JP3909454B2 - Anti-rust pigment - Google Patents
Anti-rust pigment Download PDFInfo
- Publication number
- JP3909454B2 JP3909454B2 JP2000277667A JP2000277667A JP3909454B2 JP 3909454 B2 JP3909454 B2 JP 3909454B2 JP 2000277667 A JP2000277667 A JP 2000277667A JP 2000277667 A JP2000277667 A JP 2000277667A JP 3909454 B2 JP3909454 B2 JP 3909454B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- added
- beaker
- minutes
- stirred
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
【0001】
【技術分野】
本発明は、防錆顔料、特に亜鉛、マグネシウム、アルミニウムおよびそれらの合金のような非鉄金属、またはそれら非鉄金属でメッキされた鋼材のための防錆顔料に関する。
【0002】
【従来技術と課題】
亜鉛、マグネシウム、アルミニウムおよびそれらの合金のような非鉄金属は、種々の構造物および機器の部材として、また鋼板のような鋼材のメッキに使用されている。これら非鉄金属は一般に腐食され易く、そのため防錆顔料を含んだプライマーが表面に塗装される。
【0003】
この目的に用いられていた防錆顔料はストロンチウムクロメートのようなクロム酸塩系顔料であったが、6価クロムの毒性に関する懸念から無毒性の防錆顔料の開発が要望されている。
【0004】
この要望を満たすため、本発明者らは特願平11−078803号において一定のMg/Si原子比を有する無定形ケイ酸マグネシウムの粉末よりなる亜鉛メッキ鋼板用防錆顔料を開示したが、他の非鉄金属およびそのメッキ製品にも用途を拡大し得る防錆顔料が望まれる。
【0005】
【本発明の開示】
本発明によれば、M/Si(MはCa,SrまたはBaである。)の原子比が0.025〜1.0である無定形アルカリ土類金属ケイ酸塩共沈物の粉末粒子よりなる防錆顔料が提供される。この顔料は、亜鉛、マグネシウム、アルミニウムおよびそれらの合金のような非鉄金属素材または該非鉄金属でメッキされた鋼材に対してすぐれた防食作用を発揮する。前記原子比は0.025〜0.8であることがより好ましい。
【0006】
【詳論】
前記原子比を有する、Ca,SrおよびBaの無定形ケイ酸塩は、水溶液中でアルカリ金属ケイ酸塩とそれぞれのアルカリ土類金属の水溶性塩を前記原子比になるような割合で反応させ、生成する沈澱を濾過、水洗、乾燥、粉砕することによって製造することができる。これは例えばケイ酸カリウムまたはケイ酸ナトリウムの水溶液と、Ca,SrまたはBaの塩化物または他の水溶性塩の水溶液をあらかじめ調製して置き、これらを前記原子比で混合攪拌し、生成する沈澱を濾過して分離し、これを水洗、乾燥した後粉砕することによって行なうことができる。この場合、仕込みの前記原子比が0.4以上または0.2以下の場合、仕込んだ全量のアルカリ土類金属分およびSi分が沈澱せず、母液に残っている場合もあるので、前者の場合は水酸化ナトリウムのような強塩基を加え、後者の場合は強酸、好ましくは水溶性アルカリ土類金属塩と同じアニオンを有する酸を加え、未反応成分を含水酸化物として共沈させることによって仕込み原子比に実質上一致する目的物が得られる。
【0007】
本発明の防錆顔料は、一般に水に難溶性の白色粉末であり、亜鉛およびその合金、Mgおよびその合金、アルミニウムおよびその合金を素材とする部材の防食、または亜鉛または亜鉛合金でメッキした鋼板等の防錆を目的とする塗料に配合して使用することができる。
【0008】
本発明の防錆顔料はその防錆性能においてストロンチウムクロメート系顔料にほぼ匹敵し、有毒重金属を含まず、かつ白色であるから塗料の調色が容易である点においてストロンチウムクロメート顔料より有利である。
【0009】
この顔料を用いた塗料の製造は常法によって行うことができる。この分野に使用される塗料は焼付型、すなわち官能基を有する樹脂を外部硬化剤により架橋硬化するタイプの塗料である。そのような樹脂および硬化剤の組合せは塗料工業において周知である。その例はオイルフリーポリエステル樹脂、アルキッド樹脂、アクリルポリオール樹脂またはこれらの変性樹脂をアミノプラスト樹脂(典型的にはメラミン樹脂)またはブロックイソシアネートを用いて架橋硬化する系、ビスフェノール型またはノボラック型エポキシ樹脂を酸無水物またはポリアミンまたはアミノプラス樹脂を用いて硬化する熱硬化型エポキシ系などを含む。
【0010】
塗料は、塗膜中本発明の防錆顔料を5〜40wt%,特に10〜30wt%含むように配合される。塗料は、有機溶剤、触媒、例えばメラミン樹脂硬化剤の場合は芳香族スルホン酸系酸触媒、ブロックイソシアネート硬化剤の場合は有機スズ化合物など、着色顔料、体質顔料、および慣用の塗料添加剤を含んでもよいことは勿論である。以上を含む塗料化のための技術自体は周知であり、かつ本発明の一部を構成するものではないからこれ以上の説明は不要であろう。
【0011】
【実施例】
以下の実施例は例証目的であって限定ではない。組成および配合に関して%は重量基準による。
【0012】
1.顔料の製造
<カルシウム系>
実施例1 Ca/Si=1/1=1.0
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物17.4gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液28.7gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、21.0gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.97であり、X線回折は無定型であった。
【0013】
実施例2 Ca/Si=4/5=0.8
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物13.9gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液20.3gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、18.6gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.78であり、X線回折は無定型であった。
【0014】
実施例3 Ca/Si=2/3=0.67
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物11.1gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)31.1gを入れ、水75mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液14.1gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、16.4gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.65であり、X線回折は無定型であった。
【0015】
実施例4 Ca/Si=1/3=0.33
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物7.4gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)41.5gを入れ、水100mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液1.0gを加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、17.0gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.31であり、X線回折は無定型であった。
【0016】
実施例5 Ca/Si=1/10=0.1
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物2.8gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を11.1g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、16.8gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.097であり、X線回折は無定型であった。
【0017】
実施例6 Ca/Si=1/40=0.025
1Lのビーカーに水400mLを入れ、塩化カルシウム無水物0.7gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化カルシウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を15.0g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、15.5gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ca/Si=0.024であり、X線回折は無定型であった。
【0018】
<ストロンチウム系>
実施例7 Sr/Si=1/1=1.0
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物24.8gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液28.7gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、28.4gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.98であり、X線回折は無定型であった。
【0019】
実施例8 Sr/Si=4/5=0.8
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物19.8gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液20.3gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、24.6gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.79であり、X線回折は無定型であった。
【0020】
実施例9 Sr/Si=2/3=0.67
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物15.9gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)31.1gを入れ、水75mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液14.1gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、21.2gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.65であり、X線回折は無定型であった。
【0021】
実施例10 Sr/Si=1/3=0.33
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物10.6gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)41.5gを入れ、水100mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液1.0gを加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、20.1gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.32であり、X線回折は無定型であった。
【0022】
実施例11 Sr/Si=1/10=0.1
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物2.8gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を11.1g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、18.1gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.098であり、X線回折は無定型であった。
【0023】
実施例12 Sr/Si=1/40=0.025
1Lのビーカーに水400mLを入れ、塩化ストロンチウム無水物1.0gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化ストロンチウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を15.0g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、15.8gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Sr/Si=0.023であり、X線回折は無定型であった。
【0024】
<バリウム系>
実施例13 Ba/Si=1/1=1.0
1Lのビーカーに水400mLを入れ、塩化バリウム無水物32.6gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液28.7gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、36.3gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.97であり、X線回折は無定型であった。
【0025】
実施例14 Ba/Si=4/5=0.8
1Lのビーカーに水400mLを入れ、塩化バリウム無水物26.1gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)32.4gを入れ、水75mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液20.3gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、30.9gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.78であり、X線回折は無定型であった。
【0026】
実施例15 Ba/Si=2/3=0.67
1Lのビーカーに水400mLを入れ、塩化バリウム無水物20.8gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)31.1gを入れ、水75mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液14.1gを同様に加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、26.2gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.64であり、X線回折は無定型であった。
【0027】
実施例16 Ba/Si=1/3=0.33
1Lのビーカーに水400mLを入れ、塩化バリウム無水物13.9gを溶解した。別の200mLのビーカーに3号水ガラス(SiO2 29%,Na2 O9.4%)41.5gを入れ、水100mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下し、さらに30%−NaOH水溶液1.0gを加えた。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、23.4gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.32であり、X線回折は無定型であった。
【0028】
実施例17 Ba/Si=1/10=0.1
1Lのビーカーに水400mLを入れ、塩化バリウム無水物5.3gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を11.1g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、19.3gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.096であり、X線回折は無定型であった。
【0029】
実施例18 Ba/Si=1/40=0.025
1Lのビーカーに水400mLを入れ、塩化バリウム無水物1.1gを溶解した。別の300mLのビーカーに3号水ガラス(SiO2 29%,Na2 O 9.4%)51.7gを入れ、水100mLを加えて希釈液とし、この液を上記塩化バリウム溶液に攪拌下、10分で注下した。
注下後30分攪拌し、次に200mLのビーカーに35%塩酸を15.0g入れ、水100mLを加えて希釈液としたものを、上記混合液に10分で注下した。
注下後30分攪拌し、得られた反応沈殿物を濾過・水洗し、110℃で一晩乾燥し、粉砕して、16.1gの白色粉末を得た。この白色粉末は蛍光X線分析の結果、Ba/Si=0.023であり、X線回折は無定型であった。
【0030】
2.塗料試験
試験例1:Mg合金に対する防錆試験
実施例および比較例の顔料(ブランクおよび市販防錆顔料)を用いて下表に示す配合組成の焼き付け型エポキシ樹脂系塗料を調製し、塗膜形成後、塩水噴霧試験を実施した。
【0031】
【0032】
被塗板 :Mg合金 AZ31 (日本テストパネル製)
塗装 :バーコーター
硬化条件:焼き付け温度 210℃(物温)
膜厚 :25μm
分散 :ペイントコンディショナー
【0033】
試験項目:塩水噴霧試験(5点満点)
上記の塗装条件で被塗板上に塗膜を形成することによって作成した試験板を、槽内温度を35℃に保った塩水噴霧試験器内に静置して、5%塩化ナトリウム水溶液を1kg/cm2 の圧力で40時間塗膜に噴霧し、腐食状況を観察して以下の評価基準に基づき評価した。腐食状況は平面部の錆の発生面積で評価した。
いずれの評価においても、評価点が高いほど防錆能が優れている。
【0034】
サビ発生防止効果の評価基準(ASTM D610−68(1970)に準拠)
平面部
サビ発生面積 0.1%未満 : 5点
サビ発生面積 0.1%以上〜1%未満 : 4点
サビ発生面積 1%以上〜10%未満 : 3点
サビ発生面積 10%以上〜33%未満 : 2点
サビ発生面積 33%以上 : 1点
【0035】
試験例2:アルミニウム素材に対する防錆試験
実施例および比較例(ブランクおよび市販防錆顔料)の顔料を用いて下表に示す配合組成の焼き付け型エポキシ樹脂系塗料を調製し、塗膜形成後、糸錆試験を実施した。
【0036】
【0037】
被塗板 :JIS H4000(A2024P)C(日本テストパネル製)
塗装 :バーコーター
硬化条件:焼き付け温度 210℃(物温)
膜厚 :20μm
分散 :ペイントコンディショナー
【0038】
試験項目:糸錆試験(5点満点)
上記の塗装条件で被塗板上に塗膜を形成することによって作成した試験板に、カッターナイフで被塗板表面に達するクロスカットを入れ、槽内温度を35℃に保った塩水噴霧試験器内に静置して、5%塩化ナトリウム水溶液を1kg/cm2 の圧力で24時間塗膜に噴霧した後、この試験板を水洗し、その後槽内温度40℃−湿度85%に調節した恒温恒湿機内に1000時間静置して、糸錆の発生状況を観察し、以下の評価基準に基づき評価した。なお、糸錆の発生状況はカット部からの糸錆の長さで評価した。
【0039】
糸錆の長さ 5mm未満 : 5点
糸錆の長さ 5mm以上 〜 8mm未満 : 4点
糸錆の長さ 8mm以上 〜 11mm未満 : 3点
糸錆の長さ 11mm以上 〜 14mm未満 : 2点
糸錆の長さ 14mm以上 〜 17mm未満 : 1点
糸錆の長さ 17mm以上 : 0点
【0040】
【0041】
【0042】
試験例3:亜鉛メッキ鋼板に対する防錆試験
実施例および比較例の顔料(ブランクおよび市販防錆顔料)を用いて下表に示す配合組成の焼き付け型ポリエステル樹脂系塗料を調製し、塗膜形成後、塩水噴霧試験を実施した。
【0043】
【0044】
被塗板 :亜鉛メッキ鋼板 SGCC (日本テストパネル製)
塗装 :バーコーター
硬化条件:焼き付け温度 210℃(物温)
膜厚 :10μm
分散 :ペイントコンディショナー
試験項目:塩水噴霧試験(15点満点)
【0045】
上記の塗装条件で被塗板上に塗膜を形成することによって作成した試験板に、カッターナイフで被塗板表面に達するクロスカットを入れ、槽内温度を35℃に保った塩水噴霧試験器内に静置して、5%塩化ナトリウム水溶液を1kg/cm2 の圧力で56日間塗膜に噴霧し、錆発生状況および塗膜の膨れを観察して、以下の評価基準に基づき評価した。
なお、腐食状況は平面部の膨れと錆の発生面積、並びにカット部の腐食幅で評価した。
いずれの評価においても、評価点が高いほど防錆能が優れている。
【0046】
サビ発生防止効果の評価基準(ASTM D610−68(1970)に準拠)
───────────────────────────────────
平面部
サビ発生面積 0.1%未満 : 5点
サビ発生面積 0.1%以上〜1%未満 : 4点
サビ発生面積 1%以上〜10%未満 : 3点
サビ発生面積 10%以上〜33%未満 : 2点
サビ発生面積 33%以上 : 1点
───────────────────────────────────
フクレ発生防止効果の評価基準(ASTM D714−59(1965)に準拠)
───────────────────────────────────
平面部
8F以下 : 5点
8M,6F : 4点
8MD,6M,4F : 3点
8D,6MD,4M,2F : 2点
6D,4MD以上、2M以上 : 1点
カット部、端面部
腐食幅 0〜1mm : 5点
腐食幅 1〜2mm : 4点
腐食幅 2〜3mm : 3点
腐食幅 3〜4mm : 2点
腐食幅 4〜5mm : 1点
腐食幅 5mm以上 : 0点
───────────────────────────────────
【0047】
【0048】
[0001]
【Technical field】
The present invention relates to rust preventive pigments, in particular for non-ferrous metals such as zinc, magnesium, aluminum and their alloys, or steel materials plated with these non-ferrous metals.
[0002]
[Prior art and issues]
Non-ferrous metals such as zinc, magnesium, aluminum and their alloys are used as members of various structures and equipment and for plating steel materials such as steel plates. These non-ferrous metals are generally easily corroded, so that a primer containing a rust preventive pigment is coated on the surface.
[0003]
The rust preventive pigment used for this purpose was a chromate pigment such as strontium chromate, but development of a non-toxic rust preventive pigment has been demanded due to concerns about the toxicity of hexavalent chromium.
[0004]
In order to satisfy this demand, the present inventors disclosed a rust preventive pigment for a galvanized steel sheet made of amorphous magnesium silicate powder having a certain Mg / Si atomic ratio in Japanese Patent Application No. 11-078083. Anti-corrosive pigments that can be used for non-ferrous metals and their plated products are desired.
[0005]
[Disclosure of the present invention]
According to the present invention, from the amorphous alkaline earth metal silicate coprecipitate powder particles having an atomic ratio of M / Si (M is Ca, Sr or Ba) of 0.025 to 1.0. A rust preventive pigment is provided. This pigment exhibits an excellent anticorrosive action against non-ferrous metal materials such as zinc, magnesium, aluminum and alloys thereof or steel materials plated with the non-ferrous metal. The atomic ratio is more preferably 0.025 to 0.8.
[0006]
[Details]
The amorphous silicates of Ca, Sr and Ba having the atomic ratio are obtained by reacting an alkali metal silicate and a water-soluble salt of each alkaline earth metal in an aqueous solution at a ratio so as to achieve the atomic ratio. The produced precipitate can be produced by filtering, washing with water, drying and grinding. This is because, for example, an aqueous solution of potassium silicate or sodium silicate and an aqueous solution of a chloride of Ca, Sr or Ba or other water-soluble salt are prepared in advance, and these are mixed and stirred at the above-mentioned atomic ratio to form a precipitate Can be separated by filtration, washed with water, dried and then pulverized. In this case, when the charged atomic ratio is 0.4 or more or 0.2 or less, the total amount of alkaline earth metal and Si components charged may not precipitate and may remain in the mother liquor. By adding a strong base such as sodium hydroxide, in the latter case by adding a strong acid, preferably an acid having the same anion as the water-soluble alkaline earth metal salt, and coprecipitating the unreacted components as a hydrous oxide. An object substantially matching the charged atomic ratio is obtained.
[0007]
The anticorrosive pigment of the present invention is generally a white powder hardly soluble in water, and is used for corrosion protection of zinc and its alloys, Mg and its alloys, aluminum and its alloys, or steel plates plated with zinc or zinc alloys. It can be used by blending it with a paint intended for rust prevention.
[0008]
The rust preventive pigment of the present invention is more advantageous than the strontium chromate pigment in that the rust preventive pigment is almost comparable to the strontium chromate pigment, does not contain toxic heavy metals, and is white, so that the color of the paint is easy.
[0009]
Manufacture of the coating material using this pigment can be performed by a conventional method. The paint used in this field is a baking type, that is, a paint of a type in which a resin having a functional group is crosslinked and cured by an external curing agent. Such resin and curing agent combinations are well known in the paint industry. Examples include oil-free polyester resins, alkyd resins, acrylic polyol resins, or systems in which these modified resins are crosslinked and cured using aminoplast resins (typically melamine resins) or blocked isocyanates, bisphenol type or novolac type epoxy resins. A thermosetting epoxy system that cures using an acid anhydride, polyamine, or amino plus resin is included.
[0010]
The paint is blended so that the coating contains 5 to 40 wt%, particularly 10 to 30 wt% of the rust preventive pigment of the present invention. The paint contains an organic solvent, a catalyst such as an aromatic sulfonic acid acid catalyst in the case of a melamine resin curing agent, an organic tin compound in the case of a blocked isocyanate curing agent, a coloring pigment, an extender pigment, and a conventional paint additive. Of course. Since the technology for forming a paint including the above is well known and does not constitute a part of the present invention, further explanation will be unnecessary.
[0011]
【Example】
The following examples are for purposes of illustration and not limitation. In terms of composition and formulation,% is by weight.
[0012]
1. Manufacture of pigments <Calcium-based>
Example 1 Ca / Si = 1/1 = 1.0
400 mL of water was put into a 1 L beaker, and 17.4 g of anhydrous calcium chloride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above calcium chloride solution, It poured in in 10 minutes, and also 28.7 g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight, and pulverized to obtain 21.0 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.97, and the X-ray diffraction was amorphous.
[0013]
Example 2 Ca / Si = 4/5 = 0.8
400 mL of water was put into a 1 L beaker, and 13.9 g of anhydrous calcium chloride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above calcium chloride solution, It poured in in 10 minutes, and also 20.3g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 18.6 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.78, and X-ray diffraction was amorphous.
[0014]
Example 3 Ca / Si = 2/3 = 0.67
400 mL of water was put into a 1 L beaker, and 11.1 g of calcium chloride anhydride was dissolved. In another 200 mL beaker, 31.1 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above calcium chloride solution, It poured in in 10 minutes, and also 14.1 g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 16.4 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.65, and X-ray diffraction was amorphous.
[0015]
Example 4 Ca / Si = 1/3 = 0.33
400 mL of water was put into a 1 L beaker, and 7.4 g of anhydrous calcium chloride was dissolved. In another 200 mL beaker, 41.5 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. Then, 1.0 g of 30% -NaOH aqueous solution was added.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 17.0 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.31 and X-ray diffraction was amorphous.
[0016]
Example 5 Ca / Si = 1/10 = 0.1
400 mL of water was put into a 1 L beaker, and 2.8 g of anhydrous calcium chloride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. Poured in minutes.
After pouring, the mixture was stirred for 30 minutes, and then 11.1 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 16.8 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.097, and X-ray diffraction was amorphous.
[0017]
Example 6 Ca / Si = 1/40 = 0.025
400 mL of water was put into a 1 L beaker, and 0.7 g of calcium chloride anhydride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. Poured in minutes.
After pouring, the mixture was stirred for 30 minutes, and then 15.0 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 15.5 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ca / Si = 0.024, and X-ray diffraction was amorphous.
[0018]
<Strontium-based>
Example 7 Sr / Si = 1/1 = 1.0
400 mL of water was put into a 1 L beaker, and 24.8 g of anhydrous strontium chloride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, It poured in in 10 minutes, and also 28.7 g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 28.4 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.98, and X-ray diffraction was amorphous.
[0019]
Example 8 Sr / Si = 4/5 = 0.8
400 mL of water was put into a 1 L beaker, and 19.8 g of strontium chloride anhydride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, It poured in in 10 minutes, and also 20.3g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 24.6 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.79, and X-ray diffraction was amorphous.
[0020]
Example 9 Sr / Si = 2/3 = 0.67
400 mL of water was put into a 1 L beaker, and 15.9 g of anhydrous strontium chloride was dissolved. In another 200 mL beaker, 31.1 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, It poured in in 10 minutes, and also 14.1 g of 30% -NaOH aqueous solution was added similarly.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 21.2 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.65, and X-ray diffraction was amorphous.
[0021]
Example 10 Sr / Si = 1/3 = 0.33
400 mL of water was put into a 1 L beaker, and 10.6 g of anhydrous strontium chloride was dissolved. In another 200 mL beaker, 41.5 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, It poured in in 10 minutes, and also added 1.0 g of 30% -NaOH aqueous solution.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 20.1 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.32 and X-ray diffraction was amorphous.
[0022]
Example 11 Sr / Si = 1/10 = 0.1
400 mL of water was put into a 1 L beaker, and 2.8 g of strontium chloride anhydride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, Poured in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and then 11.1 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 18.1 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.098, and X-ray diffraction was amorphous.
[0023]
Example 12 Sr / Si = 1/40 = 0.025
400 mL of water was put into a 1 L beaker and 1.0 g of anhydrous strontium chloride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. This solution was stirred into the above strontium chloride solution, Poured in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and then 15.0 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 15.8 g of white powder. As a result of fluorescent X-ray analysis, this white powder was Sr / Si = 0.023, and X-ray diffraction was amorphous.
[0024]
<Barium-based>
Example 13 Ba / Si = 1/1 = 1.0
400 mL of water was put into a 1 L beaker, and 32.6 g of barium chloride anhydride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to prepare a diluted solution. Then, 28.7 g of 30% -NaOH aqueous solution was added in the same manner.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 36.3 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.97, and the X-ray diffraction was amorphous.
[0025]
Example 14 Ba / Si = 4/5 = 0.8
400 mL of water was put into a 1 L beaker, and 26.1 g of barium chloride anhydride was dissolved. In another 200 mL beaker, 32.4 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to prepare a diluted solution. Then, 20.3 g of 30% -NaOH aqueous solution was added in the same manner.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight, and pulverized to obtain 30.9 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.78, and X-ray diffraction was amorphous.
[0026]
Example 15 Ba / Si = 2/3 = 0.67
400 mL of water was put into a 1 L beaker, and 20.8 g of barium chloride anhydride was dissolved. In another 200 mL beaker, 31.1 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 75 mL of water was added to make a diluted solution. This solution was added to the above barium chloride solution with stirring. Then, 14.1 g of 30% -NaOH aqueous solution was added in the same manner.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 26.2 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.64, and X-ray diffraction was amorphous.
[0027]
Example 16 Ba / Si = 1/3 = 0.33
400 mL of water was put into a 1 L beaker, and 13.9 g of barium chloride anhydride was dissolved. In another 200 mL beaker, 41.5 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added and diluted with 100 mL of water. Then, 1.0 g of 30% -NaOH aqueous solution was added.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 23.4 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.32. The X-ray diffraction was amorphous.
[0028]
Example 17 Ba / Si = 1/10 = 0.1
400 mL of water was put into a 1 L beaker, and 5.3 g of barium chloride anhydride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. This solution was stirred into the above barium chloride solution, Poured in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and then 11.1 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered and washed with water, dried at 110 ° C. overnight and pulverized to obtain 19.3 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.096, and X-ray diffraction was amorphous.
[0029]
Example 18 Ba / Si = 1/40 = 0.025
400 mL of water was put into a 1 L beaker, and 1.1 g of barium chloride anhydride was dissolved. In another 300 mL beaker, 51.7 g of No. 3 water glass (SiO 2 29%, Na 2 O 9.4%) was added, and 100 mL of water was added to make a diluted solution. This solution was stirred into the above barium chloride solution, Poured in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and then 15.0 g of 35% hydrochloric acid was put into a 200 mL beaker, and 100 mL of water was added to prepare a diluted solution, which was poured into the above mixed solution in 10 minutes.
After pouring, the mixture was stirred for 30 minutes, and the resulting reaction precipitate was filtered, washed with water, dried at 110 ° C. overnight and pulverized to obtain 16.1 g of a white powder. As a result of fluorescent X-ray analysis, this white powder was Ba / Si = 0.023, and X-ray diffraction was amorphous.
[0030]
2. Paint Test Test Example 1: Anti-corrosion test for Mg alloy Using the pigments of the examples and comparative examples (blank and commercially available anti-corrosion pigments), a baking type epoxy resin paint having the composition shown in the following table was prepared, and a coating film was formed. Later, a salt spray test was performed.
[0031]
[0032]
Substrate: Mg alloy AZ31 (Nippon Test Panel)
Coating: Bar coater curing conditions: Baking temperature 210 ° C (material temperature)
Film thickness: 25 μm
Dispersion: Paint conditioner [0033]
Test item: Salt spray test (maximum 5 points)
The test plate prepared by forming a coating film on the coated plate under the above-described coating conditions was left in a salt spray tester maintained at 35 ° C., and 5% sodium chloride aqueous solution was added at 1 kg / It sprayed on the coating film for 40 hours with the pressure of cm < 2 >, the corrosion condition was observed, and it evaluated based on the following evaluation criteria. The corrosion situation was evaluated by the area where rust was generated on the flat surface.
In any evaluation, the higher the evaluation score, the better the rust prevention ability.
[0034]
Evaluation standard of rust prevention effect (according to ASTM D610-68 (1970))
Flat surface rust generation area less than 0.1%: 5-point rust generation area 0.1% to less than 1%: 4-point rust generation area 1% to less than 10%: 3-point rust generation area 10% to 33% Less than: 2 points Rust generation area 33% or more: 1 point
Test Example 2: Anti-corrosion test for aluminum material Using the pigments of Examples and Comparative Examples (blanks and commercially available anti-corrosion pigments), a baking type epoxy resin paint having the composition shown in the following table was prepared, and after coating film formation, A yarn rust test was conducted.
[0036]
[0037]
Substrate: JIS H4000 (A2024P) C (made by Nippon Test Panel)
Coating: Bar coater curing conditions: Baking temperature 210 ° C (material temperature)
Film thickness: 20 μm
Dispersion: Paint conditioner [0038]
Test item: Yarn rust test (maximum 5 points)
In a salt spray tester in which a crosscut reaching the surface of the coated plate is put with a cutter knife into the test plate created by forming a coating film on the coated plate under the above coating conditions, and the temperature in the tank is maintained at 35 ° C. After standing and spraying a 5% aqueous solution of sodium chloride on the coating film at a pressure of 1 kg / cm 2 for 24 hours, this test plate was washed with water, and then adjusted to a constant temperature and humidity of 40 ° C.-85% humidity. The sample was left in the machine for 1000 hours, the state of occurrence of yarn rust was observed, and evaluation was performed based on the following evaluation criteria. The occurrence of yarn rust was evaluated by the length of yarn rust from the cut part.
[0039]
Length of thread rust less than 5 mm: Length of 5-point thread rust 5 mm or more to less than 8 mm: Length of 4-point thread rust 8 mm or more to less than 11 mm: Length of 3-point thread rust 11 mm or more to less than 14 mm: 2-point thread Rust length 14 mm or more to less than 17 mm: 1 point thread rust length 17 mm or more: 0 point
[0041]
[0042]
Test Example 3: Anti-corrosion test for galvanized steel sheet Using the pigments of the examples and comparative examples (blanks and commercially available anti-corrosion pigments), a baked polyester resin paint having the composition shown in the table below was prepared, and after the coating film was formed A salt spray test was conducted.
[0043]
[0044]
Coating plate: Galvanized steel sheet SGCC (Nippon Test Panel)
Coating: Bar coater curing conditions: Baking temperature 210 ° C (material temperature)
Film thickness: 10 μm
Dispersion: Paint conditioner Test item: Salt spray test (15 points maximum)
[0045]
In a salt spray tester in which a crosscut reaching the surface of the coated plate is put with a cutter knife into the test plate created by forming a coating film on the coated plate under the above coating conditions, and the temperature in the tank is maintained at 35 ° C. The film was allowed to stand and sprayed with a 5% aqueous sodium chloride solution at a pressure of 1 kg / cm 2 on the coating film for 56 days, and rust generation and swelling of the coating film were observed and evaluated based on the following evaluation criteria.
In addition, the corrosion state was evaluated by the swelling area of the flat part and the area where rust was generated, and the corrosion width of the cut part.
In any evaluation, the higher the evaluation score, the better the rust prevention ability.
[0046]
Evaluation standard of rust prevention effect (according to ASTM D610-68 (1970))
───────────────────────────────────
Flat surface rust generation area less than 0.1%: 5-point rust generation area 0.1% to less than 1%: 4-point rust generation area 1% to less than 10%: 3-point rust generation area 10% to 33% Less than: 2 point rust generation area 33% or more: 1 point ────────────────────────────────────
Evaluation criteria for the effect of preventing blisters (according to ASTM D714-59 (1965))
───────────────────────────────────
Flat part 8F or less: 5 points 8M, 6F: 4 points 8MD, 6M, 4F: 3 points 8D, 6MD, 4M, 2F: 2 points 6D, 4MD or more, 2M or more: 1 point cut part, end face corrosion width 0 1 mm: 5-point corrosion width 1-2 mm: 4-point corrosion width 2-3 mm: 3-point corrosion width 3-4 mm: 2-point corrosion width 4-5 mm: 1-point corrosion width 5 mm or more: 0 points ─────── ────────────────────────────
[0047]
[0048]
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000277667A JP3909454B2 (en) | 2000-09-13 | 2000-09-13 | Anti-rust pigment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000277667A JP3909454B2 (en) | 2000-09-13 | 2000-09-13 | Anti-rust pigment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002088272A JP2002088272A (en) | 2002-03-27 |
JP3909454B2 true JP3909454B2 (en) | 2007-04-25 |
Family
ID=18762956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000277667A Expired - Lifetime JP3909454B2 (en) | 2000-09-13 | 2000-09-13 | Anti-rust pigment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3909454B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005036630B3 (en) * | 2005-08-04 | 2006-09-14 | Basf Coatings Ag | Chrome-free and anti-corrosive pigment mixture, useful e.g. for producing hardening materials, comprises calcium hydrogen phosphate pigment, modified calcium silicon dioxide, calcium boron silicate pigment and zinc salt of nitro compound |
CN107746657A (en) * | 2017-11-08 | 2018-03-02 | 常熟市晓轶金属配件厂 | A kind of mining porous nozzle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06248473A (en) * | 1993-02-26 | 1994-09-06 | Mitsubishi Heavy Ind Ltd | Corrosion preventing method for hot-dip aluminized steel |
JPH08283619A (en) * | 1995-04-14 | 1996-10-29 | Teika Corp | Rust proof pigment composition and rust proof coating containing the same |
JP4766727B2 (en) * | 1999-12-24 | 2011-09-07 | 関西ペイント株式会社 | COATING COMPOSITION AND COATED METAL PLATE USING THE COMPOSITION |
-
2000
- 2000-09-13 JP JP2000277667A patent/JP3909454B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002088272A (en) | 2002-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE45612E1 (en) | Corrosion inhibitor composition applicable for aluminum and steel protection and procedure | |
US5158610A (en) | Anticorrosive pigments on the basis of tertiary alkaline-earth aluminum phosphates and a process for the production thereof | |
RU2130010C1 (en) | Alkaline-earth metal salts, transition metal salts or transition metal complexes of ketocarboxylic acids, method of preparation thereof, composition for coatings and method for protection of corroding substrate | |
US5482544A (en) | Rust-preventive composition | |
US5948147A (en) | Synergistic pigment grade corrosion inhibitor compositions and procedures | |
EP0096526B1 (en) | Anti-corrosive paint | |
JP2986962B2 (en) | Rust preventive pigment composition and paint containing the same | |
JP3909454B2 (en) | Anti-rust pigment | |
EP2163589B1 (en) | Anticorrosive pigment composition and water-based anticorrosive coating material containing the same | |
EP0988347B1 (en) | Anti-corrosive pigments | |
CA1110441A (en) | Corrosion inhibitive pigment | |
EP0308820B1 (en) | Zinc, lead, and/or calciumsalts of carboxylic acids and their use as anticorrosive agents | |
JP2004520265A (en) | Preparation of chromium (III) organic complexes, their use as corrosion inhibitors and anticorrosion. coating | |
JP3978634B2 (en) | Rust prevention pigment for galvanized steel sheet | |
JP5144936B2 (en) | Rust preventive pigment composition for molten aluminum zinc alloy plated steel sheet | |
JP4210943B2 (en) | Water-based anti-corrosion paint | |
JP3937211B2 (en) | Rust prevention pigment for non-ferrous light metals | |
JP2006097023A (en) | Rust preventive pigment containing composite hydroxide of calcium and specific metal | |
JP2003113482A (en) | Rust preventive pigment composition for water paint | |
JPH0657168A (en) | Zinc calcium phosphite pigment, and coating material containing the same | |
KR910003848B1 (en) | Anti-corrosive paint | |
JP3432297B2 (en) | White rust preventive pigment and method for producing the same | |
JP3261538B2 (en) | Zinc phosphate double salt rust preventive pigment, method for producing the same, and rust preventive paint containing the same | |
JP3131492B2 (en) | Method for producing white rust preventive pigment composition | |
JP4890970B2 (en) | Rust preventive pigment composition for galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3909454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140202 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |