JP3909412B2 - Reactor pressure vessel bottom drain piping inspection method and inspection device - Google Patents

Reactor pressure vessel bottom drain piping inspection method and inspection device Download PDF

Info

Publication number
JP3909412B2
JP3909412B2 JP2002372610A JP2002372610A JP3909412B2 JP 3909412 B2 JP3909412 B2 JP 3909412B2 JP 2002372610 A JP2002372610 A JP 2002372610A JP 2002372610 A JP2002372610 A JP 2002372610A JP 3909412 B2 JP3909412 B2 JP 3909412B2
Authority
JP
Japan
Prior art keywords
rod
radiation
bottom drain
inspection
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002372610A
Other languages
Japanese (ja)
Other versions
JP2004205280A (en
Inventor
武 菊池
真樹子 宮内
眞一 久恒
久 小又
治 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2002372610A priority Critical patent/JP3909412B2/en
Publication of JP2004205280A publication Critical patent/JP2004205280A/en
Application granted granted Critical
Publication of JP3909412B2 publication Critical patent/JP3909412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所における配管点検方法に係り、特にRPV下部のペデスタル内におけるRPVボトムドレン配管を点検する方法と装置に関するものである。
【0002】
【従来の技術】
原子炉圧力容器(RPV:Reactor Pressure Vessel)の下側に位置するペデスタル内は、RPVボトムドレン配管周囲の制御棒駆動装置(CRD:Control Rod Drive System)や、中性子計測モニタリング装置(ICM:In Core Monitoring System)が林立している。
【0003】
このようなペデスタル内における配管点検方法の例としては、専用レールを用いた小型走行車両による放射線透過試験(RT:Rediographic Testing)装置がある。(特許文献1参照)。
【0004】
【特許文献1】
特願平10−338806号公報
【0005】
【発明が解決しようとする課題】
上記従来技術を、原子力発電所のペデスタル内のRPVボトムドレン配管の点検に適用すると、以下のような問題を生じる。
【0006】
ペデスタル内には、RPVに固定された数百個のCRDハウジングが林立しており、その間隔は約145mmと狭隘である。また、各CRDハウジングの下にはCRD操作用ケーブルが接続されており、ペデスタルの底にはCRD自動交換器がある。
【0007】
これらを接続するケーブル同士の隙間は約300mmしかなく、点検対象となるRPVボトムドレン配管の曲り部(エルボ部)は、ペデスタルの壁から約2m離れた中心部にある。さらに、炉水中の堆積物の影響により、周囲の雰囲気線量が高いため、ペデスタル内(特に中心部)での作業は、長時間行うことが困難である。
【0008】
このように、ペデスタル内のRPVボトムドレン配管は、人間が近づいて直接点検することは極めて困難な環境にある。上記特許文献1に記載の従来技術を適用する場合、RPV下部ペデスタル内に、走行用レールを設置する作業が必要となり、このレール設置スペース、および小型走行車両の走行スペースが確保できない場合は点検が不可能になる。
【0009】
例えば、CRDケーシングサポートがRPVボトムドレン配管周辺に設置されている場合や、RPVドレン配管を保温するための保温材の厚さによっては、レール設置が不可能になる。すなわち、従来の技術ではRPVボトムドレンの信頼性の高い点検は困難であった。
【0010】
本発明の目的は、原子力発電所のペデスタル内のRPVボトムドレン配管を、作業者の被曝低減を図りつつ、狭隘部にある配管を確実にかつ正確に点検できる配管点検方法、および配管点検装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の原子炉圧力容器ボトムドレン配管点検方法は、原子炉圧力容器の下側に位置するペデスタル内のボトムドレン配管を点検する際に、先端部に放射線照射口を有する第1の長さ調節可能なロッドの長さを調節して、該放射線照射口を点検対象部の一方の側に設置するとともに、先端部に点検対象部の放射線映像を写すイメージング部材を装着した第2の長さ調節可能なロッドの長さを調節して、該イメージング部材を前記点検対象部の放射線を受ける側に設置し、前記放射線照射口から照射された放射線による点検対象部の映像を前記イメージング部材に写して点検することを特徴とするものである。
【0012】
本発明によれば、ロッドの長さが調節可能なので、狭隘なペデスタル内にロッドを持ち込むことがてき、ペデスタル周辺部でロッドを伸ばして点検対象部に放射線源やイメージング部材を設置できる。そのため、従来のように、ペデスタル内に小型走行車両走行用レールの設置は不要であり、これらのロッドが挿入可能なスペースさえ確保できれば、RPVボトムドレン配管の撮影が可能となる。
【0013】
【発明の実施の形態】
本発明の実施形態の概要は、原子力発電所の狭隘なペデスタル内のRPVボトムドレン配管の点検撮影に際し、分割もしくは伸縮自在な短い中空ロッドを現場で伸ばして先端部を点検対象部に設置し、放射線源をケーブル先端に装着してロッド中空部を通してロッド先端部に移送する。
【0014】
点検対象部の放射線を受ける側には、フィルム等のイメージング部材を先端に装着したロッドを同様に設置する。放射線撮影後は線源を引き抜き、ロッドを縮めて撤収する。これにより、周囲にCRDやICMのハウジングが林立している狭隘な環境下で、安全かつ確実な点検ができる。
【0015】
まず、本発明で点検対象となるペデスタル内のドレン配管が設けられている環境について説明する。図2は、原子炉格納容器(PCV:Primary Containment Vessel)内の概略縦断面図、図3はペデスタル内の概略断面図である。図2に示すように、ペデスタル2はPCV内の円筒状のRPV1の下側に位置する。
【0016】
図3のa部詳細図およびA−A矢視図をそれぞれ図4〜図5に示す。ペデスタル2は、例えば直径約5.6m、高さ約4.5mの円柱状の空間である。ペデスタル2内にはRPV1に固定された数百個のCRDハウジング3が林立しており、例えばその間隔は約145mmと狭い。各CRDハウジング3の下にはCRD操作用のケーブル5が接続されている。
【0017】
RPV1の中心部の底(炉底部)には、RPV1内の炉水を排出するためのRPVボトムドレン配管4が接続されている。RPVボトムドレン配管4は、炉底部から鉛直下方に伸び、僅かに下がった位置でエルボソケット6を介して水平方向に向きを変え(図4参照)、ペデスタル2の壁側方向に伸びている。
【0018】
例えば、RPVボトムドレン配管4の直径は約60mm、エルボソケット6の直径は76mm程度である。RPVボトムドレン配管4の水平方向に伸びている部分(水平部)は、保温材7で覆われている。
【0019】
また、例えばRPVボトムドレン配管4が通過しているスペースの高さは、ペデスタル2の床より約300mmで、点検対象となるRPVボトムドレン配管4のエルボ部6はペデスタル2の側壁から約2m離れた中心部に位置する。
【0020】
本発明では、上記の環境下にあるRPVボトムドレン配管をRT撮影により点検を行うこととしている。RTとは、放射線の透過像を直接フィルムに撮影する非破壊検査である。
【0021】
具体的には、線源から放出された放射線を対象物に照射すると、放射線の一部は反射するが、一部は対象物を透過して反対側にあるフィルムに映し出される。放射線は対象物の材質の違いによって反射率や透過率が異なる性質を持っているので、フィルムに対象物の透過像が映し出される。この透過像に基づいて、欠陥の有無、対象物の厚さを求めることが可能である。
【0022】
以上を踏まえ、以下、本発明の実施形態を図面を用いて説明する。図1は、本発明の配管点検方法を、原子力発電所におけるペデスタル内のRPVボトムドレン配管に適用した一実施形態を示すフローチャートである。
【0023】
初めに、図1のステップS1で、原子炉を停止する。ステップS2では、RPV1を解放し、RPV1内の燃料を取り出して、RPV1に隣接する燃料プールに移動する。
【0024】
ステップS3では、ペデスタル2内で、放射線照射口13(図6参照)、およびイメージング部材9が、点検対象のRPVボトムドレン配管4に届くように、装置移送ロッド8、10を延長させる。ロッドの長さは、ペデスタル2内の足場から、RPVボトムドレン配管4に容易に届く長さとし、長さ調節が可能なものとする。
【0025】
次にステップS4で、ロッド取付け具12をCRDハウジング3およびICMハウジング14へ固定し、これを軸として照射口13が先端に装着されている放射線移送ロッド8と、イメージング部材9が先端に装着されているイメージング部材移送ロッド10を移動させることにより、放射線照射口13とイメージング部材9とがRPVボトムドレン配管4の点検対象箇所を挟み込むようにして、それぞれのロッドを設置する。
【0026】
なお、ペデスタル2内は、作業員が移動できる分のスペースが周方向に存在しており、このスペースを用いれば放射線移送ロッド8およびイメージング部材移送ロッド10を所定の場所に持込むことは可能である。
【0027】
ステップS5では、それぞれのロッドに取り付けたエアー注入袋15にエアーを注入し、エアー袋を膨張させる。この膨張したエアー袋15が、周囲に林立しているCRDハウジング3やICMハウジング14に接触し、これによってロッドがCRDハウジング3とICMハウジング14に固定され、新たな固定部材を設ける必要がない。
【0028】
さらにステップ6において、線源移送ケーブル11の先端部に放射線源を取付ける。これを放射線移送ロッド8内に挿入し、線源を照射口まで移送する。これは、作業員が線源からの被ばくを低減させるために、ロッドを固定してから線源を扱うもので、予めロッド先端部に十分な遮蔽装置を設け、点検時のみ放射線を照射する仕組としてもよい。以上で、ステップS7の配管点検が可能な状態となる。
【0029】
ロッド型RPVボトムドレン検査装置例を、図6および図7に示す。図7は図6のB−B矢視図である。本RPVボトムドレン配管検査装置は、中空の放射線移送ロッド8中を、放射線の線源が線源移送ケーブル11によって移送され、放射線移送ロッド8の先端部(照射口13)から放射線を照射し、点検対象の反対側に設置したプレート状のイメージング部材9に、検査対象部が撮影されるRT撮影装置である。
【0030】
放射線源やイメージング部材が、軸となるロッドを伝わって目的の位置まで辿り着くため、CRDハウジング3、ICMハウジング14や、その他のものが密集し、作業員の接近が困難なRPVボトムドレン配管4の遠隔RT撮影が可能となる。
【0031】
RT法を用いた点検装置の概略構成および基本動作の一例を図6〜図7を用いて説明する。この点検装置は、イメージング部材9、イメージング部材移送ロッド10、放射線移送ロッド8、線源移送ケーブル11、CRDハウジング取付け具12、放射線照射口13、制御装置などを、RT撮影装置として備えている。制御装置はペデスタル内側壁に沿った足場に設置するが、図では省略している。
【0032】
次に、放射線移送ロッド先端部13(放射線照射口)に移送された線源から放射線を照射し、RPVボトムドレン配管4のエルボ部6の検査を行う方法を説明する。線源から照射された放射線は、点検対象のRPVボトムドレン配管のエルボ部6を透過して、反対側に設けたイメージング部材9に映し出される。
【0033】
この際、図8の配置図に示すとおり、線源とエルボ部(点検対象物)の距離をある程度以上確保する必要がある。これは、線源と点検対象物の距離が近いと、点状の線源から放出された放射線が十分広がる前に点検対象物に当たり、点検範囲が小さくなってしまう。これを防ぐために、RPVボトムドレン配管4からある程度の距離を確保して放射線を照射することにより、RPVボトムドレン配管4を点検することができる。
【0034】
また、1回の照射で必要箇所が撮影される場合(図9参照)はよいが、それでは不足部分が生じる場合は、2回(図10参照)あるいは数回に分けて、撮影箇所をずらして撮影する。
【0035】
上記撮影の終了後、ステップS8で線源を回収し、エアー注入袋15のエアーを抜き、CRDハウジング取付け具12を外す。本工程は、ステップS9、S10に相当する。
【0036】
次にステップS11で、イメージング部材移送ロッド10、および放射線移送ロッド8を縮小させ、回収する。点検装置の回収後にイメージング部材9の現像処理(画像処理)を行い、配管内部の状態を確認する。
【0037】
次に、ステップS12で燃料を燃料プールからRPV1内に復旧し、ステップS13で原子炉を再起動する。以上のステップS1〜S13により、一連の点検作業は完了となる。
【0038】
また、RPV1内から燃料を取り出した状態で、ペデスタル2内の周辺部(側壁付近)において、放射線移送ロッド8、およびイメージング部材移送ロッド10の取付等の一連の作業を行うことにより、作業員の被曝低減を図ることができる。
【0039】
以上のような方法を用いることにより、これまで点検が困難とされていたペデスタル2内のドレン配管4の点検が可能となり、配管の予防保全に大いに貢献できる。
【0040】
【発明の効果】
本発明によれば、原子力発電所のペデスタル内の狭隘部にあるRPVボトムドレン配管を、作業者の被曝低減を図りつつ、確実にかつ正確に点検することができる。
【図面の簡単な説明】
【図1】本発明の配管点検方法を原子力発電所におけるペデスタル内のRPVボトムドレン配管に適用した一実施形態を示すフローチャート。
【図2】PCV内の概略縦断面図。
【図3】ペデスタル内の概略縦断面図。
【図4】図3のa部詳細図。
【図5】図3のA−A矢視図。
【図6】RT法を用いた点検装置の概略構成図。
【図7】図6のB−B矢視図。
【図8】RPVボトムドレン管RT撮影における放射線照射部の装置配置図。
【図9】RT撮影対象部の撮影要領(1枚撮り)を示す図。
【図10】RT撮影対象部の撮影要領(2枚撮り)を示す図。
【符号の説明】
1 RPV
2 ペデスタル
3 CRDハウジング
4 RPVボトムドレン配管
5 CRD操作用ケーブル
6 エルボソケット
7 保温材
8 放射線移送ロッド
9 イメージング部材
10 イメージング部材移送ロッド
11 線源移送ケーブル
12 CRDハウジング取付け具
13 線源照射口
14 ICMハウジング
15 エアー注入袋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe inspection method in a nuclear power plant, and more particularly to a method and apparatus for inspecting an RPV bottom drain pipe in a pedestal below an RPV.
[0002]
[Prior art]
Inside the pedestal located below the reactor pressure vessel (RPV: Reactor Pressure Vessel), there is a control rod drive device (CRD: Control Rod Drive System) around the RPV bottom drain pipe, and a neutron measurement monitoring device (ICM: In Core). A monitoring system is being established.
[0003]
As an example of such a pipe inspection method in the pedestal, there is a radiographic testing (RT) device using a small traveling vehicle using a dedicated rail. (See Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application No. 10-338806
[Problems to be solved by the invention]
When the above conventional technology is applied to inspection of RPV bottom drain piping in a pedestal of a nuclear power plant, the following problems occur.
[0006]
Within the pedestal, several hundred CRD housings fixed to the RPV stand, and the distance between them is as narrow as about 145 mm. A CRD operation cable is connected under each CRD housing, and a CRD automatic exchanger is provided at the bottom of the pedestal.
[0007]
The gap between the cables connecting them is only about 300 mm, and the bent portion (elbow portion) of the RPV bottom drain pipe to be inspected is in the center portion about 2 m away from the pedestal wall. Furthermore, due to the influence of the deposits in the reactor water, the ambient atmospheric dose is high, so it is difficult to perform work in the pedestal (particularly in the center) for a long time.
[0008]
Thus, the RPV bottom drain piping in the pedestal is in an extremely difficult environment for humans to approach and check directly. When applying the prior art described in Patent Document 1 above, it is necessary to install a traveling rail in the RPV lower pedestal. If this rail installation space and a traveling space for a small traveling vehicle cannot be secured, an inspection is required. It becomes impossible.
[0009]
For example, when the CRD casing support is installed around the RPV bottom drain pipe, or depending on the thickness of the heat insulating material for keeping the RPV drain pipe warm, the rail installation becomes impossible. In other words, it has been difficult to check the RPV bottom drain with high reliability using the conventional technology.
[0010]
An object of the present invention is to provide a pipe inspection method and a pipe inspection apparatus capable of reliably and accurately inspecting a pipe in a narrow part while reducing the exposure of an RPV bottom drain pipe in a pedestal of a nuclear power plant. It is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the reactor pressure vessel bottom drain piping inspection method according to the present invention provides a radiation irradiation port at the tip when inspecting the bottom drain piping in the pedestal located below the reactor pressure vessel. And adjusting the length of the first length-adjustable rod having the radiation irradiation port on one side of the inspection target portion, and an imaging member that projects a radiographic image of the inspection target portion on the tip portion Adjusting the length of the mounted second length-adjustable rod, installing the imaging member on the radiation receiving side of the inspection target part, and the inspection target part by the radiation irradiated from the radiation irradiation port The image is inspected by copying the image onto the imaging member.
[0012]
According to the present invention, since the length of the rod can be adjusted, the rod can be brought into a narrow pedestal. The rod can be extended around the pedestal and a radiation source or an imaging member can be installed in the inspection target portion. Therefore, unlike the conventional case, there is no need to install a small traveling vehicle traveling rail in the pedestal, and it is possible to photograph the RPV bottom drain pipe as long as a space in which these rods can be inserted is secured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The outline of the embodiment of the present invention is that when inspecting and shooting an RPV bottom drain pipe in a narrow pedestal of a nuclear power plant, a short hollow rod that can be divided or stretched is extended on-site, and a tip part is installed in an inspection target part. A radiation source is attached to the tip of the cable and transferred to the tip of the rod through the hollow portion of the rod.
[0014]
A rod having an imaging member such as a film attached to the tip is similarly installed on the side of the inspection target that receives radiation. After radiation imaging, pull out the radiation source, shrink the rod, and withdraw. As a result, safe and reliable inspection can be performed in a narrow environment where CRD and ICM housings are forested around.
[0015]
First, an environment in which a drain pipe in a pedestal to be inspected in the present invention is provided will be described. FIG. 2 is a schematic longitudinal cross-sectional view in a primary containment vessel (PCV) and FIG. 3 is a schematic cross-sectional view in a pedestal. As shown in FIG. 2, the pedestal 2 is located below the cylindrical RPV 1 in the PCV.
[0016]
Detailed view of a part of FIG. 3 and AA arrow view are shown in FIGS. The pedestal 2 is a cylindrical space having a diameter of about 5.6 m and a height of about 4.5 m, for example. In the pedestal 2, several hundreds of CRD housings 3 fixed to the RPV 1 stand, and for example, the interval is as narrow as about 145 mm. A cable 5 for CRD operation is connected under each CRD housing 3.
[0017]
An RPV bottom drain pipe 4 for discharging the reactor water in the RPV 1 is connected to the bottom (furnace bottom) of the central portion of the RPV 1. The RPV bottom drain pipe 4 extends vertically downward from the furnace bottom, changes its direction in the horizontal direction via the elbow socket 6 at a slightly lowered position (see FIG. 4), and extends in the direction of the wall side of the pedestal 2.
[0018]
For example, the diameter of the RPV bottom drain pipe 4 is about 60 mm, and the diameter of the elbow socket 6 is about 76 mm. A portion (horizontal portion) extending in the horizontal direction of the RPV bottom drain pipe 4 is covered with a heat insulating material 7.
[0019]
For example, the height of the space through which the RPV bottom drain pipe 4 passes is about 300 mm from the floor of the pedestal 2, and the elbow portion 6 of the RPV bottom drain pipe 4 to be inspected is about 2 m away from the side wall of the pedestal 2. Located in the center.
[0020]
In the present invention, RPV bottom drain piping under the above environment is inspected by RT imaging. RT is a nondestructive inspection in which a transmission image of radiation is directly photographed on a film.
[0021]
Specifically, when the object is irradiated with radiation emitted from the radiation source, a part of the radiation is reflected, but a part of the radiation is transmitted through the object and reflected on the film on the opposite side. Since radiation has the property that the reflectance and transmittance differ depending on the material of the object, a transmission image of the object is displayed on the film. Based on this transmission image, it is possible to determine the presence or absence of defects and the thickness of the object.
[0022]
Based on the above, embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an embodiment in which the pipe inspection method of the present invention is applied to an RPV bottom drain pipe in a pedestal at a nuclear power plant.
[0023]
First, the reactor is stopped in step S1 of FIG. In step S2, RPV1 is released, fuel in RPV1 is taken out, and moved to a fuel pool adjacent to RPV1.
[0024]
In step S3, the apparatus transfer rods 8 and 10 are extended in the pedestal 2 so that the radiation irradiation port 13 (see FIG. 6) and the imaging member 9 reach the RPV bottom drain pipe 4 to be inspected. The length of the rod is a length that can easily reach the RPV bottom drain pipe 4 from the scaffold in the pedestal 2, and the length can be adjusted.
[0025]
Next, in step S4, the rod mounting tool 12 is fixed to the CRD housing 3 and the ICM housing 14, and the radiation transfer rod 8 having the irradiation port 13 attached to the tip thereof as an axis and the imaging member 9 attached to the tip. By moving the imaging member transfer rod 10 being moved, the respective radiation rods 13 and the imaging member 9 are placed so that the inspection target portion of the RPV bottom drain pipe 4 is sandwiched therebetween.
[0026]
In the pedestal 2, there is a space in the circumferential direction in which an operator can move. By using this space, the radiation transfer rod 8 and the imaging member transfer rod 10 can be brought into a predetermined place. is there.
[0027]
In step S5, air is injected into the air injection bag 15 attached to each rod to inflate the air bag. The inflated air bag 15 comes into contact with the CRD housing 3 and the ICM housing 14 standing in the vicinity, whereby the rod is fixed to the CRD housing 3 and the ICM housing 14, and there is no need to provide a new fixing member.
[0028]
Further, in step 6, a radiation source is attached to the distal end portion of the source transfer cable 11. This is inserted into the radiation transfer rod 8, and the radiation source is transferred to the irradiation port. This is to handle the radiation source after fixing the rod in order to reduce the exposure from the radiation source by the worker. It is good. Thus, the pipe inspection in step S7 is possible.
[0029]
An example of a rod-type RPV bottom drain inspection apparatus is shown in FIGS. FIG. 7 is a BB arrow view of FIG. In this RPV bottom drain pipe inspection apparatus, a radiation source is transferred by a radiation source transfer cable 11 in a hollow radiation transfer rod 8, and the radiation is irradiated from the tip (irradiation port 13) of the radiation transfer rod 8. This is an RT imaging apparatus in which an inspection object part is imaged on a plate-like imaging member 9 installed on the opposite side of the inspection object.
[0030]
Since the radiation source and the imaging member reach the target position through the shaft rod, the CRD housing 3, the ICM housing 14, and others are closely packed, and the RPV bottom drain pipe 4 that is difficult for workers to approach. Remote RT imaging is possible.
[0031]
An example of the schematic configuration and basic operation of the inspection apparatus using the RT method will be described with reference to FIGS. This inspection device includes an imaging member 9, an imaging member transfer rod 10, a radiation transfer rod 8, a radiation source transfer cable 11, a CRD housing fixture 12, a radiation irradiation port 13, a control device, and the like as an RT imaging device. The control device is installed on a scaffold along the inner wall of the pedestal, but is not shown in the figure.
[0032]
Next, a method for inspecting the elbow portion 6 of the RPV bottom drain pipe 4 by irradiating radiation from the radiation source transferred to the radiation transfer rod tip 13 (radiation irradiation port) will be described. The radiation irradiated from the radiation source passes through the elbow portion 6 of the RPV bottom drain pipe to be inspected and is projected on the imaging member 9 provided on the opposite side.
[0033]
At this time, as shown in the layout diagram of FIG. If the distance between the radiation source and the inspection object is short, the radiation emitted from the point-like radiation source hits the inspection object before it spreads sufficiently, and the inspection range becomes small. In order to prevent this, the RPV bottom drain pipe 4 can be inspected by securing a certain distance from the RPV bottom drain pipe 4 and irradiating the radiation.
[0034]
In addition, when a necessary part is photographed by one irradiation (see FIG. 9), it is good. However, when an insufficient part occurs, the photographing part is shifted in two times (see FIG. 10) or divided into several times. Take a picture.
[0035]
After completion of the above photographing, the radiation source is collected in step S8, the air in the air injection bag 15 is removed, and the CRD housing fixture 12 is removed. This process corresponds to steps S9 and S10.
[0036]
Next, in step S11, the imaging member transfer rod 10 and the radiation transfer rod 8 are reduced and collected. After the inspection device is collected, the imaging member 9 is developed (image processing), and the state inside the pipe is confirmed.
[0037]
Next, fuel is restored from the fuel pool into the RPV 1 in step S12, and the reactor is restarted in step S13. A series of inspection work is completed by the above steps S1 to S13.
[0038]
Further, in a state where the fuel is taken out from the RPV 1, a series of operations such as attachment of the radiation transfer rod 8 and the imaging member transfer rod 10 are performed in the peripheral portion (near the side wall) in the pedestal 2, thereby It is possible to reduce exposure.
[0039]
By using the method as described above, it is possible to inspect the drain pipe 4 in the pedestal 2 that has been difficult to inspect until now, and can greatly contribute to preventive maintenance of the pipe.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the RPV bottom drain piping in the narrow part in the pedestal of a nuclear power plant can be inspected reliably and correctly, aiming at reduction of an operator's exposure.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment in which a pipe inspection method of the present invention is applied to an RPV bottom drain pipe in a pedestal in a nuclear power plant.
FIG. 2 is a schematic longitudinal sectional view in the PCV.
FIG. 3 is a schematic longitudinal sectional view in the pedestal.
4 is a detailed view of a part a in FIG. 3;
5 is an AA arrow view of FIG. 3;
FIG. 6 is a schematic configuration diagram of an inspection apparatus using an RT method.
7 is a BB arrow view of FIG. 6;
FIG. 8 is a device layout diagram of a radiation irradiation unit in RPV bottom drain tube RT imaging.
FIG. 9 is a diagram illustrating a shooting procedure (single shooting) of an RT shooting target portion;
FIG. 10 is a diagram illustrating a shooting procedure (two shots) of an RT shooting target portion.
[Explanation of symbols]
1 RPV
2 Pedestal 3 CRD housing 4 RPV bottom drain pipe 5 CRD operation cable 6 Elbow socket 7 Insulating material 8 Radiation transfer rod 9 Imaging member 10 Imaging member transfer rod 11 Radiation source transfer cable 12 CRD housing fixture 13 Radiation source irradiation port 14 ICM Housing 15 Air injection bag

Claims (5)

原子炉圧力容器の下側に位置するペデスタル内のボトムドレン配管を点検する際に、先端部に放射線照射口を有する第1の長さ調節可能なロッドの長さを調節して、該放射線照射口を点検対象部の一方の側に設置するとともに、先端部に点検対象部の放射線映像を写すイメージング部材を装着した第2の長さ調節可能なロッドの長さを調節して、該イメージング部材を前記点検対象部の放射線を受ける側に設置し、前記放射線照射口から照射された放射線による点検対象部の映像を前記イメージング部材に写して点検することを特徴とする原子炉圧力容器ボトムドレン配管点検方法。  When inspecting the bottom drain pipe in the pedestal located on the lower side of the reactor pressure vessel, the length of the first length-adjustable rod having the radiation irradiation port at the tip is adjusted, and the radiation irradiation is performed. Adjusting the length of the second length-adjustable rod having the mouth installed on one side of the inspection target portion and mounting the imaging member for imaging the radiographic image of the inspection target portion at the tip portion; The reactor pressure vessel bottom drain piping is characterized in that the inspection target portion is placed on the radiation receiving side, and an image of the inspection target portion due to the radiation irradiated from the radiation irradiation port is copied and inspected on the imaging member. Inspection method. 請求項1に記載の点検方法において、前記第1および第2の長さ調節可能なロッドは、分割もしくは伸縮可能に構成され、該ロッドの設置作業を前記ペデスタル内の周辺部で行うことを特徴とする原子炉圧力容器ボトムドレン配管点検方法。  2. The inspection method according to claim 1, wherein the first and second length-adjustable rods are configured to be split or extendable, and installation work of the rods is performed in a peripheral portion in the pedestal. Reactor pressure vessel bottom drain piping inspection method. 請求項1〜2のうちいずれか1項に記載の点検方法において、前記第1および第2のロッドはエアー注入袋を備え、該エアー注入袋にエアーを注入して膨らませることにより、それぞれのロッド周辺のCRDハウジングおよびICMハウジングに、該エアー注入袋を当接させてロッドを固定することを特徴とする原子炉圧力容器ボトムドレン配管点検方法。  The inspection method according to any one of claims 1 to 2, wherein the first and second rods are provided with an air injection bag, and each of the air injection bags is inflated by injecting air into the air injection bag. A method for inspecting a reactor pressure vessel bottom drain pipe, wherein the air injection bag is brought into contact with a CRD housing and an ICM housing around the rod to fix the rod. 請求項1〜3のうちいずれか1項に記載の点検方法において、前記第1の長さ調節可能なロッドは中空ロッドで構成され、該ロッドの中空部内を移送して前記放射線照射口に放射線源を設置することを特徴とする原子炉圧力容器ボトムドレン配管点検方法。  The inspection method according to any one of claims 1 to 3, wherein the first length-adjustable rod is a hollow rod, and the rod is transported through a hollow portion of the rod to receive radiation at the radiation irradiation port. A reactor pressure vessel bottom drain piping inspection method characterized by installing a power source. 請求項1〜のうちいずれか1項に記載の点検方法に用いられ、点検対象部に先端部を設置する長さ調節可能な第1および第2のロッドと、該第1のロッド先端部の放射線照射口に設置される放射線源と、該第2のロッド先端部に装着され、前記放射線源から照射された放射線による点検対象部の映像を写すイメージング部材と、該第1および第2のロッドを該ロッド周辺のCRDハウジングおよびICMハウジングに固定する固定部材とからなる原子炉圧力容器ボトムドレン配管点検装置。The first and second rods, which are used in the inspection method according to any one of claims 1 to 4 and are adjustable in length, wherein the tip part is installed in the inspection target part, and the first rod tip part A radiation source installed at the radiation irradiation port of the first, an imaging member attached to the tip of the second rod and capturing an image of the inspection target portion by the radiation emitted from the radiation source, and the first and second A reactor pressure vessel bottom drain pipe inspection device comprising a fixing member for fixing a rod to a CRD housing and an ICM housing around the rod.
JP2002372610A 2002-12-24 2002-12-24 Reactor pressure vessel bottom drain piping inspection method and inspection device Expired - Lifetime JP3909412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372610A JP3909412B2 (en) 2002-12-24 2002-12-24 Reactor pressure vessel bottom drain piping inspection method and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372610A JP3909412B2 (en) 2002-12-24 2002-12-24 Reactor pressure vessel bottom drain piping inspection method and inspection device

Publications (2)

Publication Number Publication Date
JP2004205280A JP2004205280A (en) 2004-07-22
JP3909412B2 true JP3909412B2 (en) 2007-04-25

Family

ID=32811170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372610A Expired - Lifetime JP3909412B2 (en) 2002-12-24 2002-12-24 Reactor pressure vessel bottom drain piping inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP3909412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957293A (en) * 2016-05-30 2016-09-21 中广核工程有限公司 Fire monitoring method and system for containment vessel of nuclear power station during bulge test

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175551A (en) * 2007-01-16 2008-07-31 Tokyo Electric Power Co Inc:The Piping inspection system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957293A (en) * 2016-05-30 2016-09-21 中广核工程有限公司 Fire monitoring method and system for containment vessel of nuclear power station during bulge test
CN105957293B (en) * 2016-05-30 2018-10-16 中广核工程有限公司 Fire monitoring method and its system during a kind of nuclear power plant containment shell bulge test

Also Published As

Publication number Publication date
JP2004205280A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4357298B2 (en) Device for remote inspection of steam generation tubes
KR100997320B1 (en) Radioisotope Centering Devices for Radiography of Pipe
KR101501843B1 (en) Apparatus of guiding endoscope for inspecting inside of steam generator of nuclear power plant
JP2010529436A (en) Apparatus and method for non-destructive testing of objects
KR20190128335A (en) Pipe nondestructive inspection appparatus and method
JP3909412B2 (en) Reactor pressure vessel bottom drain piping inspection method and inspection device
JP3256692B2 (en) Elbow weld inspection system and elbow weld inspection method
CA1182587A (en) Radioactive source pigtail inspection apparatus and method
CN104569004A (en) Flaw detection method for water wall tube
US20030118150A1 (en) Apparatus for inspecting a heat exchanger tube and group of heat exchanger tubes
JP6291203B2 (en) Long body insertion / extraction device
CN213239973U (en) Positioning device for pipeline center flaw detection through plug
WO2021137347A1 (en) Thermal fatigue crack generation device for large pipe
KR20090091971A (en) A track type inspection apparatus using gamma ray isotope
SE441631B (en) SET TO MEDIUM X-RANGE DETECT INHOMOGENITIES IN SPARES BETWEEN AND INSULATION IN REMOTE HEATERS AND DEVICE TO PERFORM THE SET
JP2000002798A (en) Underwater defect inspection device for lining tank
JP4009172B2 (en) Pipe inspection device
JPS6231883Y2 (en)
KR200261234Y1 (en) A centering device for radiography
CN104569008B (en) Gamma ray inspection device for water screen tube
JP7336285B2 (en) Connector imaging device and imaging method
KR100442325B1 (en) A centering device for radiography
CN204374112U (en) For the gamma ray inspection device of water screen tube
CN213986322U (en) Prefabricated high-pressure tank pipeline device of detecting a flaw
CN204101483U (en) A kind of vehicle-mounted x-ray pipeline real time imaging detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Ref document number: 3909412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term