method, a method (pattern light projection method) in which a plurality of slit lights (hereinafter referred to as multi-slit lights) are simultaneously projected onto a measurement object is more effective than a single slit light. . This is because the measurement time can be greatly shortened by simultaneously measuring a plurality of points.
[0005]
In the light cutting method such as the pattern light projection method, it is necessary to set the projection angle α and the imaging angle β in advance, but if this installation angle deviates from the actual value, a measurement error occurs. Usually, a method is used in which a reference step piece with a known step is measured, and the angle is calibrated by back calculation from the measurement result.
[0006]
[Problems to be solved by the invention]
In the conventional calibration method, after setting the projection angle α and the imaging angle β, the reference step piece having a known step (height) is measured to calibrate the angle. And β could not be calibrated separately. Therefore, only the relative angle between α and β (that is, only α + β) can be calculated, and the correlation with the horizontal axis (surface direction of the measurement table) of the measurement target cannot be obtained.
[0007]
As a result, there is a problem that the reliability of measurement is lowered. Originally, many height resolutions required in the fields of apparel and medical use are of the order of several millimeters to several hundreds of micrometers, and the above-mentioned problems are not so important.
[0008]
However, the height measurement of several μm to several tens of μm is required for the shape measurement (unevenness and thickness) of the electronic component itself, solder bumps, conductive paste, etc. used in the electronic component. The problem cannot be ignored.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the shape measuring method of the present invention images a measurement object irradiated with light from a light projecting unit at a light projecting angle α using an image capturing unit having an image capturing angle β, and uses the captured image data to perform the above process. A shape measuring method for measuring the shape of an object to be measured, wherein a light projecting angle α of a light projecting unit and an image capturing angle β of an image capturing unit are set so that α + β is approximately 90 degrees, and a reference step piece is used. The light projection angle α of the light projecting unit is calibrated, the image capturing angle β is set to a desired angle, and then the image capturing angle β of the image capturing unit is calibrated using a reference step piece.
[0010]
In the calibration method, the light from the light projecting unit may be slit light. In the calibration method, the light from the light projecting unit may be a plurality of slit lights that are parallel to each other and spaced apart from each other.
[0011]
According to the above method, first, the projection angle α and the imaging angle β are set by setting the projection angle α of the projection unit and the imaging angle β of the imaging unit such that α + β is approximately 90 degrees. The influence on measurement accuracy due to errors can be suppressed. In particular, even when the imaging angle β is changed when the projection angle α is constant, the influence on the measurement value can be reduced to zero. Thus, in the above method, the projection angle α and the imaging angle β can be separated from each other and individually calibrated, so that the shape (for example, height information) can be measured with high accuracy and high accuracy. Realized with reliability.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The shape measuring method according to the embodiment of the present invention will be described below with reference to FIGS. Examples of the shape measuring method include a light cutting method using slit light and a pattern light projection method using a plurality of slit lights. First, in the present embodiment, a shape measuring machine using a shape measuring method based on the light cutting method will be described below.
[0013]
In the shape measuring machine based on the optical cutting method, slit light projection is applied to the inspection surface 2a of the work (measuring object) 2 placed on the measuring table 1 with a band-shaped slit light 3 at a light projection angle α. Part 4 is provided. For example, the slit light projecting unit 4 can reciprocate on a semicircular rail whose center is the work 2 so that the projection angle α can be changed.
[0014]
The light projection angle α is an angle formed between the normal line on the inspection surface 2a and the optical axis and the normal line on the inspection surface 2a, and is usually between 0 ° and 90 °. Is set. The normal line on the inspection surface 2a is a virtual line extending in a direction perpendicular to the surface direction of the inspection surface 2a from the intersection of the optical axis of the slit light 3 and the inspection surface 2a.
[0015]
In the light cutting method, an imaging unit 5 that images reflected light from the workpiece 2 is provided at an imaging angle β. For example, the imaging unit 5 can reciprocate on a semicircular rail whose center is the workpiece 2 so that the imaging angle β can be changed.
[0016]
The imaging unit 5 includes a lens 5a that collects the reflected light, and a CCD (Charge Coupled Device) 5b that converts the light collected by the lens 5a into image data (analog electrical signal), and the optical axis of the lens 5a. Is set so as to pass substantially above the intersection. In place of the CCD, a CMOS (Complementary Metal Oxide Semiconductor) type imaging device, an imaging tube, or the like may be used.
[0017]
The imaging angle β is an angle between the normal line on the inspection surface 2a and the optical axis of the lens 5a, and is usually set between 0 degrees and 90 degrees. The projection angle α and the imaging angle β may be α = β when the inspection surface 2a is totally reflected. Usually, the inspection angle (for example, unevenness such as the thickness of the applied conductive paste or a scratch on the ceramic surface) is used. Accordingly, α ≠ β.
[0018]
In FIG. 2, on the plane including the slit light 3 and the lens 5a, the surface direction of the inspection surface 2a is the X direction, the normal direction is the Y direction, along the surface direction of the inspection surface 2a, and in the X direction. The direction orthogonal to the Z direction is the Z direction. The same applies to the following drawings in which at least one of X, Y, and Z is represented.
[0019]
Next, a method for deriving depth information (height information) from the image data in the light cutting method will be described. First, the coordinate conversion formula of the light cutting method is shown below based on FIG. 3 and FIG.
[0020]
(1) Definition effective focal length: f 0 (mm)
Object-side focal length: a (mm)
CCD side focal length: b (mm)
Optical magnification: m = (b / a)
(1 / a) + (1 / b) = (1 / f 0 )
a = [1+ (1 / m)] · f 0 (mm)
b = (1 + m) · f 0 (mm)
However, the value of a is the distance between the lens 5a and the reference point, not the distance between the lens 5a and the point P.
[0021]
Figure 0003912092
(2) Coordinate transformation formula The three-dimensional coordinates at this time are
Figure 0003912092
It is represented by Among them, the value of Y is depth information (height information).
[0022]
However,
Figure 0003912092
It is. In this manner, the unevenness (height information) on the inspection surface 2a can be extracted from the image data captured by the CCD 5b.
[0023]
Next, the procedure of the calibration method for individually calibrating the projection angle α and the imaging angle β in the shape measuring method based on such a light cutting method will be described based on the flowchart showing the calibration method shown in FIG.
[0024]
First, for example, if you want to install α = 45 degrees, β = 0 degrees, for example, according to the inspection object,
(1) A slit light projecting unit 4 (referred to as a light projecting unit in FIG. 1) is installed at an arbitrary projecting angle α (for example, α = 45 degrees) (step 1, hereinafter, step is abbreviated as S).
(2) As shown in FIG. 5, the imaging unit 5 is installed so that α + β = approximately 90 degrees (for example, α = 45 degrees, β = 45 degrees) (S2).
(3) After placing the reference step piece 7 at the measurement position on the measuring table 1 (position where the approximate center of the reference step piece 7 is the aforementioned intersection), α is sequentially changed using the reference step piece 7. (S3).
(4) As shown in FIG. 6, the imaging unit 5 is installed at an arbitrary imaging angle β (for example, β = 0 degrees) (S4).
(5) Calibrate β using the reference step piece 7 to complete the calibration (S5).
[0025]
By this method, α and β can be separated from each other and separately calibrated, and parameters can be calibrated efficiently and effectively. Of course, this procedure is effective under other conditions. In the above description, the projection angle α is set first before α + β = approximately 90 degrees. However, the imaging angle β is set first, and the projection angle α is set to α + β = approximately 90 degrees. It may be set. The substantially 90 degrees indicates about 90 degrees ± 10 degrees, and more preferably 90 degrees ± 2 to 3 degrees.
[0026]
The reason for setting α + β = approximately 90 degrees first is as follows. As shown in FIG. 7, the projection angle α and the imaging angle β have the least influence on the measurement accuracy when α + β = approximately 90. In particular, when the projection angle α is constant, the change (shift) of the imaging angle β is constant. ) Has no effect on the measured value.
[0027]
For this reason, as shown in the above procedure, first, by setting the slit light projector 4 and the imaging unit 5 at α + β = approximately 90 degrees, the setting error of the imaging angle β can be ignored, and the projection angle Only α can be accurately calibrated. Thereafter, the imaging unit 5 is installed at an arbitrary desired angle, and the imaging angle β is calibrated. With the above method, α and β can be separated from each other and calibrated with high accuracy.
[0028]
As a result, the calibration method of the present invention can realize highly accurate and highly reliable shape measurement (measurement of unevenness and thickness) for the shape measuring machine. In the above calibration method, the calibration can be performed using only one reference step piece 7, and only one time is required to replace the reference step piece 7, and the measurement cost can be reduced. It becomes possible.
[0029]
Next, a modified example using a pattern light projection method instead of the light cutting method of the present embodiment will be described. FIG. 8 shows the configuration of a shape measuring machine using the pattern light projection method used in the present invention. In addition, in this modification, about the member which has the same function as the said embodiment, the same member number was provided and those description was abbreviate | omitted.
[0030]
The measuring device is different from the above embodiment in that a light projecting unit 14 for projecting pattern light 13 composed of a plurality of slit lights is provided instead of the slit light projecting unit 4. The pattern light 13 has a plurality of slit lights parallel to each other at equal intervals. Thereby, the inspection speed can be improved.
[0031]
Further, a calibration method in the case where the light projecting unit 14 and the image capturing unit 5 are installed at the light projecting angle α and the image capturing angle β, respectively, with the position (for example, the center line) serving as the reference of the pattern light 13 as shown in FIG. The calibration method shown in FIG.
[0032]
【The invention's effect】
As described above, the shape measuring method of the present invention first sets the projection angle α and the imaging angle β by setting the projection angle α and the imaging angle β so that α + β is approximately 90 degrees. Can be calibrated, and α and β can be separated from each other and calibrated and corrected with high accuracy.
[0033]
As a result, the above method has an effect that a highly accurate and reliable measurement can be realized as a shape measuring machine. Further, in this method, it is possible to carry out calibration with only one reference step piece, and only one time is required for exchanging the reference step piece, and there is an effect of cost reduction.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of an embodiment according to a shape measuring method of the present invention.
FIG. 2 is a schematic configuration diagram of a shape measuring machine used in the shape measuring method.
FIG. 3 is an explanatory diagram for explaining a part of the principle of the cutting method of the shape measuring method.
4A and 4B are explanatory views for explaining the principle of a cutting method as the shape measuring method, wherein FIG. 4A is an explanatory view on an XY plane, and FIG. 4B is an explanatory view on a plane in the Z-object (workpiece) direction.
FIG. 5 is an explanatory diagram of one procedure in the shape measuring method.
FIG. 6 is an explanatory diagram of another procedure in the shape measuring method.
FIG. 7 is a graph showing the influence of errors in projection angle α and imaging angle β on measurement accuracy in the calibration method.
FIG. 8 is a schematic configuration diagram showing a modified example of the shape measuring method.
[Explanation of symbols]
1 Measuring table 2 Workpiece (object to be measured)
2a Inspection surface 3 Slit light 4 Slit light projector (projector)
5 Imaging unit 5a Lens 5b CCD
α Projection angle β Imaging angle

Claims (3)

投光部から投光角度αにて光を照射した測定対象物を撮像角度βの撮像部により撮像し、撮像した画像データから上記測定対象物の形状を測定する形状測定方法であって、
投光部の投光角度α、及び撮像部の撮像角度βをα+βが略90度となるように設定し、
基準段差片を用いて投光部の投光角度αを較正し、
続いて、撮像角度βを所望する角度に設定し、
その後、基準段差片を用いて撮像部の撮像角度βを較正することを特徴とする形状測定方法。
A shape measuring method in which a measurement object irradiated with light from a light projecting unit at a projection angle α is imaged by an imaging unit at an imaging angle β, and the shape of the measurement object is measured from the captured image data,
The light projection angle α of the light projecting unit and the image capturing angle β of the image capturing unit are set so that α + β is approximately 90 degrees,
Calibrate the projection angle α of the projector using the reference step piece,
Subsequently, the imaging angle β is set to a desired angle,
Then, the shape measurement method characterized by calibrating the imaging angle β of the imaging unit using the reference step piece.
投光部からの光は、スリット光であることを特徴とする請求項1記載の形状測定方法。The shape measuring method according to claim 1, wherein the light from the light projecting unit is slit light. 投光部からの光は、互いに平行で、離間した複数のスリット光であることを特徴とする請求項1記載の形状測定方法。The shape measuring method according to claim 1, wherein the light from the light projecting unit is a plurality of slit lights that are parallel to each other and spaced apart from each other.
JP2001373078A 2001-12-06 2001-12-06 Shape measurement method Expired - Lifetime JP3912092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373078A JP3912092B2 (en) 2001-12-06 2001-12-06 Shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373078A JP3912092B2 (en) 2001-12-06 2001-12-06 Shape measurement method

Publications (2)

Publication Number Publication Date
JP2003172613A JP2003172613A (en) 2003-06-20
JP3912092B2 true JP3912092B2 (en) 2007-05-09

Family

ID=19181859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373078A Expired - Lifetime JP3912092B2 (en) 2001-12-06 2001-12-06 Shape measurement method

Country Status (1)

Country Link
JP (1) JP3912092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552907B2 (en) * 2006-05-30 2010-09-29 パルステック工業株式会社 Form measuring device deviation amount acquisition method, deviation amount acquisition program, and deviation amount acquisition reference workpiece

Also Published As

Publication number Publication date
JP2003172613A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
CN100585615C (en) Detection system
CN107957659B (en) Mask and wafer defect detection orthogonality compensation method
JP2008241643A (en) Three-dimensional shape measuring device
KR20120087680A (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
CN107993958B (en) Orthogonality compensation method and compensation system in semiconductor defect detection/photoetching
KR101545186B1 (en) method of correction of defect location using predetermined wafer image targets
KR20100096684A (en) Three-dimensional image measuring apparatus and method thereof
US9594028B2 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP2007093412A (en) Three-dimensional shape measuring device
KR101183101B1 (en) Method of die bonding for flip chip
JP3491106B2 (en) Position detecting device, positioning device and position measuring method
JP2986142B2 (en) Probe method
JP3696336B2 (en) How to calibrate the camera
KR101633139B1 (en) A method and means for measuring positions of contact elements of an electronic components
JP3912092B2 (en) Shape measurement method
KR100597026B1 (en) A method of detecting a pattern and an apparatus thereof
CN115628685B (en) Method and equipment for measuring critical dimension and method for classifying and positioning critical dimension
CN114571455B (en) System and method for calibrating movement of movement module and robot
TW201940840A (en) Appearance inspection device
TW202234175A (en) Detection apparatus, detection method, programme, lithography apparatus, and method of manufacturing article A high-precision detection apparatus that is useful for pattern matching.
JPH11166813A (en) Dimension measuring circuit using image processing
JP2005274309A (en) Inspection method and inspection device for three-dimensional object
JP7124424B2 (en) 3D shape measurement system and measurement time setting method
JP2016095243A (en) Measuring device, measuring method, and article manufacturing method
JP3923168B2 (en) Component recognition method and component mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

EXPY Cancellation because of completion of term