JP3909958B2 - Container bouncing prevention device for container transport vehicles - Google Patents

Container bouncing prevention device for container transport vehicles Download PDF

Info

Publication number
JP3909958B2
JP3909958B2 JP20317998A JP20317998A JP3909958B2 JP 3909958 B2 JP3909958 B2 JP 3909958B2 JP 20317998 A JP20317998 A JP 20317998A JP 20317998 A JP20317998 A JP 20317998A JP 3909958 B2 JP3909958 B2 JP 3909958B2
Authority
JP
Japan
Prior art keywords
container
hook member
hook
rotation
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20317998A
Other languages
Japanese (ja)
Other versions
JP2000033832A (en
Inventor
正一 菅原
博史 重山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP20317998A priority Critical patent/JP3909958B2/en
Publication of JP2000033832A publication Critical patent/JP2000033832A/en
Application granted granted Critical
Publication of JP3909958B2 publication Critical patent/JP3909958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車台に対しコンテナを搭載するコンテナ運搬車において車台上でのコンテナの跳ね上がりを防止するコンテナ跳ね上がり防止装置に関する。
【0002】
【従来の技術】
一般に、車台に対しコンテナが搭載されるコンテナ運搬車にあっては、コンテナ積み降ろし現場などに付帯されるクレーンによりコンテナを吊上げて車台上に搭載したり、車台上に装備された荷役装置によりコンテナを車台上に搭載することが行われている。
【0003】
そして、このようなコンテナ運搬車には、車台上に搭載されたコンテナの跳ね上がりを防止するコンテナ跳ね上がり防止装置を備えたものがある。このコンテナ跳ね上がり防止装置は、例えば実開昭58−85735号公報に開示されるように、車台上のコンテナに対し係脱自在に係合するフック部材と、シリンダロッドの先端(上端)が上記フック部材に対しピンを介して連結された油圧シリンダとを備えている。上記フック部材は、車体前後方向に延びる回転中心軸の回りに回転自在に連結され、その先端がコンテナの下面左右両側部を前後方向に延びる左右一対の断面略I字状の主桁に対し係合するようになっている。また、上記油圧シリンダは、上下方向に伸縮作動可能に設けられ、上方への伸長作動に伴い上記フック部材を上記回転中心軸回りに特定回転方向に回転させて上記フック部材をコンテナの主桁に対し係合させる係合状態と、下方への収縮作動に伴い上記フック部材を上記回転中心軸回りに上記特定回転方向とは逆回転方向に回転させて上記フック部材をコンテナの主桁に対し係合解除する係合解除状態とに相互に変換させるように構成されている。
【0004】
【発明が解決しようとする課題】
ところで、特に、L型アーム等の荷役装置を有するコンテナ運搬車においては、車台上のコンテナをその前端位置で保持することになるため、コンテナの後端位置において走行中に比較的大きい跳ね上がりが生じ、その跳ね上がり振動により、テールランプなどの玉切れ等の不都合を招き易くなる。このため、このようなコンテナ運搬車においては、コンテナの跳ね上がりを確実に防止する必要がある。
【0005】
一方、上記従来のコンテナ跳ね上がり防止装置では、コンテナの跳ね上がり方向と、油圧シリンダの伸縮作動方向とがそれぞれ上下方向となって互いに一致することになる。そして、フック部材と油圧シリンダのピストンロッドとがピンを介して連結されているので、コンテナ跳ね上がり時の上下方向の衝撃荷重がフック部材を介して油圧シリンダの伸縮作動方向にダイレクトに伝達されることになる。このため、油圧シリンダに対しその作動方向(伸縮作動方向)からコンテナ跳ね上がり時の衝撃荷重が作用すると、油圧シリンダに無理な負荷が作用する。そして、衝撃荷重がピストンロッドに対しその軸方向(伸縮作動方向)に作用すると、油圧の強制変動が生じ、油圧シリンダの耐久性を著しく悪化させる要因にもなる上に、フック部材をコンテナに対し確実に係合状態に拘束し得なくなってしまうおそれがある。加えて、油圧シリンダの故障原因にもなり得る。このような事情は、油圧シリンダに限らず、フック部材を作動させるために用いられる他のアクチュエータにおいても上記と同様に発生する。
【0006】
本発明はかかる点に鑑みてなされたもので、その目的とするところは、油圧シリンダなどのアクチュエータに対しその作動方向からのコンテナの跳ね上がり時の衝撃荷重が遮断されるようにすることにより、油圧シリンダなどのアクチュエータの故障原因を解消して耐久性の向上を図るとともに、フック部材をコンテナに対し確実に係合状態に拘束し得るようにすることにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は、アクチュエータに対しその作動方向からの衝撃荷重を遮断することを基本特定事項とするものである。
【0008】
具体的には、請求項1記載の発明が講じた解決手段は、車台上に搭載されたコンテナの跳ね上がりを防止するコンテナ運搬車のコンテナ跳ね上がり防止装置を前提とする。そして、車体前後方向に延びる回転中心軸の回りに回転自在に連結され、上記回転中心軸回りの特定回転方向への回転により上記コンテナに対し係合するフック部材と、このフック部材とは互いに非連結とされ、進退移動することにより上記フック部材を上記コンテナに対し係合した係合状態と上記コンテナに対し係合を解除した係合解除状態とに相互に変換させる作動部材と、上記作動部材を進退移動させるアクチュエータとを備える。上記作動部材に、その前進移動により上記フック部材に対し摺接してそのフック部材を上記特定回転方向へ回転させるよう押圧する作動面と、所定の前進位置に保持されることにより上記フック部材に対し上記作動部材の進退移動方向に直交する向きで互いに面接触してそのフック部材を上記係合状態に拘束する拘束面とを備える。また、上記フック部材の周囲に、上記作動面と摺接して上記特定回転方向への押圧力を受ける第1端面と、上記拘束面と面接触して上記回転中心軸回りの回転が阻止された状態に拘束される第2端面とを備える。さらに、上記フック部材の回転中心軸を、上記係合状態におけるフック部材に対しその自重に基づいて上記特定回転方向とは逆回転方向に回転させる回転モーメントが作用するよう上記フック部材の重心位置から車幅方向に偏心した位置に位置付けられるように配設する構成としたものである。
【0009】
請求項1の場合、係合状態にあるフック部材を係合解除させるには、アクチュエータにより作動部材を後退移動させる。すると、作動部材の拘束面とフック部材の第2端面との互いの面接触による回転拘束が解除されることになる。そして、上記フック部材が、作動部材の後退移動に伴い自重によって自動的に回転中心軸回りに逆回転方向に回転して係合解除状態に変換され、車台上に搭載されたコンテナに対し係合解除することになる。
【0010】
一方、コンテナに対しフック部材を係合させるには、アクチュエータにより作動部材を前進移動させる。すると、この作動部材の作動面とフック部材の第1端面とが摺接し、これにより、上記フック部材が、上記作動部材の前進移動に伴い回転中心軸回りに特定回転方向に回転して係合状態に変換され、車台上に搭載されたコンテナに対し係合することになる。そして、所定の前進位置で前進移動を停止させれば、フック部材の第2端面に対し作動部材の拘束面が面接触することになり、この面接触により上記フック部材は回転中心軸回りの回転が阻止されて係合状態に拘束されることになる。
【0011】
このように拘束されてフック部材が係合状態にあるときには、その面接触がフック部材の第2端面に対し拘束面が作動部材の進退移動方向に直交する向きの面接触とされているため、コンテナ跳ね上がり時の上下方向からの衝撃荷重がフック部材に伝達されても、その伝達された衝撃荷重は作動部材の拘束面に対しフック部材の第2端面の面接触方向から作用し、この作動部材を介してアクチュエータの進退移動方向にダイレクトに伝達されることはなく、アクチュエータに対し無理な負荷が作用することがない。この場合、アクチュエータとして油圧シリンダが用いられていても、衝撃荷重によって油圧の強制変動を生じさせることはなく、油圧シリンダの耐久性を向上させることが可能となる上、フック部材をコンテナに対し確実に係合状態に拘束し得ることが可能となる。加えて、油圧シリンダの故障原因が解消されることになる。このことは、油圧シリンダに限らず、他のアクチュエータにおいても同様である。
【0012】
しかも、フック部材が係合状態にあるときにフック部材の第2端面に対し作動部材の拘束面が作動部材の進退移動方向に直交する向きで互いに面接触してフック部材が拘束されるので、所定の前進位置への作動部材の前進移動量は、フック部材の第2端面に対し作動部材の拘束面が互いに面接触可能となる最低限度のものが確保されていれば、それ以上いくらであっても良い。これにより、フック部材を係合状態に拘束する上で、作動部材の前進移動量を厳格に設定する必要がなく、作動部材及びアクチュエータの精度を下げてコストの低廉化を図ることが可能となる。
【0013】
さらに、フック部材の回転中心軸をフック部材の重心位置から車幅方向に偏心した位置に位置付けるだけでフック部材が自重に基づいて逆回転方向に回転するので、フック部材を逆回転方向に回転させる上で、回転付勢手段などを別途付設する必要がなく、部品点数が削減されることになる。
【0014】
請求項2記載の発明が講じた解決手段は、請求項1記載の発明における作動部材及びフック部材の構成を具体的に特定している。
【0015】
つまり、作動部材を上下方向に進退移動するように設け、その前進時に作動部材を上方へ移動させるような構成としたものである。
【0016】
請求項2の場合、コンテナ跳ね上がり時の衝撃荷重は、その作用方向と同じ上下方向に作動部材が進退移動するにも係わらず、作動部材の拘束面に対しフック部材の第2端面が面接触する上下方向から作用し、互いの面接触部位での上下方向の摺接により円滑に吸収される。このため、コンテナ跳ね上がり時の衝撃荷重の伝達が面接触部分で遮断され、作動部材を介してアクチュエータの作動方向にに伝達されることが確実に防止され、アクチュエータに対し無理な負荷が作用するおそれを確実に解消することが可能となる。
【0017】
請求項3記載の発明が講じた解決手段は、請求項1又は請求項2記載の発明における作動部材の構成を具体的に特定している。
【0018】
つまり、フック部材と作動部材とを、上記フック部材の第1端面に対し摺接する作動部材の作動面の接線と直交する直交線が上記フック部材の回転中心軸よりも重心位置側を通る位置に位置付けられるように配設する構成としたものである。
【0019】
請求項3の場合、フック部材を特定回転方向に回転させる上で、フック部材の第1端面に対し作動部材の作動面を左右方向(車幅方向)又は斜め方向などどのような方向から摺接させても良く、フック部材及び作動部材のレイアウトの自由度が拡大されることになる。
【0020】
請求項4記載の発明が講じた解決手段は、請求項3記載の発明におけるフック部材及び作動部材の構成をさらに具体的に特定している。
【0021】
つまり、作動部材の拘束面と、フック部材の第2端面とを、フック部材が係合状態にあるときにそれぞれ上記作動部材の前進方向に向かって互いに平行に鉛直方向に延ばす構成としたものである。
【0022】
請求項4の場合、作動部材の拘束面とフック部材の第2端面とは、フック部材が係合状態にあるときに作動部材の前進方向に亘って連続して面接触することになる。このため、コンテナ跳ね上がり時の衝撃荷重が拘束面に対し作動部材の進退移動方向に直交する向きから作用しても、この衝撃荷重が作動部材の進退方向に一直線状に延びる拘束面で十分に支えることが可能となる上に、アクチュエータへの衝撃荷重の伝達を遮断することが可能となる。従って、アクチュエータの耐久性をさらに向上させることが可能となる上、フック部材をコンテナに対しより確実に係合状態に拘束し得ることが可能となる。
【0023】
請求項5記載の発明が講じた解決手段は、請求項1〜請求項4のいずれかにおいて、フック部材の構成をより具体的に特定している。
【0024】
つまり、フック部材の第1端面を、そのフック部材が係合解除状態にあるときに上記フック部材の自重による回転軸回りの逆回転方向への回転が規制されるように作動部材の作動面に対し当接させる構成としたものである。
【0025】
請求項5の場合、アクチュエータにより作動部材が前進移動すると同時にフック部材が回転中心軸回りに特定回転方向に回転し、上記フック部材が速やかに係合状態に変換されることになる。しかも、フック部材が係合解除状態にあるときにフック部材の自重による逆回転方向の回転を規制する上で、ストッパを別途用意する必要がなく、作動部材を利用して部品点数が削減されることになる。
【0026】
請求項6記載の発明が講じた解決手段は、請求項1記載の発明におけるアクチュエータの構成を具体的に特定している。
【0027】
つまり、アクチュエータとして、回転力により作動部材を進退移動させる電気モータを適用する構成としたものである。
【0028】
請求項6の場合、油圧シリンダなどのアクチュエータを用いた場合に生ずる経時的な油漏れなどによるフック部材の係合状態から係合解除状態への変換作動が生ずるおそれがなく、フック部材が確実に係合状態に拘束されることになる。
【0029】
しかも、電気モータへの電源供給には可撓性のあるコードを接続するだけで済み、アクチュエータとして油圧シリンダを用いた場合のように太く可撓性のない油圧配管のレイアウトに煩わされることがなく、細く形状変更が可能なコードが円滑にレイアウトされることになる。
【0030】
請求項7記載の発明が講じた解決手段は、請求項1記載の発明におけるコンテナに対するフック部材の係合位置を特定している。
【0031】
具体的には、L字アームを有する荷役装置を備えた車台に対し搭載されるコンテナをその前端位置で上記L型アームにより保持し、フック部材をコンテナの後端位置に係合させるように配設する構成としたものである。
【0032】
請求項7の場合、コンテナは、その前端位置でL型アームにより保持されるとともに、後端位置でフック部材により係合され、コンテナの跳ね上がりが効果的に防止される。しかも、コンテナ跳ね上がり時のコンテナ後端位置で増幅される衝撃荷重がフック部材により効果的に抑制される。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0034】
図1〜図4は、本発明の実施形態に係るコンテナ跳ね上がり防止装置を備えたコンテナ運搬車を示し、図2において、1はコンテナ運搬車、2はコンテナ運搬車1の車台としての左右一対の車体フレーム11,11(図1に表れる)上に搭載されるコンテナである。また、図1において、3は上記コンテナ2を上記車体フレーム11,11に対し積み降ろしする荷役装置であり、この荷役装置3は上記各車体フレーム11上に装着されている。
【0035】
上記車体フレーム11,11は、図2〜図4に示すように、それぞれ車体前後方向に延び、その前端部上にキャブ12を備えている。また、上記キャブ12後方の車体フレーム11,11上には、この各車体フレーム11に沿って車体前後方向に延びる左右一対のサブシャーシ13,13(図1に表れる)が設けられている。この各サブシャーシ13は、閉断面形状(図5に表れる)に形成され、車体前後方向に長いコンテナ2を搭載し得る長さを有している。また、図1に示すように、上記各サブシャーシ13は、その前後両端に位置する前端部分13F及び後端部分13Rと、この前後両端部分13F,13Rの間を連結する中央部分13Mとで一体に構成されている。上記前後両端部分13F,13Rは、それぞれ上記中央部分13Mよりも車幅方向内方側に位置し、上記中央部分13Mに対しそれぞれ固有の前側ラップ代13a及び後側ラップ代13bでもって車体側面視で一部重ね合わせた状態で車幅方向内方側から接合されている。そして、図2に実線で示すように、上記コンテナ2は、上記各サブシャーシ13を介して各車体フレーム11上に搭載されるようになっている。また、上記各車体フレーム11の後端にはそれぞれ張り出し可能な左右一対のジャッキ14(図2〜図4において一方のみ示す)が設けられ、図2及び図4に一点鎖線で、図3に実線でそれぞれ示すように、上記荷役装置3によるコンテナ2の積み降ろし時等の車体後方への重心移動に対し各ジャッキ14を張り出しておくことでコンテナ運搬車1の安定性を高め得るようにしている。
【0036】
上記コンテナ2は、図1及び図2に示すように、その上下両位置に車体前後方向に長い略矩形状の上壁2a及び底壁2bを有し、この上壁2a及び底壁2bの周囲を前後両壁2c,2d及び左右両側壁2e,2fにより囲んで、内部への収容物の収容を可能とする略直方体形状に形成されている。
【0037】
上記コンテナ2の底壁2b下面には車体前後方向へ延びる左右一対の主桁21,21(図1に表れる)が一体に設けられている。この各主桁21はそれぞれ断面略I字状(図5に下部のみ表れる)に形成されている。また、図1に示すように、上記コンテナ2の前壁2c上部中央位置には、後述するフック部34dが係脱可能に係合する係合ピン22が設けられている。そして、図4に一点鎖線で示すように、上記コンテナ2の後壁2dは、その上端が左右両側壁2e,2fの後端部上部位置の車幅方向軸(図示せず)回りに後方へ下開き可能に支持されている。この場合、コンテナ2の後壁2dは、図示しない後壁固縛装置による固縛時に後方への開放が規制されるようになっている。
【0038】
上記荷役装置3は、図1に示すように、後端部が各サブシャーシ13後端に対し車幅方向に延びる第1車幅方向軸31の回りに回転可能に連結されて上記各サブシャーシ13に対し傾動自在に設けられる左右一対の傾動フレーム32,32と、基端部が上記各傾動フレーム32の前端部に対し上記第1車幅方向軸31と平行な第2車幅方向軸33の回りに回転可能に連結されて上記各傾動フレーム32に対し回転自在に設けられるL形アーム34と、上記L形アーム34の略中間部左右両側部と上記各サブシャーシ13の前端部との間に設けられた左右一対の荷役シリンダ35とを備えている。さらに、上記各サブシャーシ13の後端部分13Rの後端には、上記第1車幅方向軸31回りに回転自在に支持されたコンテナ案内用の左右一対の案内ローラ16,16が設けられている。
【0039】
上記L形アーム34は、上記傾動フレーム32の前端部に対し第2車幅方向軸33の回りに回転可能に連結されて各サブシャーシ13の前部上を前方に延びるベースアーム部34aと、このベースアーム部34aの先部に対し前後方向に摺動自在に内装された基部アーム部34bと、この基部アーム部34bの先端に基端が一体に設けられ、上記基部アーム部34bの先部位置から屈曲して上方に延びる突出アーム部34cと、この突出アーム部34cの先端に設けられ、上記コンテナ2の前壁2c上端に設けられた係合ピン22に対し係脱可能に係合する略C字状のフック部34dと、上記ベースアーム部34aと基部アーム部34bとの間に連結され、上記ベースアーム部34aに対し上記基部アーム部34b及び突出アーム部34cを進退移動させるように伸縮することにより、上記基部アーム部34b及び突出アーム部34cを前進位置(図2に実線で示す位置)と後退位置(図2に一点鎖線で示す位置)とに相互に位置変換させる伸縮シリンダ34eとを備えている。そして、図4に示すように、上記L形アーム34は、上記各傾動フレーム32に対し略一直線状に延びるように保持されて第2車幅方向軸33回りの回転を規制する規制部材(図示せず)を備えている。この規制部材は、上記伸縮シリンダ34eの伸縮状態に応じて各傾動フレーム32に対しL形アーム34を回転規制又はその回転規制を解除するように構成されている。具体的には、規制部材は、伸縮シリンダ34eが伸長状態にあるときつまりベースアーム部34aに対し基部アーム部34b及び突出アーム部34cが前進位置に位置付けられているときには、各傾動フレーム32に対しL形アーム34を略一直線状に保持して第2車幅方向軸33回りの回転を規制する一方、上記伸縮シリンダ34eが収縮状態にあるときつまりベースアーム部34aに対し基部アーム部34b及び突出アーム部34cが後退位置に位置付けられているときには、各傾動フレーム32の前端部に対しL形アーム34の回転規制が解除されてL形アーム34を第2車幅方向軸33回りに回転させるようにしている。
【0040】
そして、上記各荷役シリンダ35は、上記基部アーム部34b及び突出アーム部34cの位置変換、つまり規制部材によるL形アーム34の回転規制の有無に応じて伸縮作動量がそれぞれ設定されるようになっている。具体的には、各荷役シリンダ35は、規制部材によりL形アーム34が回転規制されているときには、上記係合ピン22に対しフック部34dが係合されたコンテナ2がサブシャーシ13上に載置される車載状態(図4に実線で示す状態)と、各傾動フレーム32に対しL形アーム34を略一直線状に保持して上記各傾動フレーム32を上記第1車幅方向軸31回りに傾動させることにより、上記コンテナ2を後方に向かい所定角度の下り勾配状態で傾斜した傾斜状態(図4に一点鎖線で示す状態)とに相互に変換させるように、その伸縮作動量が設定されている。また、上記各荷役シリンダ35は、上記規制部材によるL形アーム34の回転規制が解除されているときには、上記車載状態と、各傾動フレーム32に対しL形アーム34を第2車幅方向軸32回りに後方に回転させることにより、上記コンテナ2が各車体フレーム11後方の地上に降ろされて上記係合ピン22に対しフック部34dを係脱可能とする地上の載置状態(図3に一点鎖線で示す状態)とに相互に変換されるように、その伸縮作動量が設定されている。
【0041】
また、図5及び図6に示すように、上記各傾動フレーム32が位置する上記各サブシャーシ13の後端部分13Rには、車幅方向外方向きに開口する断面略コ字状のベース41が取り付けられている。このベース41には、上記各サブシャーシ13の後端部分13R上での車体振動等によるコンテナ2後部の跳ね上がりを防止するコンテナ跳ね上がり防止装置40が設けられている。
【0042】
このコンテナ跳ね上がり防止装置40は、図5に示すように、上記各サブシャーシ13の中央部分13M上に搭載されたコンテナ2の各主桁21後部下端の外側縁に対し係合爪部49が係合する左右一対の略C字状のフック部材43(図では一方のみ示す)と、鉛直線方向に延びる進退軸x(図8参照)上を上下方向に進退移動する作動部材としてのウェッジ部材44と、上記ウェッジ部材44を上下方向に進退移動させるアクチュエータとしての電気モータ51とを備えている。
【0043】
上記フック部材43は、上記ベース41の上端部を車体前後方向に延びる回転中心軸42の回りに回転自在に連結され、上記回転中心軸42回りの特定回転方向としての正回転方向(図5に実線矢印Aで示す時計回り方向)に回転されることにより係合爪部49を上記コンテナ2の各主桁21後部下端の外側縁に対し係合させるようにしている。上記係合爪部49は、上記フック部材43の上端に設けられている。
【0044】
上記ウェッジ部材44は、上記ベース41の底面(車幅方向内側面)に沿いながら上下方向に進退移動することにより、上記フック部材43の係合爪部49を上記コンテナ2の各主桁21後部下端の外側縁に対し係合させた係合状態(図5に実線で示す状態)と、上記コンテナ2の各主桁21後部下端の外側縁に対し係合を解除させた係合解除状態(図5に二点鎖線で示す状態)とに相互に変換させるようにしている。このウェッジ部材44と上記フック部材43とは互いに非連結とされている。
【0045】
上記ウェッジ部材44の車幅方向外方側の面の上部位置には、このウェッジ部材44の上方への前進移動(図5に実線で示す矢印C方向への移動)により上記フック部材43に対し摺接してそのフック部材43を上記正回転方向へ回転させるよう押圧する作動面44aが設けられている。この作動面44aは、上記ウェッジ部材44の前進方向先端(上端)に行くに従い車幅方向内方側に位置するように傾斜して形成されている。また、上記ウェッジ部材44の車幅方向外方側の面の下部位置には、このウェッジ部材44が上方に前進移動して所定の前進位置(図5に実線で示す位置)に保持されることにより上記フック部材43に対し上記ウェッジ部材44の進退移動方向に直交する車幅方向向きで互いに面接触してそのフック部材43を上記係合状態に拘束する拘束面44bが設けられている。この拘束面44bは、上記フック部材43が係合状態にあるときにこのフック部材43の第2端面43bに対し平行となるよう上下方向に延びて形成されている。上記作動面44aおよび拘束面44bは、ウェッジ部材44の車幅方向外側の上下方向略中央位置の角部44cを境にして上下方向に連続するように配されている。尚、図5中47は、フック部材43が回転中心軸42回りに正回転方向に回転して係合状態に変換されたときにこのフック部材43に対し当接するストッパ部材であって、このストッパ部材47によってフック部材43が係合状態に位置決めされるようになっている。また、図5中48は、ベース41の底面に対し車幅方向にウェッジ部材44(拘束面44b)の挿通可能な間隔を存して併設された案内部材であって、この案内部材48に対しウェッジ部材44の拘束面44bが摺接することでベース41の底面に沿ったウェッジ部材44の上下方向への進退移動を可能にしている。
【0046】
そして、図7にも示すように、上記フック部材43の周面43Aにおける車幅方向内側の下部位置には、上記作動面44aと摺接して上記正回転方向への押圧力を受ける第1端面50が設けられている。この第1端面50は、上記フック部材43が係合解除状態にあるときにその周面43Aにおける車幅方向内側の下部位置においてほぼ進退軸x(図8参照)方向に延びる平坦部43aと、この平坦部43aの上下両端位置でそれぞれ車幅方向外方に湾曲する上側角アール部43d及び下側角アール部43cとで連続的に構成されている。また、上記フック部材43が係合状態にあるときにその周面43Aにおける車幅方向内側の下部位置には、上記拘束面44bと面接触して上記回転中心軸42回りの回転が阻止された状態に拘束される第2端面43bが設けられている。そして、上記ウェッジ部材44の拘束面44bと、上記フック部材43の第2端面43bとは、上記フック部材43が係合状態にあるときにそれぞれ上記ウェッジ部材44の前進方向に向かって互いに平行に鉛直方向に延びるように設けられている。
【0047】
上記フック部材43の回転中心軸42は、上記係合状態におけるフック部材43に対しその自重に基づいて上記特定回転方向とは逆回転方向(図5及び図7に破線矢印Bで示す反時計回り方向)に回転させる回転モーメントが作用するよう上記フック部材43の重心位置(図示せず)から車幅方向内方に偏心した位置に位置付けられるように配設されている。上記下側角アール部43cは、フック部材43が係合解除状態にあるときに上記フック部材43の自重に基づく逆回転方向への回転を規制するように上記ウェッジ部材44の作動面44aの先端(上端)に対し当接している。
【0048】
さらに、上記フック部材43とウェッジ部材44とは、上記フック部材43が係合解除位置にあるときにこのフック部材43の第1端面50(平坦部43a、上側角アール部43d及び下側角アール部43c)に対し摺接するウェッジ部材44の作動面44aの接線s,s′と直交する直交線t,t′が上記フック部材43の回転中心軸42よりも重心位置側を通る位置つまり下方に位置付けられるように配設されている。これにより、フック部材43は、その第1端面50に対しウェッジ部材44の作動面44aが摺接している間、上記ウェッジ部材44の上方への前進移動量に応じて回転中心軸42回りに正回転方向に回転することになる。
【0049】
また、図8に示すように、上記電気モータ51は、上記ウェッジ部材44の進退方向に延びる進退軸xと平行な出力軸51aを有している。この出力軸51aには駆動ギヤ51bが回転一体に連結され、上記駆動ギヤ51bには減速ギヤ52が噛合している。上記進退軸x上には第1ロッド部材53が回転自在に支持され、この第1ロッド部材53の下端部には従動ギヤ53aが回転一体に連結されている。この従動ギヤ53aは上記減速ギヤ52を介して上記駆動ギヤ51bに噛合され、上記第1ロッド部材53は、上記電気モータ51により進退軸x回りに回転するようになっている。上記第1ロッド部材53の上部には雄螺子部54が設けられている。また、上記進退軸x上には第2ロッド部材57が設けられ、この第2ロッド部材57の下部には上記雄螺子部54を外嵌合する筒部57aが設けられている。この筒部57aの内周面には上記雄螺子部54に対し螺合する雌螺子部55が形成されている。上記第2ロッド部材57の上端部には、上記ウェッジ部材44の下端がピン56を介して連結されている。上記第2ロッド部材57は、その外周面上に進退軸x方向に延びる溝(図示せず)を有し、この溝に対し後述するハウジングケース46aの突起(図示せず)が摺動自在に嵌合することで進退軸x回りの回転が規制され、上記電気モータ51により進退軸x回りに回転する第1ロッド部材53の回転力に応じて進退軸x方向に進退移動するように構成されている。また、上記電気モータ51、駆動ギヤ51b、減速ギヤ52、従動ギヤ53a、第1ロッド部材53及び第2ロッド部材57により駆動手段46が構成されている。この駆動手段46の各構成要件は、駆動手段46のハウジングケース46a内に内装され、そのうち第2ロッド部材57の上部のみがハウジングケース46a外に突出していて、この第2ロッド部材57の進退軸x方向への進退移動を可能にしている。そして、上記第1ロッド部材53(雄螺子部54)及び第2ロッド部材57(雌螺子部55)により、上記電気モータ51により進退軸x回りに回転する第1ロッド部材53の回転力を上記ウェッジ部材44の進退方向の進退移動力に変換して上記ウェッジ部材44に伝達する回転力変換機構58が構成されている。この回転力変換機構58は、上記電気モータ51の出力軸51aの正回転方向(図8に実線矢印Eで示す方向)への回転により減速ギヤ52を介して第1ロッド部材53が進退軸x回りに正回転方向(図8に実線矢印Fで示す方向)に回転すると上記第2ロッド部材57を上方へ前進移動(図8に実線矢印Gで示す方向)させ、上記電気モータ51の出力軸51aの逆回転方向(図8に破線矢印Hで示す方向)への回転により減速ギヤ52を介して第1ロッド部材53が進退軸x回りに逆回転方向(図8に破線矢印Jで示す方向)に回転すると上記第2ロッド部材57を下方へ後退移動(図5及び図7に示す破線矢印K方向への移動)させるようにしている。また、上記電気モータ51には可撓性のある2本のコード59,59が連結され、この各コード59を介して電気モータ51に対し電源供給がなされるようになっている。
【0050】
ここで、コンテナ2の各主桁21後部下端の外側縁に対し係合爪部49を係合又は係合解除させるフック部材43の変換作動を、各車体フレーム11(各サブシャーシ13)に対しコンテナ2を積み降ろす場合、及び傾動させる場合の手順に沿って説明する。
【0051】
最初に、地上に対し載置されたコンテナ2を各サブシャーシ13に対し積み込む場合の手順に沿ってフック部材43の変換作動を説明する。この場合、各ジャッキ14は張り出されているものとする。
【0052】
先ず、図2に一点鎖線で示すように、伸縮シリンダ34eを収縮させてベースアーム部34aに対し基部アーム部34b及び突出アーム部34cを後退位置に位置付ける。これにより、各傾動フレーム32の前端部に対しL形アーム34の回転規制が解除されてL形アーム34が第2車幅方向軸33回りに回転可能となる。
【0053】
次いで、図2に二点鎖線で、図3に実線でそれぞれ示すように、荷役シリンダ35を伸長させてL形アーム34を第2車幅方向軸33回りに後方へ回転させ、図3に一点鎖線で示すように、その突出アーム部34c先端のフック部34dを地上の載置状態(図3に一点鎖線で示す状態)のコンテナ2の係合ピン22に対し係合させる。この状態から、図2に二点鎖線で、図3に実線でそれぞれ示すように、荷役シリンダ35を収縮させてL形アーム34を第2車幅方向軸33回りに前方へ回転させることにより、図2に一点鎖線で示すように、フック部34dに係合されたコンテナ2が案内ローラ16に案内されながら各サブシャーシ13上に載せられる。その後、図2に実線で示すように、伸縮シリンダ34eを伸長させてベースアーム部34aに対し基部アーム部34b及び突出アーム部34cを前進位置に位置付けることにより、コンテナ2が各サブシャーシ13の中央部分13M上に積み込まれて車載状態(図2に実線で示す状態)に変換される。
【0054】
それから、コンテナ跳ね上がり防止装置40によるコンテナ2の係合を行う。
【0055】
具体的には、図8に示すように、電気モータ51の出力軸51aを正回転方向(図8に示す実線矢印E方向)に回転させ、減速ギヤ52を介して第1ロッド部材53を進退軸x回りに正回転方向(図8に示す実線矢印F方向)に回転させる。すると、この第1ロッド部材53の進退軸x回りの正回転方向の回転力が、回転力変換機構58により第2ロッド部材57を上方(図8に実線矢印Gで示す方向)へ前進移動させる前進移動力に変換され、図8に二点鎖線で示すように、ウェッジ部材44をベース41の底面に沿って上方に前進移動させる。このとき、図7に示すように、フック部材43の周囲43Aにおける第1端面50(平坦部43a、上側及び下側角アール部43d,43c)に対し摺接するウェッジ部材44の作動面44aの接線s,s′と直交する直交線t,t′がいずれも上記フック部材43の回転中心軸42よりも下側に随時位置することになる。これにより、フック部材43は、ストッパ部材47に当接するまで回転中心軸42回りに正回転方向(図5及び図7に実線矢印Aで示す時計回り方向)によどみなく回転して係合状態(図5及び図7に実線で示す状態)に変換され、コンテナ2の各主桁21後部下端の外側縁に対し係合爪部49が係合する。このため、路面振動などが増幅される各サブシャーシ13の後端部分13Rにおいてコンテナ2が跳ね上がろうとしても、この後端部分13Rでコンテナ2の各主桁21後端がフック部材43により係合されて、コンテナ2後部の跳ね上がりが十分に抑制される。従って、後端部分13Rでのコンテナ2の跳ね上がりによる衝撃荷重を軽減させてテールランプの断線等を効果的に防止することができる上、コンテナ2跳ね上がり時の後端部分13Rでの衝撃音も抑制することができる。
【0056】
また、電気モータ51の出力軸51aを回転させて第1ロッド部材53を進退軸x回りに回転させることで、第2ロッド部材57の進退移動力によりウェッジ部材44を進退移動させるので、油圧シリンダなどの駆動手段を用いた場合に生ずる経時的な油漏れなどによるフック部材43の係合状態から係合解除状態への変換作動が生ずるおそれがなく、フック部材43を確実に係合状態に拘束することができる。しかも、電気モータ51への電源供給には可撓性のあるコード59,59を接続するだけで済み、駆動手段として油圧シリンダを用いた場合のように太く可撓性のない油圧配管のレイアウトに煩わされることがなく、細く形状変更が可能なコード59,59を円滑にレイアウトすることができる。
【0057】
その後、図5及び図7に実線で示すように、ウェッジ部材44をベース41の底面に沿ってさらに上方に前進移動させると、ウェッジ部材44の角部44cがフック部材43の上側角アール部43dを乗り越え、フック部材43の周囲43Aの第2端面43bとウェッジ部材44の拘束面44bとが互いに面接触することになり、この面接触により上記フック部材43は回転中心軸42回りの回転が阻止されて係合状態に拘束されることになる。このように拘束されてフック部材43が係合状態にあるときには、その面接触がフック部材43の第2端面43bに対しウェッジ部材44の拘束面44bがウェッジ部材44の上下方向への進退移動方向と直交する車幅方向向きの面接触とされているため、コンテナ跳ね上がり時の上下方向からの衝撃荷重がフック部材43に伝達されても、その伝達された衝撃荷重はウェッジ部材44の拘束面44bに対しフック部材43の第2端面43bが面接触する上下方向から作用し、互いの面接触部位での上下方向の摺接により円滑に吸収されることになる。これにより、コンテナ跳ね上がり時の衝撃荷重の伝達が面接触部分で確実に遮断され、ウェッジ部材44を介して駆動手段46(電気モータ51)の進退軸x方向(出力軸51a方向)に伝達されることが確実に防止され、上記衝撃荷重が電気モータ51及び回転力変換機構58に対しその故障原因となり得る負荷として上下方向から作用するおそれを確実に解消することが可能となり、電気モータ51及び回転力変換機構58の耐久性を飛躍的に高めることができる。
【0058】
さらに、ウェッジ部材44の拘束面44bとフック部材43の第2端面43bとの面同士をウェッジ部材44の進退移動方向に亘って一直線状に面接触させることで、コンテナ跳ね上がり時のウェッジ部材44に対する車幅方向からの衝撃荷重に対し表面積の大きな拘束面44bで支えて十分に抗することが可能となる上、電気モータ51及び回転力変換機構58への衝撃荷重の伝達を遮断することが可能となる。従って、電気モータ51及び回転力変換機構58の耐久性のさらなる向上を図る上で非常に有利なものとなるのは勿論のこと、フック部材43をコンテナ2の主桁21後部下端の外側縁に対しより確実に係合状態に拘束する上でも非常に有利なものとなる。
【0059】
しかも、フック部材43が係合状態にあるときにフック部材43の第2端面43bに対しウェッジ部材44の拘束面44bがウェッジ部材44の進退移動方向に直交する車幅方向向きで互いに面接触してフック部材43が拘束されることにより、フック部材43が係合状態に変換されてからのウェッジ部材44の前進移動量は、フック部材43の第2端面43bに対しウェッジ部材44の拘束面44bが互いに面接触可能となる最低限度のものが確保されていれば、それ以上いくら上方にウェッジ部材44を上方に前進移動させて設定されていても良いことになる。これにより、フック部材43を係合状態に拘束する上で、ウェッジ部材44の前進移動量を厳格に設定する必要がなく、ウェッジ部材44及び駆動手段46の精度を下げてコストの低廉化を図ることができる。
【0060】
次に、各サブシャーシ13上に搭載されたコンテナ2を地上に降ろす場合の手順に沿ってフック部材43の変換作動を説明する。この場合も、各ジャッキ14は張り出されているものとする。また、コンテナ2の後壁2dは後壁固縛装置により固縛されているものとする。
【0061】
先ず、コンテナ跳ね上がり防止装置40によるコンテナ2の係合解除を行う。
【0062】
具体的には、図8に示すように、電気モータ51の出力軸51aを逆回転方向(図8に示す破線矢印H方向)に回転させ、減速ギヤ52を介して第1ロッド部材53を進退軸x回りに逆回転方向(図8に示す破線矢印J方向)に回転させる。すると、この第1ロッド部材53の進退軸x回りの逆回転方向の回転力が、回転力変換機構58により第2ロッド部材57を下方(図8に破線矢印Kで示す方向)へ後退移動させる後退移動力に変換され、図8に実線で示すように、ウェッジ部材44をベース41の底面に沿って下方に後退移動させる。すると、係合状態のフック部材43の第2端面43bとウェッジ部材44の拘束面44bとの互いの面接触によるフック部材43の回転拘束が解除され、ウェッジ部材44の角部44cがフック部材43の上側角アール部43dを乗り越えることになる。そして、上記フック部材43が、ウェッジ部材44の下方への後退移動に伴い自重によって自動的に回転中心軸42回りに逆回転方向(図5及び図7に破線矢印Bで示す反時計回り方向)に回転して係合解除状態(図5及び図7に二点鎖線で示す状態)に変換され、各サブシャーシ13上に搭載されたコンテナ2の各主桁21後部下端の外側縁に対し係合爪部49を係合解除させることになる。このとき、フック部材43(第1端面50)の下側角アール部43cは、フック部材43が係合解除状態にあるときにウェッジ部材44の作動面44aの先端(上端)に対し当接し、フック部材43の自重に基づく逆回転方向への回転が規制されるので、電気モータ51の出力軸51aの正回転方向への回転により第2ロッド部材57を上方へ前進移動させてウェッジ部材44を前進させると同時にフック部材43が回転中心軸42回りに正回転方向に回転し、上記フック部材43を速やかに係合状態に変換させることができる。しかも、フック部材43が係合解除状態にあるときにフック部材43の自重に基づく逆回転方向への回転を規制するためのストッパを別途用意する必要がなく、ウェッジ部材44を利用して部品点数を削減させることができる。
【0063】
次いで、図2に一点鎖線で示すように、伸縮シリンダ34eを収縮させてベースアーム部34aに対し基部アーム部34b及び突出アーム部34cを後退位置に位置付け、各傾動フレーム32の前端部に対しL形アーム34の回転規制を解除してL形アーム34を第2車幅方向軸33回りに回転可能とする。
【0064】
その後、図2に二点鎖線で、図3に実線でそれぞれ示すように、荷役シリンダ35を伸長させてL形アーム34を第2車幅方向軸33回りに後方へ回転させ、フック部34dに係合されたコンテナ2を案内ローラ16で案内しながら地上に降ろす。それから、コンテナ運搬車1を前方移動させるなどしてフック部34dを地上のコンテナ2の係合ピン22から離脱させる。しかる後、荷役シリンダ35を収縮させてL形アーム34を第2車幅方向軸33回りに前方へ回転させた後、伸縮シリンダ34eを伸長させてベースアーム部34aに対し基部アーム部34b及び突出アーム部34cを前進位置に位置付けておく。
【0065】
また、各サブシャーシ13上に搭載されたコンテナ2を傾動させてコンテナ2内の収容物を排出する場合の手順に沿ってフック部材43の変換作動を説明する。この場合、後壁固縛装置による後壁2dの固縛は解除されているものとする。
【0066】
先ず、上述の各サブシャーシ13上に搭載されたコンテナ2を地上に降ろす場合と同様にコンテナ跳ね上がり防止装置40によるコンテナ2の係合解除を行う。
【0067】
それから、図4に実線で示すように、伸縮シリンダ34eをそのまま伸長状態に保持してベースアーム部34aに対し基部アーム部34b及び突出アーム部34cを前進位置に位置付けておく。これにより、各傾動フレーム32の前端部に対しL形アーム34を回転規制してL形アーム34を第2車幅方向軸33回りに回転不能にする。
【0068】
その後、図4に一点鎖線で示すように、荷役シリンダ35を伸長させてL形アーム34を略一直線状に保持したままで各傾動フレーム32と共に各サブシャーシ13に対し第1車幅方向軸31回りに後方に回転させて略45°程度下り勾配となる傾斜状態(図4に一点鎖線で示す状態)に変換する。これにより、傾斜状態の各傾動フレーム32上とこの各傾動フレーム32に対し略一直線状に延びるように保持されたL形アーム34上とに沿って積載されたコンテナ2が傾斜状態(図4に一点鎖線で示す状態)に姿勢変換され、後壁2dがその自重及び収容物の自重の影響を受けて開放しコンテナ2内の収容物が排出される。
【0069】
しかる後、図4に実線で示すように、荷役シリンダ35を収縮させてL形アーム34を略一直線状に保持したままで各傾動フレーム32を車載状態に変換した後、コンテナ2の後壁2dを後壁固縛装置により固縛し、上述したコンテナ2を各サブシャーシ13に対し積み込む場合と同様に、フック部材43を係合状態に変換してコンテナ2の各主桁21後部下端の外側縁に対し係合爪部49を係合させる。
【0070】
<他の実施形態>
尚、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである、例えば、上記実施形態では、コンテナ跳ね上がり防止装置40によりコンテナ2の後部を係合又は係合解除するようにしたが、コンテナの後部以外の箇所、例えば中央部などでコンテナ跳ね上がり防止装置によるコンテナの係合解除が行われるようにしても良い。
【0071】
また、上記実施形態では、荷役装置3により車体フレーム11上にコンテナ2を搭載するようにしたが、クレーンなどによりコンテナが車体フレーム上に搭載されるようにしても良い。
【0072】
さらに、上記実施形態では、フック部材43の第1端面50に対しウェッジ部材44の作動面44aを摺接させることで、フック部材43を係合状態と係合解除状態とに相互に変換させたが、フック部材の車幅方向外方寄りにウエッジ部材を配置し、ウェッジ部材を上下方向に進退移動させて、上記フック部材の車幅方向外側の下端の第1端面に対しウェッジ部材の車幅方向内側の作動面を摺接させることで、フック部材を係合状態と係合解除状態とに相互に変換させるようにしても良いのは勿論である。また、フック部材の進退方向は、上下方向のみならず、左右方向(車幅方向)または斜め方向などであっても良い。この場合には、ウェッジ部材の作動面及び拘束面と摺接及び面接触するフック部材の第1端面及び第2端面の位置を方向変換に伴う分だけずらせばよい。
【0073】
しかも、上記実施形態では、電気モータ51によりアクチュエータを構成したが、油圧シリンダによりアクチュエータが構成されていても良い。この場合には、油圧シリンダはその上下方向への伸縮作動によりウェッジ部材が進退移動するように配置され、コンテナ跳ね上がり時の衝撃荷重が油圧シリンダに対しウェッジ部材の進退移動方向から作用することがなく、油圧シリンダへの無理な負荷の作用を防止して油圧シリンダの耐久性が飛躍的に高められる上、フック部材を係合状態に確実に拘束することが可能となる。
【0074】
【発明の効果】
以上の如く、請求項1記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、フック部材を自重によって自動的に回転中心軸回りに逆回転方向に回転させてコンテナに対しフック部材を係合解除状態に変換させる一方、作動部材の前進移動に伴い作動面をフック部材の第1端面に対し摺接させてフック部材を回転中心軸回りに特定回転方向に回転させることでフック部材を係合状態に変換させることが可能となり、さらに、フック部材が係合状態にあるときにさらに作動部材を前進移動させて拘束面をフック部材の第2端面に対し面接触させることでフック部材を係合状態に拘束することにより、コンテナ跳ね上がり時の上下方向からの衝撃荷重を拘束面に対し第2端面の面接触方向から作用させてアクチュエータの作動方向からの無理な負荷として作用させることを防止し、アクチュエータの故障原因をなくしてアクチュエータの耐久性を飛躍的に高めることができる。しかも、フック部材を係合状態に拘束する上で、作動部材の前進移動量を厳格に設定する必要がなく、作動部材及びアクチュエータの精度を下げてコストの低廉化を図ることができる。さらに、フック部材の回転中心軸を重心に対し偏心させるだけでフック部材を自動的に逆回転方向に回転させ、回転付勢手段を不要にした部品点数の削減化を図ることができる。
【0075】
請求項2記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、作動部材を上下方向に進退移動させ、拘束面を、フック部材が係合状態にあるときにフック部材の第2端面に対し上下方向から面接触させることで、コンテナ跳ね上がり時の衝撃荷重の伝達を作動部材の拘束面とフック部材の第2端面との面接触部分で遮断し、アクチュエータに対し衝撃荷重による無理な負荷のの作用を確実に解消することができる。
【0076】
請求項3記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、フック部材の第1端面に対し摺接する作動部材の作動面の接線と直交する直交線をフック部材の回転中心軸よりも重心位置側を通る位置に位置させることで、フック部材の第1端面に対する作動面の摺接方向を拡大させ、フック部材及び作動部材のレイアウトの自由度を拡大させることができる。
【0077】
請求項4記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、フック部材が係合状態にあるときに作動部材の拘束面とフック部材の第2端面とを作動部材の前進方向に亘って上下方向に一直線状に面接触させることで、アクチュエータの耐久性をさらに向上させることができる上、フック部材をコンテナに対しより確実に係合状態に拘束し得ることができる。
【0078】
請求項5記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、作動部材の作動面に対し係合解除状態にあるフック部材の第1端面を当接させることで、フック部材の自重に基づく逆回転方向への回転を規制し、作動部材の前進移動に併せてフック部材を速やかに係合状態に変換させることができる。しかも、フック部材を係合解除状態に保持するストッパを不要にして作動部材を有効利用した部品点数の削減化を図ることができる。
【0079】
請求項6記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、アクチュエータとして電気モータを適用することで、油圧シリンダなどのアクチュエータを用いたもののような経時的な油漏れなどによるフック部材の作動変換を禁止し、フック部材を確実に係合状態に拘束することができる。しかも、電気モータに対し可撓性のあるコードを接続して電源供給すれば良く、この細く形状変更可能なコードを円滑にレイアウトすることができる。
【0080】
請求項7記載の発明におけるコンテナ運搬車のコンテナ跳ね上がり防止装置によれば、コンテナをその前後両端位置でL型アームおよびフック部材により係合することで、コンテナの跳ね上がりを効果的に防止することができるとともに、コンテナ跳ね上がり時にコンテナ後端位置で大きくなる衝撃荷重をフック部材により効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るコンテナ運搬車の平面図である。
【図2】荷役シリンダによるコンテナの積み降ろし動作の前半工程を示すコンテナ運搬車の側面図である。
【図3】荷役シリンダによるコンテナの積み降ろし動作の後半工程を示すコンテナ運搬車の側面図である。
【図4】荷役シリンダによるコンテナの載置状態と傾斜状態との姿勢変換動作を示すコンテナ運搬車の側面図である。
【図5】コンテナ跳ね上がり防止装置を一部切り欠いた状態で車体後方より視た背面図である。
【図6】コンテナ跳ね上がり防止装置を車体側方より視た側面図である。
【図7】フック部材とウェッジ部材との摺接状態を説明する図5の要部拡大説明図である。
【図8】駆動手段を一部切り欠いた状態で車体後方より視た背面図である。
【符号の説明】
1 コンテナ運搬車
2 コンテナ
11 車体フレーム(車台)
42 回転中心軸
43 フック部材
43A 周囲
43b 第2端面
44 ウェッジ部材(作動部材)
44a 作動面
44b 拘束面
50 第1端面
51 電気モータ(アクチュエータ)
s,s′ 接線
t,t′ 直交線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a container splash prevention device for preventing a container from jumping on a chassis in a container transport vehicle in which a container is mounted on the chassis.
[0002]
[Prior art]
Generally, in a container transport vehicle in which a container is mounted on a chassis, the container is lifted by a crane attached to a container loading / unloading site and mounted on the chassis, or the container is loaded by a cargo handling device installed on the chassis. Is mounted on the chassis.
[0003]
Some of these container transport vehicles include a container jump prevention device that prevents the containers mounted on the chassis from jumping up. For example, as disclosed in Japanese Utility Model Publication No. 58-85735, the container splash prevention device includes a hook member that is detachably engaged with a container on a chassis, and the tip (upper end) of a cylinder rod is the hook. And a hydraulic cylinder connected to the member via a pin. The hook member is rotatably coupled around a rotation center axis extending in the longitudinal direction of the vehicle body, and the tip thereof is engaged with a pair of left and right main girder having a substantially I-shaped cross section extending in the longitudinal direction on the left and right sides of the lower surface of the container. It comes to match. Further, the hydraulic cylinder is provided so as to be able to extend and contract in the vertical direction, and the hook member is rotated in a specific rotation direction around the rotation center axis in accordance with the upward extension operation, so that the hook member becomes a main girder of the container. The hook member is engaged with the main girder of the container by rotating the hook member around the rotation center axis in the direction opposite to the specific rotation direction in accordance with the engagement state to be engaged with each other and the downward contraction operation. It is comprised so that it may mutually convert into the engagement cancellation | release state to cancel | release.
[0004]
[Problems to be solved by the invention]
By the way, in particular, in a container transport vehicle having a cargo handling device such as an L-shaped arm, the container on the chassis is held at its front end position, so that a relatively large jump occurs during traveling at the rear end position of the container. The jumping vibration tends to cause inconveniences such as a tail lamp and other broken pieces. For this reason, in such a container transport vehicle, it is necessary to reliably prevent the container from jumping up.
[0005]
On the other hand, in the conventional container splash prevention device, the container splash direction and the expansion / contraction operation direction of the hydraulic cylinder are respectively in the vertical direction and coincide with each other. Since the hook member and the piston rod of the hydraulic cylinder are connected via a pin, the impact load in the vertical direction when the container jumps up is directly transmitted to the expansion / contraction operation direction of the hydraulic cylinder via the hook member. become. For this reason, when an impact load is applied to the hydraulic cylinder when the container jumps up from its operating direction (extension / contraction operating direction), an unreasonable load is applied to the hydraulic cylinder. When the impact load acts on the piston rod in the axial direction (extension / retraction operation direction), the hydraulic pressure is forced to fluctuate, causing the hydraulic cylinder to be remarkably deteriorated and the hook member to the container. There is a possibility that it cannot be reliably restrained to the engaged state. In addition, it may cause a failure of the hydraulic cylinder. Such a situation occurs not only in the hydraulic cylinder but also in other actuators used for operating the hook member in the same manner as described above.
[0006]
The present invention has been made in view of such a point, and an object of the present invention is to make it possible to interrupt an impact load when a container jumps up from an operation direction of an actuator such as a hydraulic cylinder. An object of the present invention is to eliminate the cause of failure of an actuator such as a cylinder to improve durability and to ensure that a hook member can be reliably restrained in an engaged state with respect to a container.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has a basic specific matter of blocking the impact load from the operating direction of the actuator.
[0008]
Specifically, the solution provided by the invention according to claim 1 is based on a container bouncing prevention device for a container transport vehicle that prevents the container mounted on the chassis from bouncing up. A hook member that is rotatably connected around a rotation center axis extending in the longitudinal direction of the vehicle body and engages with the container by rotation in a specific rotation direction around the rotation center axis, and the hook member are not mutually connected. An actuating member that is connected to each other to convert the hook member into an engaged state engaged with the container and an engaged disengaged state released from the container by moving forward and backward; and the actuating member And an actuator for moving the actuator forward and backward. An operating surface that slidably contacts the hook member by the forward movement of the operating member and presses the hook member to rotate in the specific rotation direction, and is held at a predetermined forward position with respect to the hook member. And a restraining surface that restrains the hook member in the engaged state by making surface contact with each other in a direction orthogonal to the advancing / retreating movement direction of the operating member. In addition, around the hook member, the first end face that is slidably contacted with the operating surface and receiving the pressing force in the specific rotation direction, and the constraining surface are in surface contact with each other to prevent rotation about the rotation center axis. A second end face constrained by the state. Furthermore, from the position of the center of gravity of the hook member so that a rotation moment that rotates the rotation center axis of the hook member in a direction opposite to the specific rotation direction is applied to the hook member in the engaged state based on its own weight. It is set as the structure arrange | positioned so that it may be located in the position eccentric in the vehicle width direction.
[0009]
In the case of claim 1, in order to disengage the hook member in the engaged state, the operating member is moved backward by the actuator. Then, the rotation restraint by mutual surface contact between the restraining surface of the operating member and the second end surface of the hook member is released. Then, the hook member is automatically rotated in the reverse rotation direction around the rotation center axis by its own weight in accordance with the backward movement of the operation member, and is converted into the disengaged state, and is engaged with the container mounted on the chassis. Will be released.
[0010]
On the other hand, in order to engage the hook member with the container, the operating member is moved forward by the actuator. Then, the operating surface of the operating member and the first end surface of the hook member are in sliding contact with each other, whereby the hook member rotates and engages in a specific rotation direction around the rotation center axis as the operating member moves forward. It is converted into a state and engaged with a container mounted on the chassis. If the forward movement is stopped at the predetermined forward position, the restraining surface of the operating member comes into surface contact with the second end surface of the hook member, and the hook member rotates about the rotation center axis by this surface contact. Will be blocked and restrained to the engaged state.
[0011]
When the hook member is thus engaged and in the engaged state, the surface contact is a surface contact in a direction perpendicular to the advancing and retreating movement direction of the operating member with respect to the second end surface of the hook member. Even if the impact load from the vertical direction when the container jumps up is transmitted to the hook member, the transmitted impact load acts on the restraining surface of the operating member from the surface contact direction of the second end surface of the hook member. The actuator is not transmitted directly in the forward / backward movement direction of the actuator, and an excessive load is not applied to the actuator. In this case, even if a hydraulic cylinder is used as an actuator, it is possible to improve the durability of the hydraulic cylinder without causing a forced change in the hydraulic pressure due to an impact load, and to secure the hook member to the container. It is possible to be restrained in the engaged state. In addition, the cause of failure of the hydraulic cylinder is eliminated. The same applies to other actuators as well as hydraulic cylinders.
[0012]
Moreover, when the hook member is in the engaged state, the restraining surface of the actuating member is in surface contact with the second end surface of the hook member in a direction perpendicular to the advancing / retreating movement direction of the actuating member, so that the hook member is restrained. The amount of forward movement of the actuating member to the predetermined advance position is more than that if a minimum amount is secured so that the restraining surfaces of the actuating member can come into surface contact with the second end surface of the hook member. May be. Thereby, when restraining the hook member in the engaged state, it is not necessary to strictly set the forward movement amount of the operating member, and the accuracy of the operating member and the actuator can be lowered to reduce the cost. .
[0013]
Furthermore, since the hook member rotates in the reverse rotation direction based on its own weight simply by positioning the rotation center axis of the hook member at a position deviated from the center of gravity of the hook member in the vehicle width direction, the hook member is rotated in the reverse rotation direction. In the above, it is not necessary to separately provide a rotation urging means or the like, and the number of parts is reduced.
[0014]
The solution provided by the invention according to claim 2 specifically specifies the configuration of the actuating member and the hook member in the invention according to claim 1.
[0015]
That is, the actuating member is provided so as to move forward and backward in the vertical direction, and the actuating member is moved upward when moving forward.
[0016]
In the case of claim 2, the impact load when the container jumps up, the second end surface of the hook member comes into surface contact with the restraining surface of the operating member, even though the operating member moves forward and backward in the same vertical direction as the direction of action. It acts from the vertical direction and is smoothly absorbed by the sliding contact in the vertical direction at each surface contact portion. For this reason, the transmission of the impact load when the container jumps up is blocked at the surface contact portion, and is reliably prevented from being transmitted in the direction of operation of the actuator via the operating member, and an unreasonable load may act on the actuator. Can be reliably eliminated.
[0017]
The solution provided by the invention according to claim 3 specifically specifies the configuration of the actuating member in the invention according to claim 1 or claim 2.
[0018]
That is, the orthogonal line orthogonal to the tangent line of the operating surface of the operating member that slidably contacts the hook member and the operating member with respect to the first end surface of the hook member is at a position that passes the center of gravity position side of the rotation center axis of the hook member. It is set as the structure arrange | positioned so that it may be positioned.
[0019]
In the case of claim 3, when the hook member is rotated in the specific rotation direction, the operation surface of the operation member is slidably contacted with the first end surface of the hook member from any direction such as a left-right direction (vehicle width direction) or an oblique direction. This may increase the degree of freedom in the layout of the hook member and the actuating member.
[0020]
The solution provided by the invention according to claim 4 more specifically specifies the configuration of the hook member and the actuating member in the invention according to claim 3.
[0021]
That is, the constraining surface of the operating member and the second end surface of the hook member are configured to extend vertically in parallel to each other toward the advancing direction of the operating member when the hook member is in the engaged state. is there.
[0022]
In the case of claim 4, the constraining surface of the operating member and the second end surface of the hook member are in surface contact continuously over the advancing direction of the operating member when the hook member is in the engaged state. For this reason, even if the impact load when the container jumps up acts from the direction orthogonal to the advancing / retreating direction of the operating member with respect to the restraining surface, the impact load is sufficiently supported by the restraining surface extending in a straight line in the advancing / retreating direction of the actuating member. In addition, it is possible to cut off the transmission of the impact load to the actuator. Therefore, the durability of the actuator can be further improved, and the hook member can be more reliably restrained from being engaged with the container.
[0023]
The solution provided by the invention according to claim 5 more specifically specifies the configuration of the hook member in any one of claims 1 to 4.
[0024]
That is, the first end surface of the hook member is used as the operating surface of the operating member so that the rotation of the first end surface of the hook member around the rotation axis due to its own weight is restricted when the hook member is in the disengaged state. It is set as the structure made to contact | abut.
[0025]
In the case of the fifth aspect, the operating member is moved forward by the actuator, and at the same time, the hook member is rotated in the specific rotation direction around the rotation center axis, and the hook member is quickly converted into the engaged state. In addition, when the hook member is in the disengaged state, it is not necessary to prepare a separate stopper for restricting the rotation in the reverse rotation direction due to the weight of the hook member, and the number of parts can be reduced by using the operating member. It will be.
[0026]
The solution provided by the invention according to claim 6 specifically specifies the configuration of the actuator in the invention according to claim 1.
[0027]
That is, an electric motor that moves the operating member back and forth with a rotational force is applied as the actuator.
[0028]
In the case of claim 6, there is no possibility that the operation of converting the engaged state of the hook member from the engaged state to the disengaged state due to the oil leakage over time that occurs when an actuator such as a hydraulic cylinder is used. It will be restrained by an engagement state.
[0029]
Moreover, it is only necessary to connect a flexible cord to supply electric power to the electric motor, and there is no need to worry about the layout of thick and inflexible hydraulic piping as in the case of using a hydraulic cylinder as an actuator. As a result, a code that can be thinly changed can be laid out smoothly.
[0030]
The solution provided by the invention according to claim 7 specifies the engagement position of the hook member with respect to the container in the invention according to claim 1.
[0031]
Specifically, a container mounted on a chassis equipped with a cargo handling device having an L-shaped arm is held by the L-shaped arm at the front end position, and the hook member is engaged with the rear end position of the container. It is set as the structure to install.
[0032]
In the case of the seventh aspect, the container is held by the L-shaped arm at the front end position and is engaged by the hook member at the rear end position, so that the container is effectively prevented from jumping up. In addition, the impact load amplified at the container rear end position when the container jumps up is effectively suppressed by the hook member.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034]
1 to 4 show a container transport vehicle provided with a container splash prevention device according to an embodiment of the present invention. In FIG. 2, 1 is a container transport vehicle, 2 is a pair of left and right as a chassis of the container transport vehicle 1 It is a container mounted on the body frames 11, 11 (shown in FIG. 1). In FIG. 1, reference numeral 3 denotes a cargo handling device for loading and unloading the container 2 to and from the vehicle body frames 11, 11. The cargo handling device 3 is mounted on each vehicle body frame 11.
[0035]
As shown in FIGS. 2 to 4, the vehicle body frames 11 and 11 each extend in the longitudinal direction of the vehicle body, and include a cab 12 on the front end portion thereof. A pair of left and right subchassises 13 and 13 (shown in FIG. 1) are provided on the vehicle body frames 11 and 11 behind the cab 12 so as to extend in the vehicle body longitudinal direction along the vehicle body frames 11. Each sub-chassis 13 is formed in a closed cross-sectional shape (shown in FIG. 5) and has a length capable of mounting a container 2 that is long in the longitudinal direction of the vehicle body. Further, as shown in FIG. 1, each sub-chassis 13 is integrally formed by a front end portion 13F and a rear end portion 13R located at both front and rear ends thereof, and a central portion 13M connecting between the front and rear end portions 13F and 13R. It is configured. The front and rear end portions 13F and 13R are positioned on the inner side in the vehicle width direction with respect to the central portion 13M, respectively, and are viewed from the side of the vehicle body with their own front wrap allowance 13a and rear wrap allowance 13b. Are joined from the inner side in the vehicle width direction in a partially overlapped state. As shown by a solid line in FIG. 2, the container 2 is mounted on each vehicle body frame 11 via each subchassis 13. In addition, a pair of left and right jacks 14 (only one is shown in FIGS. 2 to 4) that can be overhanged are provided at the rear ends of the body frames 11, and are shown by a one-dot chain line in FIGS. 2 and 4 and a solid line in FIG. As shown in each, the stability of the container transport vehicle 1 can be improved by projecting each jack 14 against the center of gravity movement toward the rear of the vehicle body when the container 2 is loaded and unloaded by the cargo handling device 3. .
[0036]
As shown in FIGS. 1 and 2, the container 2 has a substantially rectangular upper wall 2a and a bottom wall 2b that are long in the longitudinal direction of the vehicle body at both upper and lower positions, and the periphery of the upper wall 2a and the bottom wall 2b. Is enclosed by the front and rear walls 2c, 2d and the left and right side walls 2e, 2f.
[0037]
On the lower surface of the bottom wall 2b of the container 2, a pair of left and right main girders 21 and 21 (shown in FIG. 1) extending in the longitudinal direction of the vehicle body are integrally provided. Each main girder 21 is formed in a substantially I-shaped cross section (appears only in the lower part in FIG. 5). Further, as shown in FIG. 1, an engaging pin 22 is provided at the upper center position of the front wall 2c of the container 2 so that a hook portion 34d described later is detachably engaged. Then, as indicated by a one-dot chain line in FIG. 4, the upper end of the rear wall 2d of the container 2 is rearward about the vehicle width direction axis (not shown) at the upper positions of the rear end portions of the left and right side walls 2e, 2f. It is supported so that it can be opened downward. In this case, the rear wall 2d of the container 2 is restricted from being opened rearward when being secured by a rear wall securing device (not shown).
[0038]
As shown in FIG. 1, the cargo handling device 3 has a rear end portion rotatably connected around a first vehicle width direction axis 31 extending in the vehicle width direction with respect to the rear end of each sub chassis 13, and is connected to each sub chassis. A pair of left and right tilt frames 32, 32 provided to be tiltable with respect to 13, and a second vehicle width direction shaft 33 whose base end portion is parallel to the first vehicle width direction shaft 31 with respect to the front end portion of each tilt frame 32. An L-shaped arm 34 that is rotatably coupled around the tilting frame 32, a substantially intermediate left and right side of the L-shaped arm 34, and a front end of each sub-chassis 13. A pair of left and right cargo handling cylinders 35 provided therebetween are provided. Further, a pair of left and right guide rollers 16 and 16 for guiding the container are provided at the rear end of the rear end portion 13R of each sub-chassis 13 so as to be rotatable about the first vehicle width direction axis 31. Yes.
[0039]
The L-shaped arm 34 is connected to the front end portion of the tilting frame 32 so as to be rotatable around the second vehicle width direction axis 33 and extends forward on the front portion of each sub-chassis 13; A base arm portion 34b that is slidably mounted in the front-rear direction with respect to the tip portion of the base arm portion 34a, and a base end is integrally provided at the tip of the base arm portion 34b, and the tip portion of the base arm portion 34b. A protruding arm portion 34c that is bent from the position and extends upward, and is provided at the tip of the protruding arm portion 34c, and engages with an engagement pin 22 provided at the upper end of the front wall 2c of the container 2 so as to be detachable. A substantially C-shaped hook part 34d is connected between the base arm part 34a and the base arm part 34b, and the base arm part 34b and the protruding arm part 34c are connected to the base arm part 34a. By extending and contracting so as to move backward, the base arm portion 34b and the protruding arm portion 34c are mutually positioned at a forward position (a position indicated by a solid line in FIG. 2) and a backward position (a position indicated by a one-dot chain line in FIG. 2). And a telescopic cylinder 34e to be converted. As shown in FIG. 4, the L-shaped arm 34 is held so as to extend substantially linearly with respect to each tilting frame 32 and restricts rotation around the second vehicle width direction axis 33 (see FIG. 4). Not shown). This restricting member is configured to restrict the rotation of the L-shaped arm 34 with respect to each tilting frame 32 or to release the restriction on the rotation according to the expansion / contraction state of the expansion / contraction cylinder 34e. Specifically, the restricting member is provided for each tilting frame 32 when the telescopic cylinder 34e is in an extended state, that is, when the base arm portion 34b and the protruding arm portion 34c are positioned at the forward movement position with respect to the base arm portion 34a. While holding the L-shaped arm 34 in a substantially straight line and restricting rotation about the second vehicle width direction axis 33, when the telescopic cylinder 34e is in a contracted state, that is, with respect to the base arm 34a, the base arm 34b and the protrusion When the arm portion 34c is positioned in the retracted position, the rotation restriction of the L-shaped arm 34 is released with respect to the front end portion of each tilting frame 32 so that the L-shaped arm 34 rotates about the second vehicle width direction axis 33. I have to.
[0040]
In each of the cargo handling cylinders 35, the amount of expansion / contraction operation is set in accordance with the position change of the base arm portion 34b and the protruding arm portion 34c, that is, the presence or absence of the rotation restriction of the L-shaped arm 34 by the restriction member. ing. Specifically, in each cargo handling cylinder 35, when the L-shaped arm 34 is restricted by the restricting member, the container 2 in which the hook portion 34 d is engaged with the engagement pin 22 is placed on the sub chassis 13. Mounted on the vehicle (shown by a solid line in FIG. 4), and the L-shaped arms 34 are held in a substantially straight line with respect to each tilting frame 32 so that each tilting frame 32 is rotated around the first vehicle width direction axis 31. By tilting, the expansion and contraction operation amount is set so that the container 2 is mutually converted into a tilted state (indicated by a one-dot chain line in FIG. 4) inclined backward at a predetermined angle toward the rear. Yes. Further, when the rotation restriction of the L-shaped arm 34 by the restricting member is released, each cargo handling cylinder 35 is attached to the second vehicle width direction shaft 32 and the L-shaped arm 34 with respect to the in-vehicle state and each tilting frame 32. The container 2 is lowered to the ground behind each vehicle body frame 11 by rotating it around the rear so that the hook portion 34d can be engaged with and disengaged from the engagement pin 22 (one point in FIG. 3). The expansion / contraction operation amount is set so as to be mutually converted into a state indicated by a chain line).
[0041]
As shown in FIGS. 5 and 6, the rear end portion 13 </ b> R of each sub-chassis 13 in which each tilting frame 32 is positioned has a base 41 having a substantially U-shaped cross section that opens outward in the vehicle width direction. Is attached. The base 41 is provided with a container jump prevention device 40 that prevents the rear portion of the container 2 from jumping up due to vehicle body vibration or the like on the rear end portion 13R of each sub chassis 13.
[0042]
As shown in FIG. 5, the container splash prevention device 40 has an engaging claw portion 49 engaged with the outer edge of the rear lower end of each main girder 21 of the container 2 mounted on the central portion 13M of each subchassis 13. A pair of left and right substantially C-shaped hook members 43 (only one is shown in the figure) and a wedge member 44 as an operating member that moves forward and backward in the vertical direction extending in the vertical direction (see FIG. 8). And an electric motor 51 as an actuator for moving the wedge member 44 in the vertical direction.
[0043]
The hook member 43 is rotatably connected to the upper end portion of the base 41 around a rotation center shaft 42 extending in the longitudinal direction of the vehicle body, and a positive rotation direction (see FIG. 5) as a specific rotation direction around the rotation center shaft 42. The engagement claw portion 49 is engaged with the outer edge of the rear lower end of each main girder 21 of the container 2 by being rotated in the clockwise direction indicated by the solid arrow A). The engaging claw portion 49 is provided at the upper end of the hook member 43.
[0044]
The wedge member 44 moves back and forth in the vertical direction along the bottom surface (inner side surface in the vehicle width direction) of the base 41, thereby moving the engaging claw portions 49 of the hook members 43 to the rear portions of the main girders 21 of the container 2. An engaged state (state shown by a solid line in FIG. 5) engaged with the outer edge of the lower end and an engaged state released from the outer edge of the rear lower end of each main girder 21 of the container 2 ( (A state indicated by a two-dot chain line in FIG. 5). The wedge member 44 and the hook member 43 are not connected to each other.
[0045]
At the upper position of the outer surface of the wedge member 44 in the vehicle width direction, the wedge member 44 is moved forward with respect to the hook member 43 by the upward movement (movement in the direction of arrow C shown by a solid line in FIG. 5). An operating surface 44a is provided that presses the hook member 43 in sliding contact and rotates the hook member 43 in the positive rotation direction. The operation surface 44a is formed to be inclined so as to be located on the inner side in the vehicle width direction as it goes to the front end (upper end) of the wedge member 44 in the forward direction. Further, at the lower position of the outer surface of the wedge member 44 in the vehicle width direction, the wedge member 44 moves forward and is held at a predetermined forward position (a position indicated by a solid line in FIG. 5). Accordingly, a restraining surface 44b is provided which is in surface contact with the hook member 43 in the vehicle width direction perpendicular to the advancing / retreating movement direction of the wedge member 44 and restrains the hook member 43 in the engaged state. The constraining surface 44b is formed to extend in the vertical direction so as to be parallel to the second end surface 43b of the hook member 43 when the hook member 43 is in the engaged state. The operating surface 44a and the restraining surface 44b are arranged so as to be continuous in the vertical direction with a corner portion 44c at a substantially central position in the vertical direction outside the wedge width of the wedge member 44 as a boundary. Reference numeral 47 in FIG. 5 denotes a stopper member that comes into contact with the hook member 43 when the hook member 43 is rotated in the forward rotation direction around the rotation center shaft 42 and converted into the engaged state. The hook member 43 is positioned in the engaged state by the member 47. In FIG. 5, reference numeral 48 denotes a guide member that is provided adjacent to the bottom surface of the base 41 with a space in which the wedge member 44 (restraint surface 44 b) can be inserted in the vehicle width direction. When the restraining surface 44b of the wedge member 44 is in sliding contact, the wedge member 44 can be moved back and forth in the vertical direction along the bottom surface of the base 41.
[0046]
As shown in FIG. 7, the first end face that receives the pressing force in the positive rotation direction is in sliding contact with the operating surface 44 a at the lower position inside the circumferential direction 43 </ b> A of the hook member 43 in the vehicle width direction. 50 is provided. The first end surface 50 has a flat portion 43a extending substantially in the advancing / retreating axis x (see FIG. 8) direction at the lower position on the inner side in the vehicle width direction on the circumferential surface 43A when the hook member 43 is in the disengaged state. The flat portion 43a is continuously constituted by an upper corner radius portion 43d and a lower corner radius portion 43c that are curved outward in the vehicle width direction at both upper and lower end positions. Further, when the hook member 43 is in an engaged state, the rotation around the rotation center shaft 42 is prevented at the lower position on the inner side in the vehicle width direction on the circumferential surface 43A by contacting the restraint surface 44b. A second end face 43b constrained by the state is provided. The restraining surface 44b of the wedge member 44 and the second end surface 43b of the hook member 43 are parallel to each other in the forward direction of the wedge member 44 when the hook member 43 is in the engaged state. It is provided to extend in the vertical direction.
[0047]
The rotation center shaft 42 of the hook member 43 has a rotation direction opposite to the specific rotation direction based on its own weight with respect to the hook member 43 in the engaged state (counterclockwise direction indicated by a broken line arrow B in FIGS. 5 and 7). The hook member 43 is disposed so as to be decentered inward in the vehicle width direction from the position of the center of gravity (not shown) of the hook member 43 so that a rotational moment rotating in the direction) is applied. The lower corner rounded portion 43c is a tip of the operating surface 44a of the wedge member 44 so as to restrict the rotation in the reverse rotation direction based on the weight of the hook member 43 when the hook member 43 is in the disengaged state. (Upper end) is in contact.
[0048]
Further, the hook member 43 and the wedge member 44 are arranged such that when the hook member 43 is in the disengagement position, the first end face 50 (the flat portion 43a, the upper corner round portion 43d and the lower corner round corner) of the hook member 43 The orthogonal lines t and t 'perpendicular to the tangent lines s and s' of the operating surface 44a of the wedge member 44 that is in sliding contact with the portion 43c) pass through the center of gravity position side of the rotation center axis 42 of the hook member 43, that is, below. It is arranged to be positioned. As a result, the hook member 43 is moved around the rotation center axis 42 in accordance with the forward movement amount of the wedge member 44 while the operating surface 44a of the wedge member 44 is in sliding contact with the first end surface 50. It will rotate in the direction of rotation.
[0049]
As shown in FIG. 8, the electric motor 51 has an output shaft 51 a parallel to an advance / retreat axis x extending in the advance / retreat direction of the wedge member 44. A drive gear 51b is rotatably connected to the output shaft 51a, and a reduction gear 52 is engaged with the drive gear 51b. A first rod member 53 is rotatably supported on the advancing / retracting shaft x, and a driven gear 53a is connected to the lower end portion of the first rod member 53 so as to rotate together. The driven gear 53a is engaged with the drive gear 51b via the reduction gear 52, and the first rod member 53 is rotated around the forward / backward axis x by the electric motor 51. A male screw portion 54 is provided on the upper portion of the first rod member 53. A second rod member 57 is provided on the advance / retreat axis x, and a cylindrical portion 57a for externally fitting the male screw portion 54 is provided below the second rod member 57. A female screw portion 55 that is screwed into the male screw portion 54 is formed on the inner peripheral surface of the cylindrical portion 57a. The lower end of the wedge member 44 is connected to the upper end portion of the second rod member 57 via a pin 56. The second rod member 57 has a groove (not shown) extending in the advancing / retreating axis x direction on its outer peripheral surface, and a projection (not shown) of a housing case 46a described later is slidable in the groove. By engaging, the rotation around the advance / retreat axis x is restricted, and the electric motor 51 is configured to advance / retreat in the advance / retreat axis x direction according to the rotational force of the first rod member 53 rotating around the advance / retreat axis x. ing. The electric motor 51, the drive gear 51b, the reduction gear 52, the driven gear 53a, the first rod member 53, and the second rod member 57 constitute a drive means 46. Each component of the drive means 46 is built in the housing case 46a of the drive means 46, and only the upper part of the second rod member 57 projects out of the housing case 46a. It is possible to move forward and backward in the x direction. Then, the first rod member 53 (male screw portion 54) and the second rod member 57 (female screw portion 55) provide the rotational force of the first rod member 53 rotated around the forward / backward axis x by the electric motor 51. A rotational force converting mechanism 58 is configured to convert the wedge member 44 into a forward / backward moving force in the forward / backward direction and transmit the converted force to the wedge member 44. In the rotational force converting mechanism 58, the first rod member 53 is moved forward and backward through the reduction gear 52 by the rotation of the output shaft 51a of the electric motor 51 in the forward rotation direction (the direction indicated by the solid line arrow E in FIG. 8). When rotating in the forward rotation direction (the direction indicated by the solid line arrow F in FIG. 8), the second rod member 57 is moved forward (the direction indicated by the solid line arrow G in FIG. 8) to output the output shaft of the electric motor 51. When the first rod member 53 rotates in the reverse rotation direction (the direction indicated by the broken line arrow H in FIG. 8), the first rod member 53 rotates in the reverse rotation direction about the advance / retreat axis x (the direction indicated by the broken line arrow J in FIG. 8). ), The second rod member 57 is moved backward (moved in the direction of the broken line arrow K shown in FIGS. 5 and 7). The electric motor 51 is connected with two flexible cords 59, 59, and power is supplied to the electric motor 51 through the cords 59.
[0050]
Here, the conversion operation of the hook member 43 that engages or disengages the engaging claw 49 with the outer edge of the rear lower end of each main girder 21 of the container 2 is performed on each vehicle body frame 11 (each subchassis 13). Description will be made along the procedure for loading and unloading the container 2 and tilting.
[0051]
First, the conversion operation of the hook member 43 will be described along the procedure in the case where the container 2 placed on the ground is loaded on each subchassis 13. In this case, it is assumed that each jack 14 is overhanging.
[0052]
First, as shown by a one-dot chain line in FIG. 2, the telescopic cylinder 34e is contracted to position the base arm portion 34b and the protruding arm portion 34c in the retracted position with respect to the base arm portion 34a. Thereby, the rotation restriction of the L-shaped arm 34 is released with respect to the front end portion of each tilting frame 32, and the L-shaped arm 34 can rotate around the second vehicle width direction axis 33.
[0053]
Next, as indicated by a two-dot chain line in FIG. 2 and a solid line in FIG. 3, the cargo handling cylinder 35 is extended to rotate the L-shaped arm 34 rearward around the second vehicle width direction axis 33. As indicated by the chain line, the hook part 34d at the tip of the protruding arm part 34c is engaged with the engaging pin 22 of the container 2 in the ground placement state (shown by the one-dot chain line in FIG. 3). From this state, as shown by a two-dot chain line in FIG. 2 and a solid line in FIG. 3, the cargo handling cylinder 35 is contracted to rotate the L-shaped arm 34 forward around the second vehicle width direction axis 33, As indicated by a one-dot chain line in FIG. 2, the container 2 engaged with the hook portion 34 d is placed on each sub chassis 13 while being guided by the guide roller 16. Thereafter, as shown by the solid line in FIG. 2, the container 2 is moved to the center of each sub-chassis 13 by extending the telescopic cylinder 34e and positioning the base arm portion 34b and the protruding arm portion 34c at the forward position with respect to the base arm portion 34a. It is loaded on the part 13M and converted into an in-vehicle state (state indicated by a solid line in FIG. 2).
[0054]
Then, the container 2 is engaged by the container splash prevention device 40.
[0055]
Specifically, as shown in FIG. 8, the output shaft 51 a of the electric motor 51 is rotated in the forward rotation direction (the direction of the solid arrow E shown in FIG. 8), and the first rod member 53 is advanced and retracted via the reduction gear 52. It is rotated around the axis x in the forward rotation direction (the direction of the solid arrow F shown in FIG. 8). Then, the rotational force of the first rod member 53 in the forward rotation direction about the advance / retreat axis x causes the second rod member 57 to move forward (in the direction indicated by the solid arrow G in FIG. 8) by the rotational force conversion mechanism 58. Converted into the forward movement force, the wedge member 44 is moved forward along the bottom surface of the base 41 as indicated by a two-dot chain line in FIG. At this time, as shown in FIG. 7, the tangent line of the operating surface 44a of the wedge member 44 that is in sliding contact with the first end surface 50 (the flat portion 43a, the upper and lower corner rounded portions 43d, 43c) in the periphery 43A of the hook member 43. The orthogonal lines t and t ′ orthogonal to s and s ′ are located at any time below the rotation center shaft 42 of the hook member 43. As a result, the hook member 43 rotates in a positive rotation direction (clockwise direction indicated by a solid arrow A in FIGS. 5 and 7) around the rotation center axis 42 until it abuts against the stopper member 47 and engages ( The state shown in FIG. 5 and FIG. 7 is indicated by a solid line), and the engaging claw portion 49 engages with the outer edge of the rear lower end of each main girder 21 of the container 2. For this reason, even if the container 2 tries to jump up at the rear end portion 13R of each subchassis 13 in which road surface vibration or the like is amplified, the rear end of each main girder 21 of the container 2 is hooked by the hook member 43 at the rear end portion 13R. By being engaged, the jumping of the rear portion of the container 2 is sufficiently suppressed. Accordingly, it is possible to reduce the impact load due to the container 2 jumping up at the rear end portion 13R and effectively prevent the tail lamp from being disconnected, and to suppress the impact sound at the rear end portion 13R when the container 2 jumps up. be able to.
[0056]
Further, by rotating the output shaft 51a of the electric motor 51 and rotating the first rod member 53 around the advance / retreat axis x, the wedge member 44 is moved forward and backward by the forward / backward moving force of the second rod member 57, so that the hydraulic cylinder The hook member 43 is reliably restrained to the engaged state without the risk of causing the conversion operation from the engaged state of the hook member 43 to the disengaged state due to oil leakage over time that occurs when a driving means such as is used. can do. Moreover, it is only necessary to connect the flexible cords 59, 59 to supply power to the electric motor 51, and the hydraulic pipe layout is thick and inflexible as in the case of using a hydraulic cylinder as the driving means. It is possible to smoothly lay out the cords 59 and 59 that can be thinly changed without being bothered.
[0057]
Thereafter, as shown by solid lines in FIGS. 5 and 7, when the wedge member 44 is further moved upward along the bottom surface of the base 41, the corner portion 44 c of the wedge member 44 becomes the upper corner radius portion 43 d of the hook member 43. The second end surface 43b of the periphery 43A of the hook member 43 and the restraining surface 44b of the wedge member 44 are in surface contact with each other, and the hook member 43 is prevented from rotating about the rotation center axis 42 by this surface contact. It will be restrained by the engagement state. When the hook member 43 is in the engaged state by being restrained in this way, the surface contact is made with respect to the second end surface 43b of the hook member 43 so that the restraining surface 44b of the wedge member 44 moves in the vertical direction of the wedge member 44. Therefore, even if an impact load from the vertical direction when the container jumps up is transmitted to the hook member 43, the transmitted impact load is restrained surface 44b of the wedge member 44. On the other hand, the second end surface 43b of the hook member 43 acts from the vertical direction in which the surface contact is made, and is smoothly absorbed by the sliding contact in the vertical direction at each surface contact portion. Thereby, the transmission of the impact load when the container jumps up is reliably interrupted at the surface contact portion, and is transmitted through the wedge member 44 in the advance / retreat axis x direction (the output shaft 51a direction) of the drive means 46 (electric motor 51). It is possible to reliably prevent the impact load from acting on the electric motor 51 and the rotational force conversion mechanism 58 from the vertical direction as a load that can cause failure. The durability of the force conversion mechanism 58 can be dramatically improved.
[0058]
Furthermore, the surfaces of the restraining surface 44b of the wedge member 44 and the second end surface 43b of the hook member 43 are brought into surface contact with each other in a straight line over the advancing / retreating movement direction of the wedge member 44, so It is possible to sufficiently resist the impact load from the vehicle width direction by supporting it with the restraining surface 44b having a large surface area, and to block the transmission of the impact load to the electric motor 51 and the rotational force conversion mechanism 58. It becomes. Accordingly, it is of course very advantageous to further improve the durability of the electric motor 51 and the torque conversion mechanism 58, and the hook member 43 is attached to the outer edge of the rear lower end of the main girder 21 of the container 2. On the other hand, it is very advantageous in terms of restraining the engaged state more securely.
[0059]
Moreover, when the hook member 43 is in the engaged state, the restraint surface 44b of the wedge member 44 is in surface contact with the second end surface 43b of the hook member 43 in the vehicle width direction perpendicular to the advancing / retreating movement direction of the wedge member 44. When the hook member 43 is restrained, the forward movement amount of the wedge member 44 after the hook member 43 is converted to the engaged state is the restraining surface 44b of the wedge member 44 with respect to the second end face 43b of the hook member 43. As long as the minimum amount that enables surface contact with each other is ensured, the wedge member 44 may be set by moving the wedge member 44 forward further upward. Accordingly, when the hook member 43 is constrained to the engaged state, it is not necessary to strictly set the forward movement amount of the wedge member 44, and the accuracy of the wedge member 44 and the drive means 46 is lowered to reduce the cost. be able to.
[0060]
Next, the conversion operation of the hook member 43 will be described along the procedure when the container 2 mounted on each subchassis 13 is lowered to the ground. Also in this case, it is assumed that each jack 14 is overhanging. Further, it is assumed that the rear wall 2d of the container 2 is secured by a rear wall securing device.
[0061]
First, the container 2 is disengaged by the container splash prevention device 40.
[0062]
Specifically, as shown in FIG. 8, the output shaft 51 a of the electric motor 51 is rotated in the reverse rotation direction (the direction of the broken line arrow H shown in FIG. 8), and the first rod member 53 is advanced and retracted via the reduction gear 52. It is rotated around the axis x in the reverse rotation direction (the direction of the broken arrow J shown in FIG. 8). Then, the rotational force in the reverse rotational direction around the advance / retreat axis x of the first rod member 53 causes the rotational force conversion mechanism 58 to move the second rod member 57 downward (in the direction indicated by the broken line arrow K in FIG. 8). It is converted into a backward movement force, and the wedge member 44 is moved backward along the bottom surface of the base 41 as shown by a solid line in FIG. Then, the rotation restraint of the hook member 43 due to mutual surface contact between the second end surface 43b of the hook member 43 in the engaged state and the restraining surface 44b of the wedge member 44 is released, and the corner portion 44c of the wedge member 44 is released from the hook member 43. The upper corner rounded portion 43d is overcome. Then, the hook member 43 automatically rotates in the reverse direction around the rotation center axis 42 due to its own weight as the wedge member 44 moves backward (the counterclockwise direction indicated by the broken arrow B in FIGS. 5 and 7). To the disengaged state (the state indicated by the two-dot chain line in FIG. 5 and FIG. 7), and is engaged with the outer edge of the rear lower end of each main girder 21 of the container 2 mounted on each sub chassis 13. The pawl portion 49 is disengaged. At this time, the lower corner rounded portion 43c of the hook member 43 (first end surface 50) abuts against the tip (upper end) of the operating surface 44a of the wedge member 44 when the hook member 43 is in the disengaged state. Since the rotation in the reverse rotation direction based on the weight of the hook member 43 is restricted, the rotation of the output shaft 51a of the electric motor 51 in the forward rotation direction causes the second rod member 57 to move forward to move the wedge member 44. Simultaneously with the forward movement, the hook member 43 rotates in the forward rotation direction around the rotation center shaft 42, and the hook member 43 can be quickly converted into the engaged state. In addition, it is not necessary to prepare a separate stopper for restricting the rotation in the reverse rotation direction based on the weight of the hook member 43 when the hook member 43 is in the disengaged state, and the number of parts using the wedge member 44 is reduced. Can be reduced.
[0063]
2, the telescopic cylinder 34e is contracted so that the base arm portion 34b and the protruding arm portion 34c are positioned in the retracted position with respect to the base arm portion 34a, and the front end portion of each tilting frame 32 is L. The restriction on the rotation of the shaped arm 34 is released, and the L-shaped arm 34 can be rotated around the second vehicle width direction axis 33.
[0064]
Thereafter, as indicated by a two-dot chain line in FIG. 2 and a solid line in FIG. 3, the cargo handling cylinder 35 is extended to rotate the L-shaped arm 34 rearward about the second vehicle width direction axis 33, and to the hook portion 34 d. The engaged container 2 is lowered to the ground while being guided by the guide roller 16. Then, the hook part 34d is disengaged from the engagement pin 22 of the container 2 on the ground by moving the container carrier 1 forward. Thereafter, the cargo handling cylinder 35 is contracted and the L-shaped arm 34 is rotated forward about the second vehicle width direction axis 33, and then the telescopic cylinder 34e is extended to protrude the base arm portion 34b and the base arm portion 34a. The arm part 34c is positioned at the forward movement position.
[0065]
In addition, the conversion operation of the hook member 43 will be described along a procedure when the container 2 mounted on each subchassis 13 is tilted to discharge the contents in the container 2. In this case, it is assumed that the rear wall 2d is secured by the rear wall securing device.
[0066]
First, the container 2 is disengaged by the container jump prevention device 40 in the same manner as when the container 2 mounted on each sub-chassis 13 is lowered to the ground.
[0067]
Then, as shown by the solid line in FIG. 4, the base cylinder 34b and the projecting arm 34c are positioned at the forward position with respect to the base arm 34a while holding the telescopic cylinder 34e in the extended state. As a result, the L-shaped arm 34 is restricted from rotating with respect to the front end portion of each tilting frame 32 so that the L-shaped arm 34 cannot rotate about the second vehicle width direction axis 33.
[0068]
Thereafter, as shown by a one-dot chain line in FIG. 4, the cargo handling cylinder 35 is extended to hold the L-shaped arm 34 in a substantially straight line, and the first vehicle width direction shaft 31 with respect to each sub chassis 13 together with each tilting frame 32. It is rotated backward and converted into an inclined state (state indicated by a one-dot chain line in FIG. 4) having a downward gradient of about 45 °. As a result, the container 2 loaded along each tilt frame 32 in the tilted state and on the L-shaped arm 34 held so as to extend substantially linearly with respect to each tilt frame 32 is tilted (see FIG. 4). The posture is changed to a state indicated by a one-dot chain line), the rear wall 2d is opened under the influence of its own weight and the weight of the contents, and the contents in the container 2 are discharged.
[0069]
Thereafter, as shown by a solid line in FIG. 4, the cargo handling cylinder 35 is contracted to convert each tilting frame 32 to the vehicle-mounted state while the L-shaped arm 34 is held in a substantially straight line, and then the rear wall 2d of the container 2 Is secured by a rear wall lashing device, and the hook member 43 is converted into an engaged state and the outer side of the rear lower end of each main girder 21 of the container 2 in the same manner as in the case where the container 2 is loaded on each subchassis 13. The engaging claw portion 49 is engaged with the edge.
[0070]
<Other embodiments>
The present invention is not limited to the above-described embodiment, and includes various other embodiments. For example, in the above-described embodiment, the rear portion of the container 2 is engaged or engaged by the container splash prevention device 40. However, the container may be disengaged by the container splash prevention device at a location other than the rear portion of the container, for example, the central portion.
[0071]
In the above embodiment, the container 2 is mounted on the vehicle body frame 11 by the cargo handling device 3, but the container may be mounted on the vehicle body frame by a crane or the like.
[0072]
Furthermore, in the said embodiment, the hook member 43 was mutually converted into the engagement state and the disengagement state by making the operation surface 44a of the wedge member 44 slidably contact with the 1st end surface 50 of the hook member 43. However, the wedge member is disposed on the outer side in the vehicle width direction of the hook member, and the wedge member is moved forward and backward in the vertical direction, so that the vehicle width of the wedge member with respect to the first end surface of the hook member on the outer side in the vehicle width direction is Of course, the hook member may be converted into the engaged state and the disengaged state by bringing the working surface inside in the direction into sliding contact. Further, the advancing / retreating direction of the hook member may be not only the vertical direction but also the horizontal direction (vehicle width direction) or the oblique direction. In this case, the positions of the first end surface and the second end surface of the hook member that are in sliding contact and surface contact with the operating surface and the restraining surface of the wedge member may be shifted by the amount corresponding to the direction change.
[0073]
Moreover, in the above-described embodiment, the actuator is configured by the electric motor 51, but the actuator may be configured by a hydraulic cylinder. In this case, the hydraulic cylinder is arranged so that the wedge member moves forward and backward by the vertical expansion and contraction operation, and the impact load when the container jumps up does not act on the hydraulic cylinder from the forward and backward movement direction of the wedge member. In addition, it is possible to prevent an excessive load from being applied to the hydraulic cylinder, thereby dramatically improving the durability of the hydraulic cylinder, and it is possible to reliably restrain the hook member in the engaged state.
[0074]
【The invention's effect】
As described above, according to the container splash prevention device of the container transport vehicle of the first aspect of the present invention, the hook member is automatically rotated in the reverse direction around the rotation center axis by its own weight, and the hook member is engaged with the container. On the other hand, the hook member is engaged with the hook member by rotating the hook member in the specific rotation direction around the rotation center axis while causing the operation surface to slide in contact with the first end surface of the hook member as the operation member moves forward. Further, when the hook member is in the engaged state, the operating member is further moved forward to bring the restraining surface into surface contact with the second end surface of the hook member, thereby engaging the hook member. By constraining the joint state, the impact load from the up and down direction when the container jumps up is applied to the restraint surface from the surface contact direction of the second end surface, so that the actuator is operated. Prevented thereby acts as an excessive load from direction, the durability of the actuator can be improved dramatically by eliminating the failure cause of the actuator. In addition, it is not necessary to strictly set the amount of forward movement of the operating member when the hook member is constrained to the engaged state, and the accuracy of the operating member and the actuator can be reduced to reduce the cost. Furthermore, the hook member can be automatically rotated in the reverse rotation direction only by decentering the rotation center axis of the hook member with respect to the center of gravity, and the number of parts can be reduced because the rotation urging means is unnecessary.
[0075]
According to the container bouncing prevention device for the container transport vehicle of the second aspect of the present invention, the operating member is moved forward and backward in the vertical direction, and the restraining surface is moved to the second end surface of the hook member when the hook member is in the engaged state. On the other hand, by making surface contact from the vertical direction, transmission of impact load when the container jumps up is blocked at the surface contact portion between the restraining surface of the actuating member and the second end surface of the hook member, and the actuator is subjected to excessive load due to impact load. Can be reliably eliminated.
[0076]
According to the container splash prevention device of the container transport vehicle of the invention described in claim 3, the orthogonal line perpendicular to the tangent of the operating surface of the operating member that is in sliding contact with the first end surface of the hook member is set to be greater than the rotation center axis of the hook member. By being positioned at a position that passes through the position of the center of gravity, the sliding contact direction of the operation surface with respect to the first end surface of the hook member can be expanded, and the degree of freedom of the layout of the hook member and the operation member can be increased.
[0077]
According to the container splash prevention device of the container transport vehicle of the invention described in claim 4, when the hook member is in the engaged state, the restraining surface of the actuating member and the second end surface of the hook member are extended in the advancing direction of the actuating member. Thus, by making the surface contact in a straight line in the vertical direction, the durability of the actuator can be further improved, and the hook member can be more reliably restrained from being engaged with the container.
[0078]
According to the container bouncing prevention device of the container transport vehicle of the invention described in claim 5, the first end surface of the hook member in the disengaged state is brought into contact with the operation surface of the operation member, so that the weight of the hook member is reduced. The rotation in the reverse rotation direction can be restricted, and the hook member can be promptly converted into the engaged state in accordance with the forward movement of the operating member. In addition, it is possible to reduce the number of parts that effectively use the actuating member by eliminating the stopper that holds the hook member in the disengaged state.
[0079]
According to the container bouncing prevention device of the container transport vehicle of the invention described in claim 6, by applying an electric motor as an actuator, the hook member due to oil leakage over time such as that using an actuator such as a hydraulic cylinder is used. The operation conversion is prohibited, and the hook member can be reliably restrained in the engaged state. In addition, it is only necessary to connect a flexible cord to the electric motor and supply power, and this finely modifiable cord can be laid out smoothly.
[0080]
According to the container bouncing prevention device of the container transport vehicle in the invention of claim 7, it is possible to effectively prevent the container from bouncing up by engaging the container with the L-shaped arm and the hook member at the front and rear end positions. In addition, an impact load that increases at the container rear end position when the container jumps up can be effectively suppressed by the hook member.
[Brief description of the drawings]
FIG. 1 is a plan view of a container transport vehicle according to an embodiment of the present invention.
FIG. 2 is a side view of a container transport vehicle showing a first half process of a container loading / unloading operation by a cargo handling cylinder.
FIG. 3 is a side view of the container transporter showing the latter half of the container loading / unloading operation by the cargo handling cylinder.
FIG. 4 is a side view of a container transport vehicle showing a posture changing operation between a container placement state and an inclined state by a cargo handling cylinder.
FIG. 5 is a rear view as seen from the rear of the vehicle body in a state in which the container splash prevention device is partially cut away.
FIG. 6 is a side view of the container splash prevention device as viewed from the side of the vehicle body.
7 is an enlarged explanatory view of a main part of FIG. 5 for explaining a sliding contact state between a hook member and a wedge member.
FIG. 8 is a rear view as seen from the rear of the vehicle body with the drive means partially cut away.
[Explanation of symbols]
1 Container carrier
2 containers
11 Body frame (chassis)
42 Center of rotation
43 Hook member
Around 43A
43b Second end face
44 Wedge member (actuating member)
44a Working surface
44b Restraint surface
50 First end face
51 Electric motor (actuator)
s, s' tangent
t, t 'orthogonal line

Claims (7)

車台上に搭載されたコンテナの跳ね上がりを防止するコンテナ運搬車のコンテナ跳ね上がり防止装置であって、
車体前後方向に延びる回転中心軸の回りに回転自在に連結され、上記回転中心軸回りの特定回転方向への回転により上記コンテナに対し係合するフック部材と、
このフック部材とは互いに非連結とされ、進退移動することにより上記フック部材を上記コンテナに対し係合した係合状態と、上記コンテナに対し係合を解除した係合解除状態とに相互に変換させる作動部材と、
上記作動部材を進退移動させるアクチュエータと
を備え、
上記作動部材は、
その前進移動により上記フック部材に対し摺接してそのフック部材を上記特定回転方向へ回転させるよう押圧する作動面と、
所定の前進位置に保持されることにより上記フック部材に対し上記作動部材の進退移動方向に直交する向きで互いに面接触してそのフック部材を上記係合状態に拘束する拘束面と
を備え、
上記フック部材は、
上記作動面と摺接して上記特定回転方向への押圧力を受ける第1端面と、
上記拘束面と面接触して上記回転中心軸回りの回転が阻止された状態に拘束される第2端面と
を周面に備え、
上記フック部材の回転中心軸は、
上記係合状態におけるフック部材に対しその自重に基づいて上記特定回転方向とは逆回転方向に回転させる回転モーメントが作用するよう上記フック部材の重心位置から車幅方向に偏心した位置に位置付けられるように配設されている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
A container bouncing prevention device for a container transport vehicle that prevents bouncing of a container mounted on a chassis,
A hook member rotatably connected about a rotation center axis extending in the longitudinal direction of the vehicle body and engaged with the container by rotation in a specific rotation direction around the rotation center axis;
The hook members are not connected to each other and are converted into an engaged state in which the hook member is engaged with the container and a disengaged state in which the engagement is released with respect to the container by moving forward and backward. An actuating member,
An actuator for moving the operating member forward and backward,
The operating member is
An operation surface that slides against the hook member by the forward movement and presses the hook member to rotate in the specific rotation direction;
A restraining surface that holds the hook member in the engaged state by being in surface contact with each other in a direction perpendicular to the advancing / retreating movement direction of the operating member by being held at a predetermined advance position;
The hook member is
A first end face that is in sliding contact with the operating surface and receives a pressing force in the specific rotation direction;
The peripheral surface is provided with a second end surface that is in surface contact with the constraining surface and constrained in a state in which rotation about the rotation center axis is prevented,
The center axis of rotation of the hook member is
The hook member in the engaged state is positioned at a position deviated from the center of gravity of the hook member in the vehicle width direction so that a rotational moment that rotates in the direction opposite to the specific rotation direction acts on the hook member based on its own weight. A container splash prevention device for a container transport vehicle, wherein
請求項1において、
作動部材は上下方向に進退移動するように設けられ、その前進時には作動部材が上方へ移動するように構成されている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In claim 1,
An apparatus for preventing container splashing of a container transport vehicle, wherein the operating member is provided so as to move forward and backward in the vertical direction, and the operating member moves upward when the operating member moves forward.
請求項1又は請求項2において、
フック部材と作動部材とは、
上記フック部材の第1端面に対し摺接する作動部材の作動面の接線と直交する直交線が上記フック部材の回転中心軸よりも重心側を通る位置に位置付けられる
ように配設されている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In claim 1 or claim 2,
Hook member and actuating member
The orthogonal line orthogonal to the tangent of the operating surface of the operating member that is in sliding contact with the first end surface of the hook member is disposed so as to be positioned at a position that passes through the center of gravity side of the rotation center axis of the hook member. A container splash prevention device for a container transport vehicle.
請求項3において、
作動部材の拘束面と、フック部材の第2端面とは、フック部材が係合状態にあるときにそれぞれ上記作動部材の前進方向に向かって互いに平行に鉛直方向に延びている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In claim 3,
The restraining surface of the actuating member and the second end surface of the hook member extend in the vertical direction in parallel with each other toward the advancing direction of the actuating member when the hook member is in the engaged state. A container splash prevention device for container transport vehicles.
請求項1〜請求項4のいずれかにおいて、
フック部材の第1端面は、
そのフック部材が係合解除状態にあるときに上記フック部材の自重による回転軸回りの逆回転方向への回転が規制されるように作動部材の作動面に対し当接している
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In any one of Claims 1-4,
The first end surface of the hook member is
When the hook member is in a disengaged state, the hook member is in contact with the operating surface of the operating member so as to be restricted from rotating in the reverse direction around the rotation axis due to the weight of the hook member. A container splash prevention device for container transport vehicles.
請求項1において、
アクチュエータとして、回転力により作動部材を進退移動させる電気モータが適用されている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In claim 1,
An apparatus for preventing container jumping of a container transport vehicle, wherein an electric motor for moving an operating member back and forth by a rotational force is applied as an actuator.
請求項1において、
L字アームを有する荷役装置を備えた車台に対し搭載されるコンテナがその前端位置で上記L型アームにより保持され、
フック部材はコンテナの後端位置に係合するように配設されている
ことを特徴とするコンテナ運搬車のコンテナ跳ね上がり防止装置。
In claim 1,
A container mounted on a chassis equipped with a cargo handling device having an L-shaped arm is held by the L-shaped arm at its front end position,
A container splash prevention device for a container transport vehicle, wherein the hook member is disposed so as to engage with a rear end position of the container.
JP20317998A 1998-07-17 1998-07-17 Container bouncing prevention device for container transport vehicles Expired - Fee Related JP3909958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20317998A JP3909958B2 (en) 1998-07-17 1998-07-17 Container bouncing prevention device for container transport vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20317998A JP3909958B2 (en) 1998-07-17 1998-07-17 Container bouncing prevention device for container transport vehicles

Publications (2)

Publication Number Publication Date
JP2000033832A JP2000033832A (en) 2000-02-02
JP3909958B2 true JP3909958B2 (en) 2007-04-25

Family

ID=16469777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20317998A Expired - Fee Related JP3909958B2 (en) 1998-07-17 1998-07-17 Container bouncing prevention device for container transport vehicles

Country Status (1)

Country Link
JP (1) JP3909958B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404313C (en) * 2005-03-29 2008-07-23 上海中升贸易有限公司 Automatic securing method for vehicular type container and automatic lock thereof
JP7057213B2 (en) * 2018-05-18 2022-04-19 新明和工業株式会社 Manufacturing method for specially equipped vehicles and subframes
FR3091218B1 (en) * 2018-12-27 2021-12-03 Renault Sas Locking system of an on-board goods transport system and a motor vehicle equipped with such a locking system
CN112498212B (en) * 2020-12-08 2022-10-14 中山市科力高自动化设备有限公司 Limiting mechanism

Also Published As

Publication number Publication date
JP2000033832A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP3909958B2 (en) Container bouncing prevention device for container transport vehicles
JP2007118928A (en) Container trailer
JP2007223367A (en) Container loading and unloading vehicle and container loading and unloading method
JP3866931B2 (en) Container loading and unloading vehicle
JP4723976B2 (en) Work vehicles and container handling vehicles
JP4878567B2 (en) Cargo handling vehicle
JPH07180175A (en) Attaching device of blade of bulldozer
JP2918786B2 (en) Container handling vehicle
JP4177797B2 (en) Hydraulic piping system for cargo handling vehicles
JP4397778B2 (en) Handling arm securing device for container handling vehicle
JP4191662B2 (en) Container handling vehicle
JP4723971B2 (en) Cargo handling vehicle
JP2011105214A (en) Loading space support leg for motor truck and motor truck having the same
JPS6138835Y2 (en)
JP5087351B2 (en) Cargo bed with tailgate
JP4969195B2 (en) On-board vehicle carrier
JP5027545B2 (en) Container handling vehicle
JP6600183B2 (en) Cargo handling vehicle
JP5266008B2 (en) Cargo handling vehicle
JP4287111B2 (en) Container handling vehicle
JP7323977B2 (en) vehicle packing box
JP4734200B2 (en) Cargo handling vehicle
JPH0541457B2 (en)
SU1400923A2 (en) Self-loading vehicle
JPS5927315Y2 (en) Transport vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees