JP3912027B2 - Self-igniting internal combustion engine - Google Patents

Self-igniting internal combustion engine Download PDF

Info

Publication number
JP3912027B2
JP3912027B2 JP2001128830A JP2001128830A JP3912027B2 JP 3912027 B2 JP3912027 B2 JP 3912027B2 JP 2001128830 A JP2001128830 A JP 2001128830A JP 2001128830 A JP2001128830 A JP 2001128830A JP 3912027 B2 JP3912027 B2 JP 3912027B2
Authority
JP
Japan
Prior art keywords
fuel
self
main combustion
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128830A
Other languages
Japanese (ja)
Other versions
JP2002322927A (en
Inventor
勇 堀田
博文 土田
俊一 椎野
隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001128830A priority Critical patent/JP3912027B2/en
Publication of JP2002322927A publication Critical patent/JP2002322927A/en
Application granted granted Critical
Publication of JP3912027B2 publication Critical patent/JP3912027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内に噴射された燃料の少なくとも一部を自己着火燃焼させることで主燃焼を行わせる自己着火式内燃機関に関する。
【0002】
【従来の技術】
自己着火燃焼は、主燃焼領域内の多点から同時に燃焼が開始されるため、燃焼速度が速く、通常の火花点火燃焼に比べて空燃比がリーンな状態でも安定した燃焼を実現することができるので、燃料消費率の向上が可能である。また、空燃比がリーンなため燃焼温度が低下することから、排気ガス中のNOxを大幅に低減することも可能である(特開平7−332141参照)。
【0003】
一方、NOxトラップは、流入する排気ガスの空燃比がリーンのときにNOxをトラップし、流入する排気ガスの空燃比がストイキ(理論空燃比)又はリッチになるとトラップしているNOxを脱離浄化する排気浄化装置として知られている(特開平6−108824参照)。
当該NOxトラップでは、リーン燃焼を行った際に発生するNOxをトラップし、そのNOxトラップ能力が飽和する前に、膨張行程又は排気行程にて筒内に追加燃料を噴射することで、NOxトラップヘ流入する排気ガスの空燃比を一時的にリッチ化し、これによってNOxトラップからNOxを脱離浄化処理するようにしている(以下、このような制御をリッチスパイク制御という)。
【0004】
【発明が解決しようとする課題】
上述したように、自己着火式内燃機関は、リーン燃焼を実現するために燃焼温度が非常に低く、排気中のNOxは低濃度である。しかし、当該機関からのNOx排出量はゼロではなく、更なるNOx排出量の低減を実現するためには排気通路にNOxトラップを装備する必要がある。
【0005】
その際、リッチスパイク制御のため、例えば膨張行程にて追加燃料噴射を行った次のサイクルにおいて、筒内残留燃料濃度が増加する。当該残留燃料は膨張行程中の高温状態に曝されているため、部分酸化反応等により非常に高い活性状態、つまり着火性の良い状態にある。一般に自己着火燃焼は多点同時着火による急激な圧力上昇を伴うため、着火時期の制御は非常に重要であり、そのため、リッチスパイク制御を行った次のサイクルにおいて、主燃焼時の着火時期を制御するパラメータを通常運転条件時と比較して同様に行うと、筒内の燃料活性状態が両者で異なるために、リッチスパイク制御を行った次のサイクルの方が早期に着火が起こり、過早着火による運転性の悪化を生じるという問題点がある。
【0006】
本発明は、このような従来の問題点に鑑み、自己着火式内燃機関において、膨張行程又は排気行程にて筒内に追加燃料を噴射する場合に、この追加燃料噴射を行った次のサイクルでの燃焼性能を改善することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明では、筒内に噴射された燃料の少なくとも一部を自己着火燃焼させることで主燃焼を行わせる自己着火式内燃機関であって、所定の運転条件のときに膨張行程又は排気行程にて筒内に追加燃料を噴射するものにおいて、前記追加燃料の噴射を行った次のサイクルでは、主燃焼時の着火開始領域である主燃焼領域内における残留燃料及び新たに噴射された燃料を含む空燃比を、通常運転条件時と同等の着火時期を得るよ うに、通常運転条件時の空燃比よりもリーン化することを特徴とする。
【0008】
請求項2の発明では、吸気行程から圧縮行程中に、主燃焼のための燃料噴射を少なくとも1度は行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、主燃焼のための燃料噴射量を減少させるものであることを特徴とする。
【0009】
請求項3の発明では、吸気行程から圧縮行程中に、主燃焼のための燃料噴射を少なくとも1度は行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、主燃焼のための燃料噴射時期を進角させるものであることを特徴とする。
請求項4の発明では、圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、1度目の燃料噴射量を減少させるものであることを特徴とする。
【0010】
請求項5の発明では、圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、1度目の燃料噴射時期を進角させるものであることを特徴とする。
【0011】
請求項6の発明では、圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、2度目の燃料噴射量を減少させるものであることを特徴とする。
【0012】
請求項7の発明では、圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、前記主燃焼領域内の空燃比をリーン化する手段は、2度目の燃料噴射時期を進角させるものであることを特徴とする。
【0013】
請求項8の発明では、排気通路に、流入する排気ガスの空燃比がリーンの時にNOxをトラップし、空燃比がストイキ又はリッチの時にトラップしているNOxを脱離浄化するNOxトラップを備え、前記追加燃料の噴射は、前記NOxトラップからNOxを脱離浄化すべく、排気ガスの空燃比をリッチ化(ストイキ又はリッチに)するために行うことを特徴とする。
【0014】
【発明の効果】
請求項1の発明によれば、燃料の一部もしくは全部を自己着火燃焼させることで主燃焼を行わせるサイクルにおいて、膨張行程以降にて追加燃料噴射を行った次のサイクルでは、主燃焼領域内の空燃比を、通常運転条件時と同等の着火時期を得るように、通常運転条件時の空燃比よりもリーン化するため、過早着火を抑制し、着火時期を適切に制御することが可能となる。
【0015】
請求項2の発明によれば、主燃焼のための燃料噴射を少なくとも1度は行う場合、この燃料噴射量を減少させるため、筒内残留燃料と噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
【0016】
請求項3の発明によれば、主燃焼のための燃料噴射を少なくとも1度は行う場合、この燃料噴射時期を進角させるため、この噴射燃料の拡散により、筒内残留燃料と噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
請求項4の発明によれば、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、1度目(排気行程後期から圧縮行程中噴射に至るまでの間)の燃料噴射量を減少させるため、筒内残留燃料と1度目の噴射燃料及び2度目の噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
【0017】
請求項5の発明によれば、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、1度目(排気行程後期から圧縮行程中噴射に至るまでの間)の燃料噴射時期を進角させるため、この1度目の噴射燃料の拡散により、筒内残留燃料と1度目の噴射燃料及び2度目の噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
【0018】
請求項6の発明によれば、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、2度目(圧縮行程中噴射)の燃料噴射量を減少させるため、筒内残留燃料と1度目の噴射燃料及び2度目の噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
請求項7の発明によれば、少なくとも合計2度の主燃焼のための燃料噴射を行う場合、2度目(圧縮行程中噴射)の燃料噴射時期を進角させるため、この2度目の噴射燃料の拡散により、筒内残留燃料と1度目の噴射燃料及び2度目の噴射燃料とを含む主燃焼領域内の空燃比をリーン化することができる。
【0019】
請求項8の発明によれば、排気通路にNOxトラップを備え、前記追加燃料の噴射は、前記NOxトラップからNOxを脱離浄化すべく、排気ガスの空燃比をリッチ化にするために行うので、かかるリッチスパイク制御を行った次のサイクルでの着火時期を適切に制御して、NOxの脱離浄化を運転性の悪化なく行うことができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
先ず本発明の第1実施形態について説明する。
図1は本発明の第1実施形態を示す内燃機関(以下エンジンという)のシステム図である。
【0021】
エンジン1に吸入される空気は、エアクリーナ2を通過後、エアフローメータ3で計量され、電制スロットル弁4に導かれる。ここで吸入空気量の制御が行われる。吸入空気はその後、コレクタ5、吸気マニホールド6、吸気ポート7を経て、シリンダ8へと導かれる。シリンダ8では、吸気カムシャフト9により吸気弁10を開き、ピストン11の下降と共に空気を吸入する。
【0022】
シリンダ8内への燃料の供給は、燃料噴射装置12により行い、この燃料噴射装置12では、排気行程後期から吸気行程を経て圧縮行程前期までの間に混合気形成用の燃料噴射を1度、圧縮行程後期に着火用の燃料噴射を1度、合計2度の燃料噴射を行う。
一方、ピストン11の上昇により混合気を圧縮し、火花点火装置13により2度目の噴射燃料である着火用燃料に着火を行う(火花点火による1段目の燃焼)。これによりシリンダ8内の圧力及び温度を上昇させることにより、1度目の噴射燃料を自己着火燃焼(2段目の燃焼)させて、ピストン11を押し下げる。
【0023】
その後、排気カムシャフト14により排気弁15を開き、ピストン11の上昇と共に、排気を排気ポート16、更に排気マニホールド17へ排出する。排気マニホールド17には空燃比(以下A/Fという)の検出のためA/Fセンサ18が設けられ、ここで排気中のA/Fを計測し、エンジン1を任意のA/Fで運転する際はこの信号に基づきフィードバック制御を行う。
【0024】
排気マニホールド17を通過した排気は、その下流に設けられた三元触媒19、更にその下流に設けられたNOxトラップ20で浄化され、排出される。
三元触媒19は、特に排気のA/Fがストイキのときに排気中のHC、CO、NOxを効率良く浄化する特性を有するものである。
NOxトラップ20は、排気のA/Fがリーンのときに排気中のNOxをトラップし、排気のA/Fがストイキ又はリッチのときにトラップしていたNOxを脱離浄化する特性を有するものである。また、NOxトラップ20の下流にはNOxセンサ21が設けられ、NOxトラップ20から流出するNOxを計測することが可能となっている。
【0025】
ここにおいて、エンジン1の電制スロットル弁4のスロットル開度の制御、燃料噴射装置12の燃料噴射時期及び燃料噴射量の制御、火花点火装置13の火花点火時期の制御は、エンジンコントロールユニット(以下ECUという)22にて行う。
ECU22には、エアフローメータ3の信号、A/Fセンサ18の信号、NOxセンサ21の信号の他、図示しないクランク角及びエンジン回転数検出用のクランク角センサの信号、アクセル開度(アクセルペダル踏込み量)検出用のアクセルセンサの信号、エンジン冷却水温度又はエンジン潤滑油温度検出用の油水温度センサの信号など入力され、これらの信号を基に上記の各制御を行う。
【0026】
また、このような自己着火式エンジンでは、通常リーン燃焼を行っているため、排気通路に装備された三元触媒19によるNOxの還元は期待できない。そのため、下流に設けられたNOxトラップ20によりエンジンから排出されるNOxをトラップする。
しかし、NOxトラップ20によるNOxトラップ量には限界があるため、限界値に達した時もしくはそれ以前に、リッチスパイク制御を行い、NOxトラップ20よりNOxを脱離浄化しなければならない。
【0027】
NOxトラップ量の限界の判断、つまりリッチスパイク制御を行う時期の判断は、例えば図2に示すように、エンジン回転数とアクセル開度とから予め実験によりNOx排出量を求めておいたマップを用い、このマップから検索したNOx排出量を積算し、その積算値がNOxトラップ量の限界値に達したか否かにより行ってもよいし、NOxトラップ20の下流に設けられたNOxセンサ21を用い、NOxトラップ20の下流にNOxが流出したことを検知することで行ってもよい。もちろん、これ以外の従来の手法を用いてもよく、限定するものではない。
【0028】
リッチスパイク制御を行う場合は、膨張行程又は排気行程において燃料噴射装置12より追加燃料噴射を行い、排気のA/Fがストイキもしくはリッチとなるように制御を行うこととする。更に、当該噴射時期としては、噴射された燃料の酸化反応が十分に進行しない時期、且つ部分酸化反応が起こる程度の時期とし、当該噴射時期の決定方法としては、例えば図3に示すように、エンジン回転数とアクセル開度とから予め実験により追加燃料噴射開始時期のマップを作成し、これから検索すればよいが、その他の従来の手法を用いてもよく、限定するものではない。
【0029】
ここで、先ず、本発明が狙いとする燃焼制御形態について説明する。
リッチスパイク制御を行った次のサイクルでは、筒内残留燃料濃度が通常の運転条件の場合と比較して増加する。また、当該残留燃料は高温場に曝されるため、部分酸化反応等により高い活性状態にある。そのため、リッチスパイク制御を行った次のサイクルでは、当該制御を行わない通常運転条件時と同様の制御を行うと、図4に示す通常運転条件及びリッチスパイク後の主燃焼領域内A/Fに対する自己着火時期の特性から明らかなように、早期に着火が起こり、エンジンの運転性能が悪化する。そのため、適切な着火時期(通常運転条件時と同等の着火時期)を得るために、リッチスパイク制御を行った次のサイクルでは、着火時期制御手段により、着火時期を遅角させる(着火時期の早期化を抑制する)必要がある。
【0030】
本実施形態では、リッチスパイク制御を行った次のサイクルにて、着火時期を遅角させる手段として、1度目の燃料噴射量を通常運転条件時よりも減少させ、主燃焼領域内のA/Fを通常運転条件時よりもリーン化する手段を用いることにより、着火時期の適正化を図る。この場合、リッチスパイク制御を行った次のサイクルでは、筒内残留燃料量が増加し、当該残留燃料は新たに噴射する燃料と比較して高活性状態にあるため、燃料噴射量は、残留燃料量の増加分以上に減少させる必要がある。
【0031】
本実施形態でのリッチスパイク制御を行った際の制御フローを図5に、当該制御を実施した際の主燃焼領域内A/Fの時間履歴を図6に、筒内A/Fの変化を図7に示す。尚、図6には、リッチスパイク制御期間において、膨張行程における追加燃料噴射量を徐々に減少させた条件での結果を示しているが、当該追加燃料噴射量の制御手法としてはこれに限定するものでない。
【0032】
以下に図5に示す制御フローについて説明する。
S1では、各制御パラメータ(アクセル開度、エンジン回転数、追加燃料噴射量、油水温度)から、通常運転条件時の1度目の燃料噴射量Fwに対する補正値αを算出する(但し、α≦1)。
S2では、リッチスパイク制御を行った次のサイクルでの1度目の燃料噴射量Fw1を次式より算出する。
【0033】
Fw1=α×Fw (但し、α≦1)
これにより、1度目の燃料噴射量Fw1を減少させ、主燃焼領域内のA/Fを通常運転条件時よりもリーン化することで、自己着火時期の適正化を図ることが可能となる。
S3では、リッチスパイク制御の終了判断を行う。当該終了判断は、例えば図8に示すように、エンジン回転数と追加燃料噴射量とから予め実験によりNOx脱離還元量を求めておいたマップを用い、このマップから検索したNOx脱離還元量を積算し、その積算値がリッチスパイク制御開始前のNOxトラップ量に達したか否かにより行ってもよいし、その他の従来の手法を用いてもよく限定するものではない。
S4では、S3においてリッチスパイク制御の終了と判断された場合に、通常運転制御を再開する。
【0034】
本実施形態は請求項1、2、4、8の発明に該当するが、上記と同様の制御手法を用いて、前記αの値を2度目の燃料噴射量に対する補正値とすることにより、2度目の燃料噴射量を通常運転条件時よりも減少させ、主燃焼領域内のA/Fを通常運転条件時よりもリーン化することにより、着火時期の適正化を図ることも可能である。これは特に請求項6の発明に該当する。
また、初期の火花点火による着火の代わりに、ピストンによる圧縮自己着火を行った場合(例えば特願2000−143850に記載の内燃機関)においても、αを最適値に変化させることにより、同様の制御手法を用いることが可能である。
【0035】
次に、本発明の第2実施形態について説明する。
本実施形態では、リッチスパイク制御を行った次のサイクルにて、着火時期を遅角させる手段として、1度目の燃料噴射時期を進角させ、この1度目の噴射燃料の拡散により、主燃焼領域内のA/Fを通常運転条件時よりもリーン化する手段を用いることで、着火時期の適正化を図る。
本実施形態でのリッチスパイク制御を行った際の制御フローを図9に、当該制御を実施した際の筒内A/Fの変化を図10に示す。
【0036】
以下に図9に示す制御フローについて説明する。
S11では、各制御パラメータ(アクセル開度、エンジン回転数、追加燃料噴射量、油水温度)から、通常運転条件時の1度目の燃料噴射時期I/Tに対する補正値βを算出する(但し、β≧0)。
S12では、リッチスパイク制御を行った次のサイクルでの1度目の燃料噴射時期I/T1を次式より算出する。
【0037】
I/T1=I/T−β (但し、β≧0)
これにより、1度目の燃料噴射時期I/T1を進角させ、主燃焼領域内のA/Fを通常運転条件時よりもリーン化することで、自己着火時期の適正化を図ることが可能となる。
S13、S14での処理については、第1実施形態(S3、S4)と同様である。
【0038】
本実施形態は特に請求項3、5の発明に該当するが、上記と同様の制御手法を用いて、前記βの値を2度目の燃料噴射時期に対する補正値とすることにより、2度目の燃料噴射時期を通常運転条件時よりも進角させ、この2度目の噴射燃料の拡散により、主燃焼領域内のA/Fを通常走行条件時よりもリーン化することで、着火時期の適正化を図ることも可能である。これは特に請求項7の発明に該当する。
【0039】
また、初期の火花点火による着火の代わりに、ピストンによる圧縮自己着火を行った場合(例えば特願2000−143850に記載の内燃機関)においても、βを最適値に変化させることにより、同様の制御手法を用いることが可能である。
【0040】
以上では、NOxトラップにトラップされているNOxを脱離浄化するために、膨張行程又は排気行程にて追加燃料噴射を行う場合について説明したが、排気浄化触媒の早期活性化などのために、排気温度を上昇させる目的で、膨張行程又は排気行程にて追加燃料噴射を行う場合もあり、この場合にも、本発明を適用可能である。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示す内燃機関のシステム図
【図2】 NOx排出量の特性図
【図3】 追加燃料噴射開始時期の特性図
【図4】 通常運転条件及びリッチスパイク後の主燃焼領域内A/Fに対する自己着火時期の特性図
【図5】 第1実施形態の制御フローチャート
【図6】 第1実施形態でのリッチスパイク制御を行った際の主燃焼領域内A/Fの時間履歴を示す図
【図7】 第1実施形態での通常運転条件及びリッチスパイク後の筒内A/Fの変化を示す図
【図8】 NOx脱離還元量の特性図
【図9】 第2実施形態の制御フローチャート
【図10】 第2実施形態での通常運転条件及びリッチスパイク後の筒内A/Fの変化を示す図
【符号の説明】
1 エンジン
3 エアフローメータ
4 電制スロットル弁
6 吸気マニホールド
8 シリンダ
10 吸気弁
12 燃料噴射装置
13 火花点火装置
15 排気弁
17 排気マニホールド
18 A/Fセンサ
19 三元触媒
20 NOxトラップ
21 NOxセンサ
22 ECU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-ignition internal combustion engine that performs main combustion by self-igniting and burning at least a part of fuel injected into a cylinder.
[0002]
[Prior art]
In self-ignition combustion, combustion starts simultaneously from multiple points in the main combustion region, so the combustion speed is high, and stable combustion can be achieved even when the air-fuel ratio is lean compared to normal spark ignition combustion. Therefore, the fuel consumption rate can be improved. Further, since the air-fuel ratio is lean and the combustion temperature is lowered, it is possible to significantly reduce NOx in the exhaust gas (see JP-A-7-332141).
[0003]
On the other hand, the NOx trap traps NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and desorbs and purifies NOx trapped when the air-fuel ratio of the inflowing exhaust gas becomes stoichiometric (theoretical air-fuel ratio) or rich It is known as an exhaust gas purification device that performs this (see JP-A-6-108824).
In the NOx trap, NOx generated when lean combustion is performed is trapped, and before the NOx trap capability is saturated, additional fuel is injected into the cylinder in the expansion stroke or the exhaust stroke, thereby flowing into the NOx trap. The air-fuel ratio of exhaust gas to be temporarily enriched, thereby desorbing and purifying NOx from the NOx trap (hereinafter, such control is referred to as rich spike control).
[0004]
[Problems to be solved by the invention]
As described above, the self-ignition internal combustion engine has a very low combustion temperature to achieve lean combustion, and NOx in the exhaust gas has a low concentration. However, the NOx emission amount from the engine is not zero, and it is necessary to equip the exhaust passage with a NOx trap in order to realize further reduction of the NOx emission amount.
[0005]
At that time, because of the rich spike control, the in-cylinder residual fuel concentration increases in the next cycle in which additional fuel injection is performed in the expansion stroke, for example. Since the residual fuel is exposed to a high temperature state during the expansion stroke, it is in a very high active state, that is, in a good ignitability state due to a partial oxidation reaction or the like. In general, since self-ignition combustion involves a rapid pressure increase due to multi-point simultaneous ignition, it is very important to control the ignition timing. Therefore, in the next cycle after rich spike control, the ignition timing during main combustion is controlled. If the same parameters are used in comparison with the normal operating conditions, the in-cylinder fuel activation state differs between the two, so the next cycle that performed rich spike control ignited earlier, and pre-ignition There is a problem that the drivability deteriorates due to the above.
[0006]
In view of such a conventional problem, the present invention provides a self-ignition internal combustion engine in the next cycle in which the additional fuel injection is performed when the additional fuel is injected into the cylinder in the expansion stroke or the exhaust stroke. The purpose is to improve the combustion performance.
[0007]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, there is provided a self-ignition internal combustion engine that performs main combustion by self-igniting and burning at least a part of the fuel injected into the cylinder, and expands under predetermined operating conditions. In the case where the additional fuel is injected into the cylinder in the stroke or the exhaust stroke, in the next cycle after the injection of the additional fuel , the residual fuel in the main combustion region, which is the ignition start region at the time of main combustion, and new injection the air-fuel ratio including a fuel, by obtaining the normal operating conditions during the same ignition timing urchin, characterized by leaner than the air-fuel ratio during normal operating conditions.
[0008]
In the invention of claim 2, when fuel injection for main combustion is performed at least once during the intake stroke to the compression stroke, the means for leaning the air-fuel ratio in the main combustion region includes: The fuel injection amount is reduced.
[0009]
According to the third aspect of the present invention, when fuel injection for main combustion is performed at least once during the intake stroke to the compression stroke, the means for leaning the air-fuel ratio in the main combustion region includes: The fuel injection timing is advanced.
In the invention of claim 4, when the fuel injection for the main combustion is performed at least once in the compression stroke, once during the period from the latter exhaust stroke to the injection during the compression stroke, and at least twice in total. The means for leaning the air-fuel ratio in the main combustion region is for reducing the first fuel injection amount.
[0010]
In the fifth aspect of the present invention, when the fuel injection for the main combustion is performed at least twice in total during the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke. The means for leaning the air-fuel ratio in the main combustion region is for advancing the first fuel injection timing.
[0011]
In the sixth aspect of the present invention, when the fuel injection for the main combustion is performed at least once in the compression stroke, once in the period from the late exhaust stroke to the injection during the compression stroke, and at least twice in total. The means for leaning the air-fuel ratio in the main combustion region is for reducing the second fuel injection amount.
[0012]
In the invention of claim 7, when the fuel injection for the main combustion is performed at least once in the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke. The means for leaning the air-fuel ratio in the main combustion region is for advancing the second fuel injection timing.
[0013]
In the invention of claim 8, the exhaust passage is provided with a NOx trap for trapping NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and desorbing and purifying NOx trapped when the air-fuel ratio is stoichiometric or rich, The injection of the additional fuel is performed in order to enrich (stoichiometrically or richly) the air-fuel ratio of the exhaust gas in order to desorb and purify NOx from the NOx trap.
[0014]
【The invention's effect】
According to the invention of claim 1, in the cycle in which the main combustion is performed by self-igniting combustion of a part or all of the fuel, in the next cycle in which the additional fuel injection is performed after the expansion stroke , The air-fuel ratio of the engine is made leaner than the air-fuel ratio under normal operating conditions so as to obtain an ignition timing equivalent to that under normal operating conditions, so it is possible to suppress premature ignition and control the ignition timing appropriately. It becomes.
[0015]
According to the second aspect of the present invention, when the fuel injection for the main combustion is performed at least once, the air-fuel ratio in the main combustion region including the in-cylinder residual fuel and the injected fuel is reduced in order to reduce the fuel injection amount. Can be leaned.
[0016]
According to the invention of claim 3 , when fuel injection for main combustion is performed at least once, in order to advance the fuel injection timing, the in-cylinder residual fuel and the injected fuel are separated by diffusion of the injected fuel. The air-fuel ratio in the main combustion region including it can be made lean.
According to the invention of claim 4 , when performing fuel injection for main combustion at least twice in total, in order to reduce the fuel injection amount for the first time (from the latter stage of the exhaust stroke to the injection during the compression stroke). The air-fuel ratio in the main combustion region including the in-cylinder residual fuel, the first injected fuel, and the second injected fuel can be made lean.
[0017]
According to the fifth aspect of the present invention, when fuel injection for main combustion is performed at least twice in total, the first fuel injection timing (from the late exhaust stroke to the mid-compression stroke) is advanced. Therefore, by the diffusion of the first injected fuel, the air-fuel ratio in the main combustion region including the in-cylinder residual fuel, the first injected fuel, and the second injected fuel can be made lean.
[0018]
According to the sixth aspect of the present invention, when performing fuel injection for main combustion at least twice in total, in order to reduce the amount of fuel injection for the second time (injection during the compression stroke), the residual fuel in the cylinder and the first time The air-fuel ratio in the main combustion region including the injected fuel and the second injected fuel can be made lean.
According to the seventh aspect of the present invention, when fuel injection for main combustion is performed at least twice in total, the fuel injection timing of the second time (injection during the compression stroke) is advanced, so By diffusion, the air-fuel ratio in the main combustion region including the in-cylinder residual fuel, the first injected fuel, and the second injected fuel can be made lean.
[0019]
According to the invention of claim 8 , the exhaust passage is provided with a NOx trap, and the injection of the additional fuel is performed to enrich the air-fuel ratio of the exhaust gas in order to desorb and purify NOx from the NOx trap. Thus, it is possible to appropriately control the ignition timing in the next cycle in which such rich spike control is performed, and perform NOx desorption purification without deteriorating operability.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a first embodiment of the present invention will be described.
FIG. 1 is a system diagram of an internal combustion engine (hereinafter referred to as an engine) showing a first embodiment of the present invention.
[0021]
The air taken into the engine 1 passes through the air cleaner 2, is measured by the air flow meter 3, and is guided to the electric throttle valve 4. Here, the intake air amount is controlled. The intake air is then guided to the cylinder 8 via the collector 5, the intake manifold 6, and the intake port 7. In the cylinder 8, the intake valve 10 is opened by the intake camshaft 9, and air is sucked together with the lowering of the piston 11.
[0022]
The fuel is supplied into the cylinder 8 by the fuel injection device 12. In this fuel injection device 12, fuel injection for mixture formation is performed once during the period from the late stage of the exhaust stroke through the intake stroke to the early stage of the compression stroke. In the latter half of the compression stroke, the fuel is injected once for a total of 2 times.
On the other hand, the air-fuel mixture is compressed by the rise of the piston 11, and the spark ignition device 13 ignites the ignition fuel that is the second injected fuel (first stage combustion by spark ignition). As a result, by increasing the pressure and temperature in the cylinder 8, the first injected fuel is self-ignited and combusted (second stage combustion), and the piston 11 is pushed down.
[0023]
After that, the exhaust valve 15 is opened by the exhaust camshaft 14, and the exhaust is discharged to the exhaust port 16 and further to the exhaust manifold 17 as the piston 11 rises. The exhaust manifold 17 is provided with an A / F sensor 18 for detecting an air-fuel ratio (hereinafter referred to as A / F), where the A / F in the exhaust is measured and the engine 1 is operated at an arbitrary A / F. In this case, feedback control is performed based on this signal.
[0024]
Exhaust gas that has passed through the exhaust manifold 17 is purified and discharged by a three-way catalyst 19 provided downstream thereof and a NOx trap 20 provided downstream thereof.
The three-way catalyst 19 has a characteristic of efficiently purifying HC, CO, NOx in the exhaust gas particularly when the exhaust A / F is stoichiometric.
The NOx trap 20 has a characteristic of trapping NOx in the exhaust when the exhaust A / F is lean, and desorbing and purifying the NOx trapped when the exhaust A / F is stoichiometric or rich. is there. Further, a NOx sensor 21 is provided downstream of the NOx trap 20, and NOx flowing out from the NOx trap 20 can be measured.
[0025]
Here, control of the throttle opening of the electric throttle valve 4 of the engine 1, control of the fuel injection timing and fuel injection amount of the fuel injection device 12, and control of the spark ignition timing of the spark ignition device 13 are performed by an engine control unit (hereinafter referred to as an engine control unit). (Referred to as ECU) 22.
The ECU 22 includes a signal from the air flow meter 3, a signal from the A / F sensor 18, a signal from the NOx sensor 21, a signal from a crank angle sensor for detecting a crank angle and an engine speed (not shown), an accelerator opening (depressing the accelerator pedal). (Quantity) A signal from an accelerator sensor for detection, a signal from an oil / water temperature sensor for detecting engine coolant temperature or an engine lubricating oil temperature, and the like are input, and the above-described controls are performed based on these signals.
[0026]
In such a self-ignition engine, since lean combustion is normally performed, reduction of NOx by the three-way catalyst 19 provided in the exhaust passage cannot be expected. Therefore, NOx discharged from the engine is trapped by the NOx trap 20 provided downstream.
However, since the amount of NOx traps by the NOx trap 20 has a limit, when the limit value is reached or before that, rich spike control must be performed to desorb and purify NOx from the NOx trap 20.
[0027]
The determination of the limit of the NOx trap amount, that is, the determination of the timing when the rich spike control is performed, uses a map in which the NOx emission amount is obtained in advance by experiments from the engine speed and the accelerator opening, for example, as shown in FIG. The NOx emission amount retrieved from this map may be integrated, and the integrated value may be determined depending on whether the limit value of the NOx trap amount has been reached, or a NOx sensor 21 provided downstream of the NOx trap 20 may be used. The detection may be performed by detecting that NOx has flowed downstream of the NOx trap 20. Of course, other conventional methods may be used and are not limited.
[0028]
When rich spike control is performed, additional fuel injection is performed from the fuel injection device 12 in the expansion stroke or exhaust stroke, and control is performed so that the exhaust A / F becomes stoichiometric or rich. Furthermore, the injection timing is set to a timing at which the oxidation reaction of the injected fuel does not sufficiently proceed and a timing at which a partial oxidation reaction occurs. As a method for determining the injection timing, for example, as shown in FIG. A map of the start timing of additional fuel injection may be created in advance by experiments from the engine speed and the accelerator opening, and may be searched from this, but other conventional methods may be used and are not limited.
[0029]
Here, first, the combustion control mode targeted by the present invention will be described.
In the next cycle in which the rich spike control is performed, the in-cylinder residual fuel concentration increases as compared to the normal operating condition. Further, since the residual fuel is exposed to a high temperature field, it is in a highly active state due to a partial oxidation reaction or the like. Therefore, in the next cycle in which the rich spike control is performed, if the same control as that in the normal operation condition in which the control is not performed is performed, the normal operation condition and the A / F in the main combustion region after the rich spike are illustrated in FIG. As is apparent from the characteristics of the self-ignition timing, ignition occurs early, and the engine performance deteriorates. Therefore, in order to obtain an appropriate ignition timing (an ignition timing equivalent to that under normal operating conditions), in the next cycle in which rich spike control is performed, the ignition timing is retarded by the ignition timing control means (early ignition timing). Need to be suppressed).
[0030]
In the present embodiment, as a means for retarding the ignition timing in the next cycle in which the rich spike control is performed, the first fuel injection amount is decreased from that in the normal operation condition, and the A / F in the main combustion region is reduced. The ignition timing is optimized by using a means for making the engine leaner than normal operating conditions. In this case, in the next cycle in which the rich spike control is performed, the in-cylinder residual fuel amount increases, and the residual fuel is in a highly active state as compared with the newly injected fuel. It is necessary to reduce more than the increase in quantity.
[0031]
FIG. 5 shows a control flow when rich spike control is performed in the present embodiment, FIG. 6 shows a time history of A / F in the main combustion region when the control is executed, and FIG. 6 shows changes in in-cylinder A / F. As shown in FIG. FIG. 6 shows the result under the condition that the additional fuel injection amount in the expansion stroke is gradually decreased in the rich spike control period. However, the control method of the additional fuel injection amount is limited to this. Not a thing.
[0032]
The control flow shown in FIG. 5 will be described below.
In S1, a correction value α for the first fuel injection amount Fw under normal operating conditions is calculated from each control parameter (accelerator opening, engine speed, additional fuel injection amount, oil / water temperature) (where α ≦ 1). ).
In S2, the first fuel injection amount Fw1 in the next cycle in which the rich spike control is performed is calculated from the following equation.
[0033]
Fw1 = α × Fw (where α ≦ 1)
As a result, the first fuel injection amount Fw1 is decreased, and the A / F in the main combustion region is made leaner than in the normal operation condition, so that the self-ignition timing can be optimized.
In S3, the end of rich spike control is determined. For example, as shown in FIG. 8, the end determination is performed using a map in which the NOx desorption reduction amount is obtained in advance by experiments from the engine speed and the additional fuel injection amount, and the NOx desorption reduction amount retrieved from this map. May be performed depending on whether or not the accumulated value has reached the NOx trap amount before the start of the rich spike control, or other conventional methods may be used.
In S4, when it is determined in S3 that the rich spike control is finished, the normal operation control is resumed.
[0034]
The present embodiment corresponds to the inventions of claims 1, 2 , 4 , and 8 , but by using the same control method as described above, the value of α is set as a correction value for the second fuel injection amount. It is also possible to optimize the ignition timing by reducing the fuel injection amount for the second time from the normal operating condition and making the A / F in the main combustion region leaner than the normal operating condition. This particularly corresponds to the invention of claim 6 .
Further, when compression self-ignition is performed by a piston (for example, an internal combustion engine described in Japanese Patent Application No. 2000-143850) instead of initial spark ignition, similar control is performed by changing α to an optimum value. It is possible to use a technique.
[0035]
Next, a second embodiment of the present invention will be described.
In the present embodiment, in the next cycle in which rich spike control is performed, as a means for retarding the ignition timing, the first fuel injection timing is advanced, and by the diffusion of the first injected fuel, the main combustion region By using means for making the A / F leaner than normal operating conditions, the ignition timing is optimized.
FIG. 9 shows a control flow when rich spike control is performed in this embodiment, and FIG. 10 shows changes in in-cylinder A / F when the control is executed.
[0036]
The control flow shown in FIG. 9 will be described below.
In S11, a correction value β for the first fuel injection timing I / T under normal operating conditions is calculated from each control parameter (accelerator opening, engine speed, additional fuel injection amount, oil / water temperature) (note that β ≧ 0).
In S12, the first fuel injection timing I / T1 in the next cycle in which the rich spike control is performed is calculated from the following equation.
[0037]
I / T1 = I / T-β (where β ≧ 0)
As a result, the first fuel injection timing I / T1 is advanced, and the A / F in the main combustion region is made leaner than during normal operating conditions, so that the self-ignition timing can be optimized. Become.
The processes in S13 and S14 are the same as those in the first embodiment (S3 and S4).
[0038]
This embodiment particularly corresponds to the inventions of claims 3 and 5 , but by using the same control method as described above, the value of β is set as a correction value for the second fuel injection timing, so that the second fuel is supplied. The injection timing is advanced from the normal operating condition, and the A / F in the main combustion region is made leaner than the normal driving condition by the diffusion of the injected fuel for the second time, thereby optimizing the ignition timing. It is also possible to plan. This particularly corresponds to the invention of claim 7 .
[0039]
Further, in the case where compression self-ignition is performed by a piston instead of the initial spark ignition (for example, an internal combustion engine described in Japanese Patent Application No. 2000-143850), the same control is performed by changing β to an optimum value. It is possible to use a technique.
[0040]
In the above, the case where additional fuel injection is performed in the expansion stroke or exhaust stroke in order to desorb and purify NOx trapped in the NOx trap has been described. For the purpose of increasing the temperature, additional fuel injection may be performed in the expansion stroke or the exhaust stroke, and the present invention can also be applied to this case.
[Brief description of the drawings]
FIG. 1 is a system diagram of an internal combustion engine showing a first embodiment of the present invention. FIG. 2 is a characteristic diagram of NOx emission. FIG. 3 is a characteristic diagram of an additional fuel injection start timing. FIG. 5 is a control flow chart of the first embodiment for the subsequent A / F in the main combustion region. FIG. 6 is a flowchart in the main combustion region when the rich spike control is performed in the first embodiment. FIG. 7 is a diagram showing the time history of / F. FIG. 7 is a diagram showing changes in in-cylinder A / F after normal operation conditions and rich spikes in the first embodiment. FIG. 8 is a characteristic diagram of NOx desorption reduction amount. 9] Control flowchart of the second embodiment [FIG. 10] A diagram showing changes in the in-cylinder A / F after the normal operation condition and the rich spike in the second embodiment.
1 engine
3 Air flow meter
4 Electric throttle valve
6 Intake manifold
8 cylinders
10 Intake valve
12 Fuel injector
13 Spark ignition device
15 Exhaust valve
17 Exhaust manifold
18 A / F sensor
19 Three-way catalyst
20 NOx trap
21 NOx sensor
22 ECU

Claims (8)

筒内に噴射された燃料の少なくとも一部を自己着火燃焼させることで主燃焼を行わせる自己着火式内燃機関であって、所定の運転条件のときに膨張行程又は排気行程にて筒内に追加燃料を噴射するものにおいて、
前記追加燃料の噴射を行った次のサイクルでは、主燃焼時の着火開始領域である主燃焼領域内における残留燃料及び新たに噴射された燃料を含む空燃比を、通常運転条件時と同等の着火時期を得るように、通常運転条件時の空燃比よりもリーン化することを特徴とする自己着火式内燃機関。
A self-ignition internal combustion engine that performs main combustion by self-igniting and burning at least a portion of the fuel injected into the cylinder, and is added to the cylinder in the expansion stroke or exhaust stroke under predetermined operating conditions For fuel injection,
In the next cycle in which the injection of the additional fuel is performed, the air-fuel ratio including the residual fuel and the newly injected fuel in the main combustion region, which is the ignition start region at the time of main combustion , is ignited at the same level as that under normal operating conditions. A self-igniting internal combustion engine characterized by being made leaner than the air-fuel ratio under normal operating conditions so as to obtain timing .
吸気行程から圧縮行程中に、主燃焼のための燃料噴射を少なくとも1度は行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、主燃焼のための燃料噴射量を減少させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least once during an intake stroke to a compression stroke,
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region is for reducing the fuel injection amount for main combustion.
吸気行程から圧縮行程中に、主燃焼のための燃料噴射を少なくとも1度は行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、主燃焼のための燃料噴射時期を進角させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least once during an intake stroke to a compression stroke,
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region advances the fuel injection timing for main combustion.
圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、1度目の燃料噴射量を減少させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least twice in total during the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke.
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region reduces the first fuel injection amount.
圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、1度目の燃料噴射時期を進角させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least twice in total during the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke.
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region is for advancing the first fuel injection timing.
圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、2度目の燃料噴射量を減少させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least twice in total during the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke.
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region is for reducing the second fuel injection amount.
圧縮行程中噴射を1度、それに先立つ排気行程後期から前記圧縮行程中噴射に至るまでの間に1度、少なくとも合計2度の主燃焼のための燃料噴射を行う自己着火式内燃機関において、
前記主燃焼領域内の空燃比をリーン化する手段は、2度目の燃料噴射時期を進角させるものであることを特徴とする請求項1記載の自己着火式内燃機関。
In a self-ignition internal combustion engine that performs fuel injection for main combustion at least twice in total during the compression stroke, once during the period before the exhaust stroke and before the injection during the compression stroke.
2. The self-ignition internal combustion engine according to claim 1 , wherein the means for leaning the air-fuel ratio in the main combustion region advances the second fuel injection timing.
排気通路に、流入する排気ガスの空燃比がリーンの時にNOxをトラップし、空燃比がストイキ又はリッチの時にトラップしているNOxを脱離浄化するNOxトラップを備え、
前記追加燃料の噴射は、前記NOxトラップからNOxを脱離浄化すべく、排気ガスの空燃比をリッチ化するために行うことを特徴とする請求項1〜請求項7のいずれか1つに記載の自己着火式内燃機関。
The exhaust passage includes a NOx trap that traps NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and desorbs and purifies NOx trapped when the air-fuel ratio is stoichiometric or rich,
The injection of additional fuel, in order to desorption purify NOx from the NOx trap, wherein the air-fuel ratio of the exhaust gas to one of claims 1 to 7, characterized in that to enrich Self-igniting internal combustion engine.
JP2001128830A 2001-04-26 2001-04-26 Self-igniting internal combustion engine Expired - Fee Related JP3912027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128830A JP3912027B2 (en) 2001-04-26 2001-04-26 Self-igniting internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128830A JP3912027B2 (en) 2001-04-26 2001-04-26 Self-igniting internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002322927A JP2002322927A (en) 2002-11-08
JP3912027B2 true JP3912027B2 (en) 2007-05-09

Family

ID=18977471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128830A Expired - Fee Related JP3912027B2 (en) 2001-04-26 2001-04-26 Self-igniting internal combustion engine

Country Status (1)

Country Link
JP (1) JP3912027B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607609B1 (en) * 2004-06-15 2009-03-25 C.R.F. Società Consortile per Azioni A closed-loop electronic control system for controlling combustion in a diesel engine operating with premixed combustion
JP4838666B2 (en) 2006-08-31 2011-12-14 ヤンマー株式会社 Operation method of premixed compression self-ignition engine
CN106232970B (en) * 2014-04-22 2019-07-19 丰田自动车株式会社 The hot generation rate waveshape device of internal combustion engine and hot generation rate waveshape method

Also Published As

Publication number Publication date
JP2002322927A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP2003343312A (en) Control method of cylinder injection type internal combustion engine with turbocharger and cylinder injection type internal combustion engine with turbocharger
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
WO2015190084A1 (en) Control apparatus for internal combustion engine
EP2591222B1 (en) Fuel injection control of an internal combustion engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
JP3769944B2 (en) Exhaust gas purification device for internal combustion engine
US20050022513A1 (en) Combustion control system of internal combustion engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
US7370473B2 (en) Exhaust gas purification device for internal combustion engine
JP3854013B2 (en) Exhaust gas purification device for internal combustion engine
JP3912027B2 (en) Self-igniting internal combustion engine
JP3951616B2 (en) Control device for internal combustion engine
JP2006002683A (en) Control device for internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP5245579B2 (en) Engine torque shock suppression control device
US10801379B2 (en) Controller and control method for internal combustion engine
JPH11229859A (en) Internal combustion engine
JP5217932B2 (en) Fuel injection control method for internal combustion engine
JP2004092488A (en) Fuel injection control device of internal combustion engine
JP2007002734A (en) Exhaust emission control device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP5516704B2 (en) Fuel injection type internal combustion engine
JP3562248B2 (en) Evaporative fuel treatment system for internal combustion engine
JPH11107840A (en) Control device for internal combustion engine
JP3770256B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees