JP3908782B2 - Cooling tank for long fiber reinforced resin structure and method for producing the structure - Google Patents

Cooling tank for long fiber reinforced resin structure and method for producing the structure Download PDF

Info

Publication number
JP3908782B2
JP3908782B2 JP2006514123A JP2006514123A JP3908782B2 JP 3908782 B2 JP3908782 B2 JP 3908782B2 JP 2006514123 A JP2006514123 A JP 2006514123A JP 2006514123 A JP2006514123 A JP 2006514123A JP 3908782 B2 JP3908782 B2 JP 3908782B2
Authority
JP
Japan
Prior art keywords
water outlet
cooling tank
water
resin
fiber roving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006514123A
Other languages
Japanese (ja)
Other versions
JPWO2005118265A1 (en
Inventor
巧 中辻
和彦 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Application granted granted Critical
Publication of JP3908782B2 publication Critical patent/JP3908782B2/en
Publication of JPWO2005118265A1 publication Critical patent/JPWO2005118265A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1616Cooling using liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、繊維ロービングに溶融樹脂を含浸させて得られる溶融樹脂含浸繊維ロービングを直線状に通過させながら液状の水で冷却させるための冷却槽、それを使用した長繊維強化樹脂構造体の製造方法に関する。
本発明によれば、長繊維強化樹脂構造体を、側面にへこみや繊維の露出の増加を生じることなく、設置空間的に効率よく製造でき、また運転開始時の多数の溶融樹脂含浸繊維ロービングの冷却槽への挿入が容易である。
The present invention relates to a cooling tank for cooling with liquid water while linearly passing through a molten resin impregnated fiber roving obtained by impregnating a molten resin into a fiber roving, and production of a long fiber reinforced resin structure using the cooling tank Regarding the method.
According to the present invention, a long fiber reinforced resin structure can be efficiently manufactured in an installation space without causing dents or increased fiber exposure on the side surface, and a large number of molten resin impregnated fiber rovings at the start of operation can be obtained. Easy to insert into the cooling bath.

長繊維で強化された熱可塑性樹脂組成物を製造する方法として、近年、引き抜き成形が注目されている。中でも、連続した繊維束(繊維ロービングともいう。)を引きながら、クロスヘッドダイにおいて熱可塑性樹脂の溶融物を含浸させたのち賦形ダイを通して所望の形状に賦形して、冷却し、ペレット化する技術が一般的に用いられている。
一般に、賦形ダイから押出された樹脂ストランドなどを冷却するには、水を張った冷却槽内を通過させるが、そのためには押出されたストランドをロールなどにより向きを変えて冷却槽内の水に潜らせ、ロールで冷却槽内を水平に移動させ、ロールで冷却槽内から向きを変えて空中に引き出し、再度ロールで水平に引き取るなどのストランドの折れ曲がりが伴う。
溶融樹脂含浸繊維ロービングを冷却する場合、賦形ダイを通して円筒状などの所望の形状に賦形したものを、曲げると強化繊維が表面に露出したり折れたりするので、賦形ダイから排出された溶融樹脂含浸繊維ロービングを直線状態で冷却するために、従来は空冷によるか又は水スプレーにより冷却されていた。(特開昭63−132036(第1図)参照)。
空冷では、長繊維強化樹脂構造体の円筒状の側面にへこみを生じる問題はないが、冷却設備の長さが長くなるという問題がある。
また、水スプレーでは冷却効率を上げるために高圧の水滴を使用しているが、水滴を離散的に衝突させるために、円筒状の側面に小さな多数のへこみを生じ、繊維が表面に露出する割合が高いという問題があるし、冷却設備のみの長さも非常に長くなる。
第1図は、従来の水スプレー式冷却方法を使用した長繊維強化樹脂構造体製造装置である。
繊維ロービング21は、ローラー対のような開繊装置18により平たく開繊され、クロスヘッドダイ13の入口19に供給され、樹脂供給口12から供給された溶融樹脂によりクロスヘッドダイ13においてさらに開繊が進むとともに樹脂が含浸される。なお、溶融樹脂は、押出機(図示せず)などから供給される。
クロスヘッドダイ13は、例えば、樹脂含浸繊維ロービングの引取方向に一対の波打つ平面状の障壁を有し、該一対の障壁は凸部と凹部が向かい合って隘路を形成する構造であり、凸部によりしごかれ、樹脂の含浸が促進され、繊維ロービング1への樹脂の均一な含浸が行われる。
含浸された樹脂含浸繊維ロービングは、賦形ダイ15により賦形されて溶融樹脂含浸繊維ロービング22として排出され、冷却装置30により冷却、固化されて樹脂含浸繊維ロービング23となり、ベルト対などの引取装置16を経てペレタイザー17によりペレット化される。
特開平6−262624号公報の図1には、箱形の冷却水槽を使用して、樹脂含浸繊維ロービングを冷却する技術が開示されているが、この方法では、溶融樹脂含浸繊維ロービングを曲げて水中に供給しているので、強化繊維が表面に露出したり折れたりする。
In recent years, pultrusion molding has attracted attention as a method for producing a thermoplastic resin composition reinforced with long fibers. Among them, while drawing a continuous fiber bundle (also called fiber roving), a crosshead die is impregnated with a thermoplastic resin melt, then shaped into a desired shape through a shaping die, cooled, and pelletized. This technique is generally used.
In general, in order to cool the resin strands extruded from the shaping die, the resin strands are passed through a cooling tank filled with water. For this purpose, the extruded strands are turned by a roll or the like to change the water in the cooling tanks. This is accompanied by bending of the strands such as moving the inside of the cooling tank horizontally with the roll, changing the direction from the inside of the cooling tank with the roll, pulling it into the air, and drawing it horizontally with the roll again.
When cooling the molten resin-impregnated fiber roving, it is discharged from the shaping die because the reinforcing fiber is exposed to the surface or bent when bent into a desired shape such as a cylindrical shape through the shaping die. In order to cool the molten resin-impregnated fiber roving in a linear state, it has been conventionally cooled by air cooling or water spray. (See JP-A-63-132036 (FIG. 1)).
In the air cooling, there is no problem that dents are formed on the cylindrical side surface of the long fiber reinforced resin structure, but there is a problem that the length of the cooling equipment becomes long.
In addition, water spray uses high-pressure water droplets to increase cooling efficiency, but because the water droplets collide discretely, a large number of small dents are formed on the cylindrical side surface, and the rate at which the fibers are exposed to the surface However, the length of the cooling equipment alone is very long.
FIG. 1 is an apparatus for producing a long fiber reinforced resin structure using a conventional water spray cooling method.
The fiber roving 21 is opened flat by a fiber opening device 18 such as a roller pair, supplied to the inlet 19 of the crosshead die 13, and further opened in the crosshead die 13 by the molten resin supplied from the resin supply port 12. As the process proceeds, the resin is impregnated. The molten resin is supplied from an extruder (not shown) or the like.
The crosshead die 13 has, for example, a pair of undulating planar barriers in the take-off direction of the resin-impregnated fiber roving, and the pair of barriers has a structure in which a convex portion and a concave portion face each other to form a bottleneck. As a result, the resin impregnation is promoted, and the fiber roving 1 is uniformly impregnated with the resin.
The impregnated resin-impregnated fiber roving is shaped by a shaping die 15 and discharged as a molten resin-impregnated fiber roving 22, cooled and solidified by a cooling device 30 to become a resin-impregnated fiber roving 23, and a take-up device such as a belt pair. 16 and pelletized by the pelletizer 17.
FIG. 1 of JP-A-6-262624 discloses a technique for cooling a resin-impregnated fiber roving using a box-shaped cooling water tank. In this method, the molten resin-impregnated fiber roving is bent. Since it is supplied in water, the reinforcing fibers are exposed or broken on the surface.

本発明の目的は、長繊維強化樹脂構造体を、側面にへこみや繊維の露出の増加を生じることなく且つ空間的に効率よく冷却して製造することである。
本発明者らは、鋭意検討した結果、溶融樹脂含浸繊維ロービング22を、冷却槽3内で直線状に通過させ、水を溢流させながら冷却する冷却槽を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
即ち、本発明の第1は、長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、冷却槽(3)は水を溢流させる構造を有し、溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内で直線状に通過させ、水を溢流させながら冷却することを特徴とする冷却槽を提供する。
本発明の第2は、長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、側面及び底面を有する筐体(4)、筐体(4)の側面もしくは底面に設けられた水入口(1)及び筐体(4)の引込側側面(4a)の引込側上端部(4a′)に形成された引込側水出口(2a)及び引出側側面(4b)の引出側上端部(4b′)に形成された引出側水出口(2b)からなり、溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内の引込側水出口(2a)及び引出側水出口(2b)間で直線状に通過させながら、溶融樹脂含浸繊維ロービング(22)を水冷させて樹脂含浸繊維ロービング(23)を得る冷却槽を提供する。
本発明の第3は、引込側側面(4a)の引込側上端部(4a′)に設けられた2以上の引込側切欠き部(8a)および引込側上端部(4a′)上に設けられた引込側堰板(5a)により形成された引込側水出口(2a)、及び/又は引出側側面(4b)の引出側上端部(4b′)に設けられた2以上の引出側切欠き部(8b)および引出側上端部(4b′)上に設けられた引出側堰板(5b)により形成された引出側水出口(2b)からなる本発明の第2に記載の冷却槽を提供する。
本発明の第4は、長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、側面及び底面を有する筐体(4)、筐体(4)より上方もしくは筐体(4)の天面に設けられた蓋(5)、筐体(4)の側面もしくは底面に設けられた水入口(1)及び筐体(4)の側面の引込側側面(4a)の引込側上端部(4a′)と蓋(5)との間に形成された引込側水出口(2a)及び引出側側面(4b)の引出側上端部(4b′)と蓋(5)との間に形成された引出側水出口(2b)からなり、溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内の引込側水出口(2a)及び引出側水出口(2b)間で直線状に通過させながら、溶融樹脂含浸繊維ロービング(22)を水冷させて樹脂含浸繊維ロービング(23)を得る冷却槽を提供する。
本発明の第5は、引込側側面(4a)の引込側上端部(4a′)に設けられた2以上の引込側切欠き部(8a)および蓋(5)により形成された引込側水出口(2a)、及び/又は引出側側面(4b)の引出側上端部(4b′)に設けられた2以上の引出側切欠き部(8b)および蓋(5)により形成された引出側水出口(2b)からなる本発明の第4に記載の冷却槽を提供する。
本発明の第6は、引込側水出口(2a)の形状が、又は引込側水出口(2a)と引出側水出口(2b)の両者の形状が、水平方向に開口した一つの横孔である本発明の第2又は4に記載の冷却槽を提供する。
本発明の第7は、引込側水出口(2a)及び引出側水出口(2b)の鉛直方向の長さが2〜100mmである本発明の第1〜6のいずれかに記載の冷却槽を提供する。
本発明の第8は、さらに、水分散手段(6)が水入口(1)と、引込側水出口(2a)および引出側水出口(2b)からなる水出口(2)との間に設けられた本発明の第1〜7のいずれかに記載の冷却槽を提供する。
本発明の第9は、水出口(2)から溢流した水の一部又は全部を、循環させるための水循環装置(7)を有する本発明の第1〜8のいずれかに記載の冷却槽を提供する。
本発明の第10は、循環させる水を冷却するための冷却装置(8)を有する本発明の第9に記載の冷却槽を提供する。
本発明の第11は、冷却槽(3)の引込側水出口(2a)と引出側水出口(2b)の間隔dが、冷却槽(3)内を通過する溶融樹脂含浸繊維ロービング(22)の線速度をvとした場合に、
d(単位:m)=f(単位:分)×v(単位:m/分)
(ここでfは0.01〜0.1である。)
である本発明の第1〜10のいずれかに記載の冷却槽を提供する。
本発明の第12は、水分散手段(6)の上方に、エアレーター(9)が設けられた本発明の第1〜11のいずれかに記載の冷却槽を提供する。
本発明の第1〜12のいずれかに記載の冷却槽(3)を使用して、溶融樹脂含浸繊維ロービング(22)を、0〜90℃の水で冷却させる長繊維強化熱可塑性樹脂構造体の製造方法を提供する。
An object of the present invention is to produce a long fiber reinforced resin structure by cooling it efficiently and spatially without causing dents or increased fiber exposure on the side surfaces.
As a result of intensive studies, the present inventors can solve the above-mentioned problems by using a cooling tank in which the molten resin-impregnated fiber roving 22 is linearly passed through the cooling tank 3 and cooled while overflowing water. As a result, the present invention has been completed.
That is, the first of the present invention is a cooling tank (3) for water cooling the molten resin impregnated fiber roving (22) discharged from the shaping die (15) of the long fiber reinforced thermoplastic resin structure manufacturing apparatus. Yes, the cooling tank (3) has a structure for overflowing water, and the molten resin-impregnated fiber roving (22) is linearly passed through the cooling tank (3) and cooled while allowing water to overflow. A cooling tank is provided.
2nd of this invention is the cooling tank (3) for water-cooling the molten resin impregnation fiber roving (22) discharged | emitted from the shaping die (15) of the manufacturing apparatus of a long fiber reinforced thermoplastic resin structure, A housing (4) having a side surface and a bottom surface, a water inlet (1) provided on the side surface or bottom surface of the housing (4), and a retracting side upper end (4a ′) of a retracting side surface (4a) of the housing (4) ) Formed on the drawing side water outlet (2b) formed on the drawing side upper end (4b ′) of the drawing side surface (4b) and the molten resin impregnated fiber roving (22) , The molten resin-impregnated fiber roving (22) is cooled with water while the resin-impregnated fiber roving (22) is linearly passed between the drawing-side water outlet (2a) and the drawing-side water outlet (2b) in the cooling tank (3). 23) is provided.
A third aspect of the present invention is provided on two or more drawing-side notches (8a) and a drawing-side upper end (4a ′) provided on the drawing-side upper end (4a ′) of the drawing-side side surface (4a). Two or more drawing-side notches provided on the drawing-side water outlet (2a) formed by the drawing-side dam plate (5a) and / or the drawing-side upper end (4b ′) of the drawing-side side surface (4b) A cooling tank according to the second aspect of the present invention is provided, comprising: (8b) and a drawing-side water outlet (2b) formed by a drawing-side dam plate (5b) provided on the drawing-side upper end (4b ′). .
4th of this invention is the cooling tank (3) for water-cooling the molten resin impregnation fiber roving (22) discharged | emitted from the shaping die (15) of the manufacturing apparatus of a long fiber reinforced thermoplastic resin structure, Case (4) having side surface and bottom surface, lid (5) provided above case (4) or on the top surface of case (4), water provided on side surface or bottom surface of case (4) The inlet side water outlet (2a) and the outlet side formed between the inlet side (1) and the upper side (4a ') of the inlet side (4a) of the side of the inlet side (4a) of the housing (4) and the lid (5). It consists of a drawing-side water outlet (2b) formed between the drawing-side upper end (4b ') of the side surface (4b) and the lid (5), and the molten resin-impregnated fiber roving (22) is connected to the cooling tank (3). The molten resin-impregnated fiber line is passed through in a straight line between the inlet side water outlet (2a) and the outlet side water outlet (2b). Ring (22) with water cooling to provide a cooling bath to obtain a resin-impregnated fiber rovings (23).
The fifth aspect of the present invention is a drawing-side water outlet formed by two or more drawing-side notch portions (8a) and a lid (5) provided on the drawing-side upper end portion (4a ′) of the drawing-side side surface (4a). (2a) and / or a drawer-side water outlet formed by two or more drawer-side notches (8b) and a lid (5) provided on the drawer-side upper end (4b ') of the drawer-side surface (4b) A cooling tank according to the fourth aspect of the present invention comprising (2b) is provided.
6th of this invention is the shape of the drawing-in side water outlet (2a), or the shape of both the drawing-in side water outlet (2a) and the drawing-out side water outlet (2b) is one horizontal hole opened in the horizontal direction. A cooling tank according to the second or fourth aspect of the present invention is provided.
A seventh aspect of the present invention is the cooling tank according to any one of the first to sixth aspects of the present invention, wherein the length in the vertical direction of the drawing-side water outlet (2a) and the drawing-side water outlet (2b) is 2 to 100 mm. provide.
According to an eighth aspect of the present invention, the water dispersing means (6) is further provided between the water inlet (1) and the water outlet (2) comprising the inlet side water outlet (2a) and the outlet side water outlet (2b). The cooling tank in any one of the 1st-7th of this invention obtained is provided.
A ninth aspect of the present invention is the cooling tank according to any one of the first to eighth aspects of the present invention, comprising a water circulation device (7) for circulating part or all of the water overflowing from the water outlet (2). I will provide a.
The tenth aspect of the present invention provides the cooling tank according to the ninth aspect of the present invention, which has a cooling device (8) for cooling the water to be circulated.
The eleventh aspect of the present invention is a molten resin-impregnated fiber roving (22) in which the distance d between the drawing-in water outlet (2a) and the drawing-out water outlet (2b) of the cooling tank (3) passes through the cooling tank (3). When the linear velocity of
d (unit: m) = f (unit: minute) × v (unit: m / min)
(Here, f is 0.01 to 0.1.)
The cooling tank according to any one of the first to tenth aspects of the present invention is provided.
A twelfth aspect of the present invention provides the cooling tank according to any one of the first to eleventh aspects of the present invention, wherein an aerator (9) is provided above the water dispersion means (6).
The long fiber reinforced thermoplastic resin structure in which the molten resin-impregnated fiber roving (22) is cooled with water at 0 to 90 ° C using the cooling tank (3) according to any one of the first to twelfth aspects of the present invention. A manufacturing method is provided.

第1図は、従来の長繊維強化熱可塑性樹脂構造体製造装置の縦断面図である。
第2図(a)は、本発明の冷却槽(蓋あり)の一例の長手方向の縦断面図である。
第2図(b)は、上記冷却槽の引込側水出口2a側から見た正面図である。
第3図は、本発明の冷却槽の他の一例(縁付き蓋あり)の長手方向の縦断面図である。
第4図(a)は、本発明の冷却槽の他の一例(蓋なし)の長手方向の縦断面図である。
第4図(b)は、上記冷却槽の引込側水出口2a側から見た正面図である。
第4図(c)は、上記冷却槽の斜視図である。
第5図は、本発明の冷却槽の他の一例(切欠き部と堰板設置)の長手方向の縦断面図である。
第6図は、本発明の冷却槽の他の一例の長手方向の縦断面図の部分拡大図である。
FIG. 1 is a longitudinal sectional view of a conventional long fiber reinforced thermoplastic resin structure production apparatus.
FIG. 2 (a) is a longitudinal sectional view in the longitudinal direction of an example of the cooling tank (with a lid) of the present invention.
FIG.2 (b) is the front view seen from the drawing-in side water outlet 2a side of the said cooling tank.
FIG. 3 is a longitudinal sectional view in the longitudinal direction of another example of the cooling tank of the present invention (with an edged lid).
FIG. 4 (a) is a longitudinal sectional view in the longitudinal direction of another example (without a lid) of the cooling tank of the present invention.
FIG. 4 (b) is a front view of the cooling tank as viewed from the side of the inlet side water outlet 2a.
FIG. 4 (c) is a perspective view of the cooling tank.
FIG. 5 is a longitudinal sectional view in the longitudinal direction of another example of the cooling tank of the present invention (installed with a notch and a weir plate).
FIG. 6 is a partially enlarged view of a longitudinal sectional view in the longitudinal direction of another example of the cooling tank of the present invention.

符号の説明Explanation of symbols

1 水入口、 2 水出口、 2a 引込側水出口、 2b 引出側水出口
3 冷却槽、 4 筐体、 4a 引込側側面、 4a′ 引込側上端部
4b 引出側側面、 4b′ 引出側上端部、 5 蓋、 5a 引込側堰板
5b 引出側堰板(図示せず)、 6 水分散手段、 7 水循環装置
8a 引込側切欠き部、 8b 引出側切欠き部(図示せず)、
9 エアレーター、 12 樹脂供給口、 13 クロスヘッドダイ、
15 賦形ダイ、 16 引取装置、 17 ペレタイザー、 18 開繊装置
19 入口、 21 繊維ロービング、 22 溶融樹脂含浸繊維ロービング
23 樹脂含浸繊維ロービング、 30 (従来方式の)冷却装置
1 water inlet, 2 water outlet, 2a drawing side water outlet, 2b drawing side water outlet 3 cooling tank, 4 housing, 4a drawing side side, 4a 'drawing side upper end 4b drawing side upper side, 4b' drawing side upper end, 5 Lid, 5a Pull-in side dam plate 5b Pull-out side dam plate (not shown), 6 Water dispersion means, 7 Water circulation device 8a Pull-in side notch, 8b Pull-out side notch (not shown),
9 Aerator, 12 Resin supply port, 13 Crosshead die,
DESCRIPTION OF SYMBOLS 15 Shaping die, 16 Taking-out apparatus, 17 Pelletizer, 18 Opening apparatus 19 Inlet, 21 Fiber roving, 22 Molten resin impregnation fiber roving 23 Resin impregnation fiber roving, 30 (Conventional system) cooling apparatus

以下に本発明の実施の形態を、図面を用いて説明する。
第2図(a)は本発明に係る冷却槽の一例の長手方向(樹脂含浸繊維ロービングの進行方向を示す。)縦断面図であり、3は冷却槽、4は冷却槽の筐体である。筐体4の形状は特に制限はなく、直方体でも円筒でもよいが、好ましくは直方体である。以下、判りやすく直方体を例に説明する。
筐体4は側面及び底面を有し、天面は開口しており、5は冷却槽の天面に必要に応じて設けられた蓋、1は冷却槽の水入口、2は冷却槽の水出口であり、水出口2は溶融樹脂含浸繊維ロービング22が引込まれる引込側水出口2a及び冷却された溶融樹脂含浸繊維ロービング23が引出される引出側水出口2bからなる。同図で、水出口2の形状は水平方向に開口した一つの横孔と見なせ、横孔と総称する。
なお、蓋5は筐体4とは完全に分離されて、筐体4の上方に設けられた蓋であってもよいし、第2図(b)に示すように、筐体4の側面が延長されて蓋5の側端部と接続されていてもよい。なお、第2図(b)は本発明の冷却槽3の引込側水出口2a側から見た正面図である。
第4図は、蓋5を設けることなく、筐体4の引込側側面4aの高さをその両側面より低くして、引込側上端部4a′に引込側水出口2aが形成され、同様に引出側側面4bの引出側上端部4b′に引出側水出口2bが形成された例である。第4図(a)は、長手方向の縦断面図であり、第4図(b)は、引込側水出口2a側から見た正面図である。なお、蓋5は不要であるが、ゴミなどの混入防止のために蓋やシートなどの覆いを設けてもよい。
第5図は、引込側側面4aの引込側上端部4a′に引込側切欠き部8aを設け、引込側上端部4a′の上に引込側堰板5aを設けて、引込側切欠き部8aを引込側水出口2aとした例である。切欠き部8aの数は1以上であり、通常は賦形ダイの多数の孔から出た溶融樹脂含浸繊維ロービング22の数に対応する数であり、種々の賦形ダイや運転条件に合わせられるように、より多数の孔が設けられていてもよい。
同様に、引出側側面4bの引出側上端部4b′に引出側切欠き部8b(図示せず)を設け、引出側上端部4b′上に引出側堰板5b(図示せず)を設け、各引出側切欠き部8bを多数の引出側水出口2bとしてもよい。しかし、引出側水出口2bでは、溶融樹脂含浸繊維ロービング22は冷却固化されているので、引出側水出口2bは一つの横孔であってもよい。
このように、引込側切欠き部8aを離散的に多数設けることにより、多数の溶融樹脂含浸繊維ロービング22を互いに接触することなく、冷却することができる。
切欠き部8a及び切欠き部8bの断面形状は半円、三角、四角など特に制限はない。各切欠き部8a同士は接していても、平面等で隔てられていてもよい。
第6図は、本発明の冷却槽3の引込側側面4aに引込側切欠き部8aを設けた例の長手方向の縦断面図の拡大図である。断面が半円形の引込側切欠き部8aが離散的に設けられている。
引込側堰板5aと引出側堰板5bの堰の高さは、同じであっても、引込側堰板5aを高くしても低くしてもよい。切欠き部を水出口2とする他に、堰板の上から水を溢流させてもよい。また、堰板5a及び5bの代りに蓋5を用いることもできる。
水の供給位置に関しては特に制限はなく、水入口1は筐体4の底面に設けられても、側面に設けられても、解放された筐体上部に設けられてもよい。水入口1は一個所であっても、複数個所であってもよく、底面に設けられても、側面に設けられても、両者に設けられてもよい。
また、必要に応じて冷却槽3内に所望の水流を形成させるために引込側水出口2aに近い位置または引出側水出口2bに近い位置に設けられてもよい。
使用される水としては、特に制限はなく、従来のスプレー式で使用されていた水が使用される。
引込側水出口2aの形状は、水平方向に開口した一つの横孔もしくは多段の横孔でも、水平方向に並ぶ多数の孔でも、多段に水平方向に並ぶ多数の孔でもよい。
引込側水出口2aおよび引出側水出口2bの寸法は、引込側水出口2a及び引出側水出口2bの鉛直方向の長さが2〜100mmであり、一つの横孔の場合には、水平方向の幅には特に制限はない。蓋5が設けられ場合も、筐体4と蓋5の間の鉛直方向の間隔は、上記鉛直方向の長さに相当して2〜100mmである。
なお、切欠き部を設けて形成された多数の孔の場合には、孔の断面積は溶融樹脂含浸繊維ロービング22の断面積の1.5〜10000倍である。
引出側水出口2bの形状は、引込側水出口2aの形状と同じでも異なっていてもよく、引込側水出口2aの形状が多数の孔であっても、引出側水出口2bの形状は対応する多数の孔であっても一つの横孔であってもよい。
一つの横孔の場合は、冷却水は孔の全面から溢流となって出るのが最も好ましく、少なくとも繊維ロービングの位置より上に水面が来るように溢流させる。
多数の孔の場合は、冷却水は孔の全面から溢流となって出るのが最も好ましく、堰を設ける場合には、前述のように堰を越えて溢流する水があってもよい。
水入口1と水出口2の間には、必要に応じて水分散手段6が設けられ、均一な温度の水が均一な流速で溶融樹脂含浸繊維ロービング22に接触するようにしてもよい。水分散手段6としては、多孔板、多孔ノズル、スリット、パイプグリッド、メッシュなどの分散板や、分散板上に充填されたリング、サドル、テラレットなどの充填物が挙げられる。
その他、必要に応じて冷却槽3内に所望の水流を形成させるための整流板6′やバッフル6″などを設けてもよい。
水分散手段6の上方には、表面に多数の空気吹き出し孔を有するエアレーター9を設け、空気を分散的に放出して、水量を軽減したり、水を攪拌するようにしてもよい。
また、水入口1から入った水は、均一な温度の水が溶融樹脂含浸繊維ロービング22全体に接触するようにしないで、はじめに冷却槽3の引込側水出口2a側に達し、溶融樹脂含浸繊維ロービング22を順流で冷却し、引出側水出口2bから主として排出されるような流れにしても、はじめに冷却槽3の引出側水出口2bに達し、溶融樹脂含浸繊維ロービング22を向流で冷却し、引込側水出口2a側から主として排出されるような流れにしてもよい。
第3図は、本発明の冷却槽3の他の一例の長手方向縦断面図である。水入口1は筐体4の樹脂含浸繊維ロービング23側の側面の底面近傍に設けられ、整流板6′とバッフル6″により上昇し、樹脂含浸繊維ロービングに接触する。
蓋5には、引込側水出口2a側および引出側水出口2b側に折れ曲がり部を設け、引込側水出口2aおよび引出側水出口2bが蓋5の天面より下側になるようにして、樹脂含浸繊維ロービングの天面との接触を防ぐようにしてもよい。
第3図で、例えば、引込側水出口2a側の折れ曲がり部の長さを引出側水出口2b側の折れ曲がり部の長さより短くして、溶融樹脂含浸繊維ロービング22と接触し難いようにしてもよい。
引込側水出口2aから排出される水量は、引出側水出口2bから排出される水量と同じであっても異なってもよい。このため、引込側水出口2aの開口面積と引出側水出口2bの開口面積とを変えて、いずれかの側から水が多く排出されるようにしてもよい。
第3図で、例えば、引出側水出口2bの方の開口面積を小さくして、槽内の流れが引込側水出口2aに向かうようにしてもよい。
溶融樹脂含浸繊維ロービング22は、一個の冷却槽3で冷却しても、複数の冷却槽3を、多段で直列に、それぞれを離間させて又は相隣接させて、配置してもよい。本発明では一個の冷却槽3も多段で直列に配置された冷却槽3の群も共に冷却槽3という。
冷却槽3内を通過する溶融樹脂含浸繊維ロービングの線速度をvとした場合に、引込側水出口2aと引出側水出口2bの間隔dは、経験的に次式で表され、fは0.01〜0.1、好ましくは0.015〜0.08、さらに好ましくは0.02〜0.06である。
d(単位:m)=f(単位:分)×v(単位:m/分)
本発明では、溶融樹脂含浸繊維ロービング22を、0〜90℃、好ましくは10〜70℃の水で、冷却、固化させて、樹脂含浸繊維ロービング23を得る。溶融樹脂含浸繊維ロービング22の冷却は、好ましくは、水と実質的に静水圧状態(即ちロービングの周囲に圧力が均一にかかる状態)で接触させると溶融樹脂の肉厚のむらが無く冷却される。
本発明によれば、溶融樹脂には過大な圧力の水滴が衝突しないので、樹脂含浸繊維ロービング23の断面のへこみを無くすることが可能となる。また、樹脂含浸繊維ロービング23の側面における繊維の露出率が改善される。
水出口2から溢流した水はそのまま排水としてもよいが、好ましくは冷却して再使用する。
冷却方法としては、冷却槽内に設けられた内部熱交換器による方法、外部熱交換器による方法のいずれでもよい。
あるいは熱交換器を用いず、筐体4が所定の高さを有し、水出口2から溢流した水を落下させて、外気と熱交換させて得られた冷却水を、筐体4の下部周囲に配置された水溜に集めて、必要に応じてフィルターを通して、冷却水を水入口1より循環させる構造にしてもよい。
第1図の長繊維強化樹脂構造体製造装置において、クロスヘッドダイ13の入口19に繊維ロービング21が供給され、樹脂供給口12に溶融樹脂が供給され、含浸部14において、繊維ロービングに樹脂が含浸され、クロスヘッドダイ13の出口に設けられた賦形ダイ15から溶融樹脂含浸ロービング22として引出される。
繊維ロービング21は、予め繊維ロービング21を挟み付けるローラー対のような開繊装置18により、それぞれ平面的に開繊されて樹脂が含浸されやすいようにすることが好ましい。
実際には、例えば30本の繊維ロービングが、5本の繊維ロービング毎に一つの束に纏められ、6束がローラー対により開繊される。
繊維ロービングはローラー対までは、一本ごとにテンションがかけられ、ダイの中で複数の繊維ロービングが束になることもあるし、1本毎にダイを通過することもある。
含浸部14は、繊維ロービング21に樹脂を合流させて含浸させる狭義のクロスヘッド構造のみでもよいが、それに続く樹脂の均一な含浸を促進させる部分をも含む広義のクロスヘッド構造でもよい。
含浸部14は、障壁同士の組み合わせ、障壁と固定バーなどとの組み合わせなど特に限定されない。
該障壁同士としては、例えば、樹脂含浸繊維ロービングの引取方向に一対の波打つ平面状の障壁が挙げられる。
賦形ダイ15には賦形孔が、通常多数設けられる。一般にクロスヘッドダイでは、多数の繊維ロービングが供給され、数本が纏められて、一つの含浸用繊維ロービングとなり、そのような含浸用繊維ロービングが平面的にいくつか並べられる。従って、賦形ダイ15には、例えば、横一列に賦形孔が並んでいる。
賦形孔5により所望の断面形状を有する樹脂含浸繊維ロービングに賦形され、例えば、ストランド状、テープ状、シート状等所望の形状に賦形される。
クロスヘッドダイや賦形ダイは、温度制御されていることが好ましい。温度制御は、ダイ内の温度、例えば、樹脂供給口近辺の温度を検出し、設定温度に対応した加熱を行う。用いる加熱手段については、特に限定するものではないが、例えば、ダイ内に電熱による加熱手段を装着する方法、熱媒体をダイ内に循環させる方法などのダイに装着されるもの、又は、ダイ外から赤外線、熱風などで加熱する方法がある。これらの中、電熱によりダイ内、或いはダイ外から加熱することが好ましい。
賦形ダイ15から出た溶融樹脂含浸繊維ロービング22は、次工程に設けられた本発明に係る冷却槽3により冷却され、樹脂が固化され、樹脂含浸繊維ロービング23が得られる。
冷却槽3の次の工程には、引取装置16が設けられる。引取装置16としては、特に制限はないが、好ましくはベルト対が挙げられる。樹脂含浸繊維ロービング23をベルト対で挟みつけながら回転することにより、後方へ送り出す、即ち、前方に対しては引っ張る力として作用し、これにより繊維ロービング21がクロスヘッドダイ13に供給され、クロスヘッドダイ内を移動して樹脂含浸され、引出される。
排出された樹脂含浸繊維ロービング23は、そのままストランドとして成形工程等に移送することもできるが、一般的には、射出成形等に供するため、引取装置16の次工程に、ペレタイザー17が設けられ、所定の長さにカットされ、長繊維強化樹脂ペレットまたは短繊維強化樹脂ペレットとされる。好ましくは、長繊維強化樹脂ペレットである。
長繊維強化樹脂ペレットの長さは、3〜50mm、好ましくは5〜40mm、さらに好ましくは5〜30mmである。
ペレットの長さが、上記範囲より短すぎると長繊維強化の特徴が損なわれ、長すぎると成形に使用する際に、押出機のホッパーなどでブリッジを起こし、供給に不具合を生じやすい。
樹脂含浸繊維ロービング23中の、繊維/樹脂の重量比は70%/30%〜20%/80%、好ましくは65%/35%〜25%/75%、さらに好ましくは63%/37%〜30%/70%(ここで、繊維と樹脂の合計は100%である)である。
繊維に対する樹脂の含浸比率が、上記範囲より過少になると樹脂の含浸が十分に行えず、上記範囲より過大になると経済的でなくなる。
本発明で用いられる繊維ロービングの材質としては特に制約はなく、例えば、E−ガラス、D−ガラス等のガラス繊維;ポリアクリロニトリル系、ピッチ系、レーヨン系等の炭素繊維;ボロン繊維、鉱物繊維等の無機繊維;ステンレス、黄銅等の金属繊維;超高分子量ポリエチレン繊維、ポリオキシメチレン繊維、ポリビニルアルコール繊維、液晶性芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリp−フェニレンテレフタルアミド繊維、ポリm−フェニレンイソフタルアミド繊維等のアラミド繊維、ポリアクリロニトリル繊維、綿、ジュート等のセルロース繊維等の有機繊維;又はそれらの混合物が挙げられる。
繊維ロービングの形態は、ロービング、ヤーン等の連続した繊維であればいずれも使用でき、本発明ではこれらをロービングと総称する。
また、これらの繊維は、樹脂との接着性をよくするため、表面処理剤で処理したものであってもよい。かかる強化用繊維束は、次にクロスヘッドにおいて熱可塑性樹脂の溶融物を含浸させるに先立ち、予め加熱し高温の強化用繊維束を樹脂の溶融物と接触させるのが好ましく、またテンションロール等の開繊装置で開繊しておくのが好ましい。
樹脂の材質としては、結晶性樹脂、非結晶性樹脂、生分解性樹脂、非生分解性樹脂、合成樹脂、天然産製樹脂、汎用樹脂、エンジニアリング樹脂、ポリマーアロイ等、いずれの種類の樹脂でもよい。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル;ポリスチレン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル;ポリエチレンスクシネート、ポリブチレンアジペート、これらのカプロラクトン3元共重合体等の脂肪族ポリエステル;ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン46等のポリアミド;ポリアセタール、ポリカーボネート、ポリウレタン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリスルフォン、ポリエーテルケトン、ポリエーテルアミド、ポリエーテルイミド等のエンジニアリング樹脂が挙げられる。これらの樹脂は2種以上を混合して使用してもよい。樹脂としては、通常、射出成形、押出成形等の各種成形加工に用いられるような高分子量で、これを繊維に含浸した場合、それだけで十分な補強効果を発揮するものが好ましい。
また、本発明に係る長繊維強化熱可塑性樹脂構造体には、必要に応じて、樹脂添加剤や充填剤、例えば酸化防止剤、耐熱安定剤、紫外線吸収剤等の安定剤、帯電防止剤、潤滑剤、可塑剤、離型剤、難燃剤、難燃助剤、結晶化促進剤、染料や顔料等の着色剤、タルク等の充填剤を配合することも可能である。これらは、熱可塑性樹脂2に予め配合された形で用いることができる。
なお、本発明は、連続繊維含浸フィルム、もしくはシート成形用のダイや、連続繊維含浸パイプ成形用ダイにも適用できる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 (a) is a longitudinal sectional view (showing the traveling direction of resin-impregnated fiber roving) of an example of a cooling tank according to the present invention, 3 is a cooling tank, and 4 is a casing of the cooling tank. . There is no restriction | limiting in particular in the shape of the housing | casing 4, Although a rectangular parallelepiped or a cylinder may be sufficient, Preferably it is a rectangular parallelepiped. Hereinafter, a rectangular parallelepiped will be described as an example for easy understanding.
The casing 4 has a side surface and a bottom surface, the top surface is open, 5 is a lid provided on the top surface of the cooling tank as required, 1 is a water inlet of the cooling tank, and 2 is water of the cooling tank. The water outlet 2 includes a drawing-side water outlet 2a into which the molten resin-impregnated fiber roving 22 is drawn and a drawing-side water outlet 2b from which the cooled molten resin-impregnated fiber roving 23 is drawn out. In the figure, the shape of the water outlet 2 can be regarded as one horizontal hole opened in the horizontal direction, and is collectively referred to as a horizontal hole.
The lid 5 may be a lid that is completely separated from the housing 4 and provided above the housing 4, and the side surface of the housing 4 is not shown in FIG. 2 (b). It may be extended and connected to the side end of the lid 5. FIG. 2 (b) is a front view of the cooling tank 3 according to the present invention as viewed from the side of the inlet water outlet 2a.
FIG. 4 shows that the drawing-side water outlet 2a is formed at the drawing-side upper end portion 4a ′ by providing the drawing-side side surface 4a lower than the both side surfaces without providing the lid 5, and similarly. This is an example in which a drawer-side water outlet 2b is formed at the drawer-side upper end 4b ′ of the drawer-side surface 4b. FIG. 4 (a) is a longitudinal sectional view in the longitudinal direction, and FIG. 4 (b) is a front view seen from the drawing-side water outlet 2a side. The lid 5 is not necessary, but a cover such as a lid or a sheet may be provided to prevent dust and the like from being mixed.
FIG. 5 shows a drawing-side notch 8a provided on the drawing-side upper end 4a 'of the drawing-side side surface 4a and a drawing-side dam plate 5a on the drawing-side upper end 4a'. Is an example where the water outlet side 2a is drawn. The number of notches 8a is 1 or more, and is usually a number corresponding to the number of molten resin-impregnated fiber rovings 22 that have come out from a large number of holes in the shaping die, and can be adjusted to various shaping dies and operating conditions. As such, a larger number of holes may be provided.
Similarly, a drawer-side notch 8b (not shown) is provided on the drawer-side upper end 4b ′ of the drawer-side side surface 4b, and a drawer-side dam plate 5b (not shown) is provided on the drawer-side upper end 4b ′. Each drawer-side notch 8b may be a number of drawer-side water outlets 2b. However, since the molten resin-impregnated fiber roving 22 is cooled and solidified at the drawing-side water outlet 2b, the drawing-side water outlet 2b may be a single horizontal hole.
In this way, by providing a large number of discrete notch portions 8a on the drawing side, a large number of molten resin-impregnated fiber rovings 22 can be cooled without contacting each other.
The cross-sectional shape of the notch 8a and the notch 8b is not particularly limited, such as a semicircle, a triangle, and a square. The notches 8a may be in contact with each other or may be separated by a flat surface or the like.
FIG. 6 is an enlarged view of a longitudinal sectional view in the longitudinal direction of an example in which a drawing-side notch 8a is provided on the drawing-side side surface 4a of the cooling tank 3 of the present invention. The drawing-side cutouts 8a having a semicircular cross section are provided discretely.
The height of the weirs of the drawing side dam plate 5a and the drawing side dam plate 5b may be the same, or the drawing side dam plate 5a may be made higher or lower. In addition to using the notch as the water outlet 2, water may overflow from the top of the dam plate. Further, the lid 5 can be used in place of the barrier plates 5a and 5b.
The water supply position is not particularly limited, and the water inlet 1 may be provided on the bottom surface of the housing 4, on the side surface, or on the opened upper portion of the housing. The water inlet 1 may be one place or a plurality of places, and may be provided on the bottom surface, on the side surface, or on both sides.
Moreover, in order to form a desired water flow in the cooling tank 3 as needed, it may be provided at a position near the drawing-side water outlet 2a or a position near the drawing-side water outlet 2b.
There is no restriction | limiting in particular as water used, The water used by the conventional spray type is used.
The shape of the inlet side water outlet 2a may be one horizontal hole or a multi-stage horizontal hole opened in the horizontal direction, a plurality of holes arranged in the horizontal direction, or a plurality of holes arranged in the horizontal direction in multiple stages.
The dimensions of the drawing-side water outlet 2a and the drawing-side water outlet 2b are such that the length in the vertical direction of the drawing-side water outlet 2a and the drawing-side water outlet 2b is 2 to 100 mm. There is no particular limitation on the width of the. Even when the lid 5 is provided, the vertical interval between the housing 4 and the lid 5 is 2 to 100 mm corresponding to the length in the vertical direction.
In the case of a large number of holes formed with notches, the cross-sectional area of the holes is 1.5 to 10,000 times the cross-sectional area of the molten resin-impregnated fiber roving 22.
The shape of the drawing side water outlet 2b may be the same as or different from the shape of the drawing side water outlet 2a. Even if the shape of the drawing side water outlet 2a is a large number of holes, the shape of the drawing side water outlet 2b is compatible. Or a single horizontal hole.
In the case of a single horizontal hole, the cooling water is most preferably overflowed from the entire surface of the hole, and is overflowed so that the water surface comes at least above the position of the fiber roving.
In the case of a large number of holes, the cooling water is most preferably overflowed from the entire surface of the hole, and when a weir is provided, there may be water that overflows over the weir as described above.
A water dispersion means 6 may be provided between the water inlet 1 and the water outlet 2, if necessary, so that water at a uniform temperature contacts the molten resin-impregnated fiber roving 22 at a uniform flow rate. Examples of the water dispersion means 6 include a dispersion plate such as a perforated plate, a perforated nozzle, a slit, a pipe grid, and a mesh, and a filler such as a ring, saddle, and terralet filled on the dispersion plate.
In addition, you may provide the baffle plate 6 ', the baffle 6 ", etc. for forming a desired water flow in the cooling tank 3 as needed.
An aerator 9 having a large number of air blowing holes on the surface may be provided above the water dispersing means 6 to release air in a dispersed manner to reduce the amount of water or to stir the water.
Further, the water that has entered from the water inlet 1 does not allow the water at a uniform temperature to contact the entire molten resin-impregnated fiber roving 22, but first reaches the inlet side water outlet 2 a side of the cooling tank 3, and the molten resin-impregnated fiber. Even if the roving 22 is cooled in a forward flow and the flow is mainly discharged from the draw-out side water outlet 2b, it first reaches the draw-out side water outlet 2b of the cooling tank 3, and the molten resin-impregnated fiber roving 22 is cooled in a countercurrent flow. The flow may be mainly discharged from the water inlet side 2a side.
FIG. 3 is a longitudinal sectional view in the longitudinal direction of another example of the cooling tank 3 of the present invention. The water inlet 1 is provided in the vicinity of the bottom of the side surface of the housing 4 on the resin-impregnated fiber roving 23 side, and is raised by the rectifying plate 6 ′ and the baffle 6 ″ to contact the resin-impregnated fiber roving.
The lid 5 is provided with bent portions on the drawing-side water outlet 2a side and the drawing-side water outlet 2b side so that the drawing-side water outlet 2a and the drawing-side water outlet 2b are below the top surface of the lid 5, You may make it prevent a contact with the top | upper surface of resin-impregnated fiber roving.
In FIG. 3, for example, the length of the bent portion on the drawing-side water outlet 2a side is made shorter than the length of the bent portion on the drawing-side water outlet 2b side so that it is difficult to come into contact with the molten resin-impregnated fiber roving 22. Good.
The amount of water discharged from the drawing-side water outlet 2a may be the same as or different from the amount of water discharged from the drawing-side water outlet 2b. For this reason, the opening area of the drawing-in side water outlet 2a and the opening area of the drawing-out side water outlet 2b may be changed so that a large amount of water is discharged from either side.
In FIG. 3, for example, the opening area of the drawing-side water outlet 2b may be reduced so that the flow in the tank is directed to the drawing-side water outlet 2a.
The molten resin-impregnated fiber roving 22 may be cooled by a single cooling tank 3, or a plurality of cooling tanks 3 may be arranged in series in multiple stages, separated from each other or adjacent to each other. In the present invention, one cooling tank 3 and a group of cooling tanks 3 arranged in series in multiple stages are both referred to as the cooling tank 3.
When the linear velocity of the molten resin-impregnated fiber roving passing through the cooling tank 3 is v, the interval d between the drawing-side water outlet 2a and the drawing-side water outlet 2b is empirically expressed by the following equation, and f is 0 0.01 to 0.1, preferably 0.015 to 0.08, and more preferably 0.02 to 0.06.
d (unit: m) = f (unit: minute) × v (unit: m / min)
In the present invention, the resin-impregnated fiber roving 23 is obtained by cooling and solidifying the molten resin-impregnated fiber roving 22 with water at 0 to 90 ° C., preferably 10 to 70 ° C. The molten resin-impregnated fiber roving 22 is preferably cooled without contact with the thickness of the molten resin when it is brought into contact with water in a substantially hydrostatic pressure state (that is, a state where pressure is uniformly applied around the roving).
According to the present invention, since water droplets of excessive pressure do not collide with the molten resin, it is possible to eliminate dents in the cross section of the resin-impregnated fiber roving 23. Further, the fiber exposure rate on the side surface of the resin-impregnated fiber roving 23 is improved.
The water overflowing from the water outlet 2 may be used as it is, but is preferably cooled and reused.
As a cooling method, either a method using an internal heat exchanger provided in a cooling tank or a method using an external heat exchanger may be used.
Alternatively, the casing 4 has a predetermined height without using a heat exchanger, and the cooling water obtained by dropping the water overflowing from the water outlet 2 and exchanging heat with the outside air is supplied to the casing 4. You may make it the structure which collects in the water reservoir arrange | positioned around the lower part, and circulates cooling water from the water inlet 1 through a filter as needed.
1, the fiber roving 21 is supplied to the inlet 19 of the crosshead die 13, the molten resin is supplied to the resin supply port 12, and the resin is added to the fiber roving in the impregnation unit 14. It is impregnated and drawn out as a molten resin-impregnated roving 22 from a shaping die 15 provided at the outlet of the crosshead die 13.
It is preferable that the fiber roving 21 is opened in a planar manner by a fiber opening device 18 such as a pair of rollers that sandwich the fiber roving 21 in advance so that the resin is easily impregnated.
Actually, for example, 30 fiber rovings are combined into one bundle every five fiber rovings, and 6 bundles are opened by a roller pair.
The fiber roving is tensioned one by one up to the roller pair, and a plurality of fiber rovings may be bundled in the die or may pass through the die one by one.
The impregnation part 14 may have only a narrow crosshead structure in which the fiber roving 21 is impregnated with the resin, but may have a broad crosshead structure including a part that promotes the subsequent uniform impregnation of the resin.
The impregnation part 14 is not particularly limited, such as a combination of barriers or a combination of a barrier and a fixing bar.
Examples of the barriers include a pair of flat barriers that wave in the take-off direction of the resin-impregnated fiber roving.
The shaping die 15 is usually provided with many shaping holes. In general, in a crosshead die, a large number of fiber rovings are supplied, and several are combined into one impregnation fiber roving, and several such impregnation fiber rovings are arranged in a plane. Accordingly, in the shaping die 15, for example, shaping holes are arranged in a horizontal row.
The resin is impregnated into a resin-impregnated fiber roving having a desired cross-sectional shape by the shaping hole 5 and is shaped into a desired shape such as a strand shape, a tape shape, or a sheet shape.
The crosshead die and the shaping die are preferably temperature controlled. The temperature control detects the temperature in the die, for example, the temperature near the resin supply port, and performs heating corresponding to the set temperature. The heating means to be used is not particularly limited. For example, the heating means mounted in the die such as a method of mounting a heating means by electric heating in the die, a method of circulating the heat medium in the die, or the outside of the die There is a method of heating with infrared or hot air. Among these, it is preferable to heat from inside or outside the die by electric heating.
The molten resin-impregnated fiber roving 22 coming out of the shaping die 15 is cooled by the cooling tank 3 according to the present invention provided in the next step, and the resin is solidified to obtain the resin-impregnated fiber roving 23.
In the next step of the cooling bath 3, a take-up device 16 is provided. Although there is no restriction | limiting in particular as the take-up apparatus 16, Preferably a belt pair is mentioned. By rotating the resin-impregnated fiber roving 23 while being sandwiched between the belt pairs, the resin-impregnated fiber roving 23 is fed backward, that is, acts as a pulling force toward the front, whereby the fiber roving 21 is supplied to the crosshead die 13 and the crosshead It moves through the die and is impregnated with resin and pulled out.
The discharged resin-impregnated fiber roving 23 can be directly transferred to a molding process or the like as a strand, but generally, a pelletizer 17 is provided in the next process of the take-up device 16 for use in injection molding or the like. It is cut into a predetermined length to obtain long fiber reinforced resin pellets or short fiber reinforced resin pellets. Preferably, it is a long fiber reinforced resin pellet.
The length of the long fiber reinforced resin pellet is 3 to 50 mm, preferably 5 to 40 mm, and more preferably 5 to 30 mm.
If the length of the pellet is too shorter than the above range, the characteristic of long fiber reinforcement is impaired. If the pellet length is too long, a bridge is caused by a hopper of an extruder or the like when used for molding, and the supply tends to be troubled.
The fiber / resin weight ratio in the resin-impregnated fiber roving 23 is 70% / 30% to 20% / 80%, preferably 65% / 35% to 25% / 75%, more preferably 63% / 37% to 30% / 70% (where the total of fiber and resin is 100%).
If the impregnation ratio of the resin to the fiber is less than the above range, the resin cannot be sufficiently impregnated, and if it exceeds the above range, it is not economical.
The material of the fiber roving used in the present invention is not particularly limited. For example, glass fibers such as E-glass and D-glass; carbon fibers such as polyacrylonitrile, pitch, and rayon; boron fibers and mineral fibers Inorganic fibers; metal fibers such as stainless steel and brass; ultrahigh molecular weight polyethylene fibers, polyoxymethylene fibers, polyvinyl alcohol fibers, liquid crystalline aromatic polyester fibers, polyethylene terephthalate fibers, poly p-phenylene terephthalamide fibers, poly m-phenylenes Examples thereof include organic fibers such as aramid fibers such as isophthalamide fibers, polyacrylonitrile fibers, cellulose fibers such as cotton and jute; or a mixture thereof.
Any fiber roving can be used as long as it is continuous fibers such as roving and yarn. In the present invention, these are collectively called roving.
Further, these fibers may be treated with a surface treatment agent in order to improve the adhesion to the resin. Such a reinforcing fiber bundle is preferably preheated and then brought into contact with the resin melt prior to impregnation with the thermoplastic resin melt in the cross head, and a tension roll or the like It is preferable to open the fiber with a fiber opening device.
The resin material may be any kind of resin such as crystalline resin, non-crystalline resin, biodegradable resin, non-biodegradable resin, synthetic resin, natural resin, general-purpose resin, engineering resin, polymer alloy, etc. Good. For example, polyolefins such as polyethylene and polypropylene; polyvinyl chloride; polystyrene; aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate; aliphatic polyesters such as polyethylene succinate, polybutylene adipate and their caprolactone terpolymers; Polyamides such as nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 46; polyacetal, polycarbonate, polyurethane, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether ketone, polyether amide, polyether imide Engineering resins such as These resins may be used in combination of two or more. The resin is preferably a resin having a high molecular weight that is usually used for various molding processes such as injection molding and extrusion molding, and when the fiber is impregnated with the resin, a resin that exhibits a sufficient reinforcing effect by itself.
In addition, the long fiber reinforced thermoplastic resin structure according to the present invention includes, as necessary, resin additives and fillers, for example, antioxidants, heat stabilizers, stabilizers such as ultraviolet absorbers, antistatic agents, Lubricants, plasticizers, mold release agents, flame retardants, flame retardant aids, crystallization accelerators, colorants such as dyes and pigments, and fillers such as talc can also be blended. These can be used in a form pre-blended with the thermoplastic resin 2.
The present invention can also be applied to a continuous fiber-impregnated film or die for sheet molding and a continuous fiber-impregnated pipe molding die.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例によって限定されるものでない。
本実施例では下記のものを使用した。
樹脂:含浸用樹脂としては、ホモポリプロピレン(メルトインデックス60g/10分)98重量%と、無水マレイン酸2重量%変性ポリプロピレン2重量%との混合物を使用した。
強化繊維:ガラス繊維ロービングとして、径17μmのガラス単繊維4000本の束(サイジング処理品)を使用した。
(実施例1)
冷却槽としては第2図に示すような構造のものであり、冷却槽の長さ、即ち引込側水出口2aと引出側水出口2bの間隔が0.6m、水出口2aと2bはそれぞれ単一の横孔であり孔幅が15cm、孔高さ(鉛直方向の長さである。)が1cm、冷却槽の深さは10cmである。
冷却水は、イオン交換水を使用し、底部中央に設けられた水入り口から25℃、10リットル/分で供給し、多孔板を通して上昇させ、引込側水出口2aと引出側水出口2bから排出させた。
上記冷却槽を用い、その他の部分は通常の長繊維強化熱可塑性樹脂構造体の製造装置を使用し、ガラス繊維ロービング4本を供給して、開繊した後、溶融した上記ポリプロピレンを押出機より供給し、クロスヘッドダイを通して繊維ロービングに樹脂を200〜220℃で含浸させ、賦形ダイ(孔径3mm)から溶融樹脂含浸繊維ロービング22を15m/分で引取り、冷却槽で80〜90℃まで水冷し、空冷乾燥後、ペレタイザーにより切断し、ガラス繊維濃度50重量%のペレットを得た。ペレットの表面には凹凸は見られず、繊維の露出も無かった。
(比較例1)
上記冷却槽の代りに、従来の水スプレー式冷却装置(冷却部長さ2.0m)を設け、25℃のイオン交換水を30リットル/分で供給して冷却した以外は実施例1と同様に行った。ペレットの表面には凹凸が見られ、繊維の露出が部分的に生じた。また、供給水量が多く必要であった。
(実施例2)
冷却槽の長さ、即ち引込側水出口2aと引出側水出口2bの間隔が1.0mである以外は実施例1と同様の構造の冷却槽を使用し、溶融樹脂含浸繊維ロービング22の引取速度を30m/分にした以外は、実施例1と同様に行った。
この結果、ペレットの表面には凹凸は見られず、繊維の露出も無かった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In this example, the following were used.
Resin: As a resin for impregnation, a mixture of 98% by weight of homopolypropylene (melt index 60 g / 10 min) and 2% by weight of maleic anhydride-modified polypropylene 2% was used.
Reinforcing fiber: As a glass fiber roving, a bundle of 4000 single glass fibers having a diameter of 17 μm (sizing-treated product) was used.
Example 1
The cooling tank has a structure as shown in FIG. 2. The length of the cooling tank, that is, the distance between the inlet side water outlet 2a and the outlet side water outlet 2b is 0.6 m, and each of the water outlets 2a and 2b is a single unit. One horizontal hole has a hole width of 15 cm, a hole height (vertical length) of 1 cm, and a cooling bath depth of 10 cm.
Cooling water uses ion-exchanged water, is supplied from a water inlet provided at the center of the bottom at 25 ° C. and 10 liters / minute, is raised through a perforated plate, and is discharged from the inlet side water outlet 2a and the outlet side water outlet 2b. I let you.
Using the above cooling tank, the other parts using a normal long fiber reinforced thermoplastic resin structure manufacturing apparatus, supplying four glass fiber rovings, opening, and then melting the above polypropylene from an extruder Supply and impregnate the resin into the fiber roving at 200 to 220 ° C. through the crosshead die, take the molten resin impregnated fiber roving 22 from the shaping die (hole diameter 3 mm) at 15 m / min, and to 80 to 90 ° C. in the cooling bath Water-cooled, air-cooled and dried, then cut with a pelletizer to obtain pellets having a glass fiber concentration of 50% by weight. There were no irregularities on the surface of the pellet, and no fibers were exposed.
(Comparative Example 1)
Instead of the cooling tank, a conventional water spray type cooling device (cooling part length 2.0 m) is provided, and 25 ° C. ion-exchanged water is supplied at 30 liters / minute and cooled in the same manner as in Example 1. went. Unevenness was observed on the surface of the pellet, and the fiber was partially exposed. In addition, a large amount of water supply was necessary.
(Example 2)
Taking out the molten resin-impregnated fiber roving 22 using a cooling tank having the same structure as in Example 1 except that the length of the cooling tank, that is, the interval between the drawing-side water outlet 2a and the drawing-side water outlet 2b is 1.0 m. The same operation as in Example 1 was performed except that the speed was changed to 30 m / min.
As a result, no irregularities were found on the surface of the pellet, and no fibers were exposed.

本発明によれば、長繊維強化樹脂構造体を、側面にへこみや繊維の露出の増加を生じることなく、設置空間的に効率よく冷却して製造することができ、また運転開始時の多数の溶融樹脂含浸繊維ロービングの冷却槽への挿入が容易であるので、他品種の生産時の切替も容易である。  According to the present invention, the long fiber reinforced resin structure can be manufactured by efficiently cooling the installation space without causing dents or increase in fiber exposure on the side surface, Since it is easy to insert the molten resin impregnated fiber roving into the cooling tank, it is also easy to switch during production of other varieties.

Claims (13)

長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、冷却槽(3)は水を溢流させる構造を有し、
溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内で直線状に通過させ、水を溢流させながら冷却することを特徴とする冷却槽。
It is a cooling tank (3) for water-cooling the molten resin impregnated fiber roving (22) discharged from the shaping die (15) of the production apparatus for the long fiber reinforced thermoplastic resin structure, and the cooling tank (3) is water Has a structure that overflows,
A cooling tank, wherein the molten resin-impregnated fiber roving (22) is linearly passed through the cooling tank (3) and cooled while overflowing water.
長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、側面及び底面を有する筐体(4)、
筐体(4)の側面もしくは底面に設けられた水入口(1)及び
筐体(4)の引込側側面(4a)の引込側上端部(4a′)に形成された引込側水出口(2a)及び引出側側面(4b)の引出側上端部(4b′)に形成された引出側水出口(2b)からなり、
溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内の引込側水出口(2a)及び引出側水出口(2b)間で直線状に通過させながら、溶融樹脂含浸繊維ロービング(22)を水冷させて樹脂含浸繊維ロービング(23)を得る冷却槽。
A cooling tank (3) for water-cooling a molten resin-impregnated fiber roving (22) discharged from a shaping die (15) of an apparatus for producing a long-fiber reinforced thermoplastic resin structure, and having a side surface and a bottom surface (4),
A water inlet (1) provided on the side surface or bottom surface of the housing (4) and a water inlet (2a) on the drawing side formed on the drawing side upper end (4a ′) of the drawing side surface (4a) of the housing (4). ) And a drawer-side water outlet (2b) formed at the drawer-side upper end (4b ') of the drawer-side surface (4b),
The molten resin-impregnated fiber roving (22) is passed through the molten resin-impregnated fiber roving (22) in a straight line between the drawing-side water outlet (2a) and the drawing-side water outlet (2b) in the cooling tank (3). A cooling tank that is cooled with water to obtain a resin-impregnated fiber roving (23).
引込側側面(4a)の引込側上端部(4a′)に設けられた2以上の引込側切欠き部(8a)および引込側上端部(4a′)上に設けられた引込側堰板(5a)により形成された引込側水出口(2a)、及び/又は
引出側側面(4b)の引出側上端部(4b′)に設けられた2以上の引出側切欠き部(8b)および引出側上端部(4b′)上に設けられた引出側堰板(5b)により形成された引出側水出口(2b)
からなる請求項2に記載の冷却槽。
Two or more drawing side notches (8a) provided on the drawing side upper end (4a ') of the drawing side surface (4a) and a drawing side barrier plate (5a) provided on the drawing side upper end (4a') ) And / or the drawing side water outlet (2a) and / or the drawing side upper end (4b ') of the drawing side surface (4b). Drawer-side water outlet (2b) formed by a drawer-side dam plate (5b) provided on the section (4b ')
The cooling tank according to claim 2, comprising:
長繊維強化熱可塑性樹脂構造体の製造装置の賦形ダイ(15)から排出された溶融樹脂含浸繊維ロービング(22)を水冷するための冷却槽(3)であり、側面及び底面を有する筐体(4)、
筐体(4)より上方もしくは筐体(4)の天面に設けられた蓋(5)、
筐体(4)の側面もしくは底面に設けられた水入口(1)及び
筐体(4)の側面の引込側側面(4a)の引込側上端部(4a′)と蓋(5)との間に形成された引込側水出口(2a)及び引出側側面(4b)の引出側上端部(4b′)と蓋(5)との間に形成された引出側水出口(2b)からなり、
溶融樹脂含浸繊維ロービング(22)を、冷却槽(3)内の引込側水出口(2a)及び引出側水出口(2b)間で直線状に通過させながら、溶融樹脂含浸繊維ロービング(22)を水冷させて樹脂含浸繊維ロービング(23)を得る冷却槽。
A cooling tank (3) for water-cooling a molten resin-impregnated fiber roving (22) discharged from a shaping die (15) of an apparatus for producing a long-fiber reinforced thermoplastic resin structure, and having a side surface and a bottom surface (4),
A lid (5) provided above the housing (4) or on the top surface of the housing (4);
Between the water inlet (1) provided on the side surface or the bottom surface of the housing (4) and the upper end portion (4a ') of the retracting side surface (4a) of the side surface of the housing (4) and the lid (5) A drawing-side water outlet (2b) formed between the drawing-side water outlet (2a) and the drawing-side upper end (4b ') of the drawing-side side surface (4b) and the lid (5),
The molten resin-impregnated fiber roving (22) is passed through the molten resin-impregnated fiber roving (22) in a straight line between the drawing-side water outlet (2a) and the drawing-side water outlet (2b) in the cooling tank (3). A cooling tank that is cooled with water to obtain a resin-impregnated fiber roving (23).
引込側側面(4a)の引込側上端部(4a′)に設けられた2以上の引込側切欠き部(8a)および蓋(5)により形成された引込側水出口(2a)、及び/又は引出側側面(4b)の引出側上端部(4b′)に設けられた2以上の引出側切欠き部(8b)および蓋(5)により形成された引出側水出口(2b)
からなる請求項4に記載の冷却槽。
A drawing-side water outlet (2a) formed by two or more drawing-side notches (8a) and a lid (5) provided on the drawing-side upper end (4a ′) of the drawing-side side surface (4a), and / or Drawer-side water outlet (2b) formed by two or more drawer-side notches (8b) and a lid (5) provided on the drawer-side upper end (4b ') of the drawer-side surface (4b)
The cooling tank according to claim 4.
引込側水出口(2a)の形状が、又は引込側水出口(2a)と引出側水出口(2b)の両者の形状が、水平方向に開口した一つの横孔である請求項2又は4に記載の冷却槽。The shape of the drawing-in water outlet (2a) or both the drawing-side water outlet (2a) and the drawing-side water outlet (2b) are one horizontal hole opened in the horizontal direction. The cooling tank described. 引込側水出口(2a)及び引出側水出口(2b)の鉛直方向の長さが2〜100mmである請求項1〜6のいずれかに記載の冷却槽。The cooling tank according to any one of claims 1 to 6, wherein the length of the drawing-side water outlet (2a) and the drawing-side water outlet (2b) in the vertical direction is 2 to 100 mm. さらに、水分散手段(6)が水入口(1)と、引込側水出口(2a)および引出側水出口(2b)からなる水出口(2)との間に設けられた請求項1〜7のいずれかに記載の冷却槽。Furthermore, the water dispersion | distribution means (6) was provided between the water inlet (1) and the water outlet (2) which consists of a drawing side water outlet (2a) and a drawing side water outlet (2b). The cooling tank in any one of. 水出口(2)から溢流した水の一部又は全部を、循環させるための水循環装置(7)を有する請求項1〜8のいずれかに記載の冷却槽。The cooling tank according to any one of claims 1 to 8, further comprising a water circulation device (7) for circulating part or all of the water overflowing from the water outlet (2). 循環させる水を冷却するための冷却装置(8)を有する請求項9に記載の冷却槽。The cooling tank according to claim 9, further comprising a cooling device (8) for cooling the water to be circulated. 冷却槽(3)の引込側水出口(2a)と引出側水出口(2b)の間隔dが、冷却槽(3)内を通過する溶融樹脂含浸繊維ロービング(22)の線速度をvとした場合に、
d(単位:m)=f(単位:分)×v(単位:m/分)
(ここでfは0.01〜0.1である。)
である請求項1〜10のいずれかに記載の冷却槽。
The distance d between the drawing-side water outlet (2a) and the drawing-side water outlet (2b) of the cooling tank (3) is set to v the linear velocity of the molten resin-impregnated fiber roving (22) passing through the cooling tank (3). In case,
d (unit: m) = f (unit: minute) × v (unit: m / min)
(Here, f is 0.01 to 0.1.)
The cooling tank according to claim 1.
水分散手段(6)の上方に、エアレーター(9)が設けられた請求項1〜11のいずれかに記載の冷却槽。The cooling tank according to any one of claims 1 to 11, wherein an aerator (9) is provided above the water dispersion means (6). 請求項1〜12のいずれかに記載の冷却槽(3)を使用して、溶融樹脂含浸繊維ロービング(22)を、0〜90℃の水で冷却させる長繊維強化熱可塑性樹脂構造体の製造方法。Production of a long fiber reinforced thermoplastic resin structure in which the molten resin impregnated fiber roving (22) is cooled with water at 0 to 90 ° C using the cooling tank (3) according to any one of claims 1 to 12. Method.
JP2006514123A 2004-06-03 2005-05-26 Cooling tank for long fiber reinforced resin structure and method for producing the structure Active JP3908782B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004166226 2004-06-03
JP2004166226 2004-06-03
PCT/JP2005/010088 WO2005118265A1 (en) 2004-06-03 2005-05-26 Long-fiber-reinforced resin structure-use cooling tank and production method for the structure

Publications (2)

Publication Number Publication Date
JP3908782B2 true JP3908782B2 (en) 2007-04-25
JPWO2005118265A1 JPWO2005118265A1 (en) 2008-04-03

Family

ID=35462795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514123A Active JP3908782B2 (en) 2004-06-03 2005-05-26 Cooling tank for long fiber reinforced resin structure and method for producing the structure

Country Status (3)

Country Link
JP (1) JP3908782B2 (en)
CN (1) CN1819912A (en)
WO (1) WO2005118265A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786515B (en) * 2014-01-16 2019-03-26 深圳联影医疗科技有限公司 A kind of process units and its manufacturing method of fiber reinforcement ring
CN105904611B (en) * 2016-04-14 2019-05-24 北京航空航天大学 A kind of ultra-thin continuous fiber reinforced thermoplastic resin prepreg and preparation method thereof
CN108099225B (en) * 2017-12-18 2023-10-31 金发科技股份有限公司 Alternating pressure melting impregnation equipment and melting impregnation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112616U (en) * 1983-01-20 1984-07-30 九州積水工業株式会社 Resin impregnation tank in continuous pultrusion equipment
JP2869130B2 (en) * 1990-02-27 1999-03-10 宇部日東化成株式会社 Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPH0890660A (en) * 1994-09-22 1996-04-09 Idemitsu Petrochem Co Ltd Manufacture of fiber-reinforced composite material

Also Published As

Publication number Publication date
CN1819912A (en) 2006-08-16
JPWO2005118265A1 (en) 2008-04-03
WO2005118265A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP3670321B2 (en) Crosshead die and method for producing long fiber reinforced resin structure
JP5788978B2 (en) Thermoplastic prepreg containing continuous and long fibers
US5114516A (en) Method for pultruding fiber-reinforced, thermoplastic stock
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
JP3584065B2 (en) Manufacturing apparatus and manufacturing method for long fiber reinforced resin structure
JP3908782B2 (en) Cooling tank for long fiber reinforced resin structure and method for producing the structure
JP4038521B2 (en) Long fiber reinforced resin strand production equipment
JP4516073B2 (en) Take-up device for long fiber reinforced resin structure and method for producing the structure
JP5069413B2 (en) Impregnation die for long fiber reinforced thermoplastic resin molding material and production method using the same
JP4671859B2 (en) Long fiber reinforced thermoplastic resin material manufacturing apparatus and manufacturing method thereof
JP7312380B2 (en) Method for producing thermoplastic resin-impregnated sheet-like reinforcing fiber bundle
JP3667294B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin material
JP3646316B2 (en) Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same
JP5098228B2 (en) Method for producing resin-impregnated long fiber and impregnation die
JP3997252B1 (en) Long fiber reinforced resin strand production equipment
JP2005305933A (en) Device for manufacturing structure of continuous length fiber-reinforced resin, multi-stage crosshead die and method for manufacturing this structure
KR20070018661A (en) Cooling vessel for long fiber-reinforced resin structure and method of producing the structure
JP4646108B2 (en) Method and apparatus for producing long fiber reinforced resin molding material
JP6477459B2 (en) Method for producing fiber reinforced thermoplastic resin
JP3787953B2 (en) Method for manufacturing unidirectional reinforced resin structure and apparatus for manufacturing the same
JP4633514B2 (en) Cooling device for long fiber reinforced thermoplastic rod
CN213866519U (en) Coarse denier fiber constant tension limiting cooling device
KR101203916B1 (en) Reinforced Material Manufacturing Apparatus Using Long Glass Fiber Thermoplastic and Continuous Glass Fiber Thermoplastic and its Manufacturing Method
JP3437651B2 (en) Method for producing pellet-shaped long fiber reinforced resin structure
JP2023001961A (en) Method of manufacturing long-fiber reinforced resin

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R151 Written notification of patent or utility model registration

Ref document number: 3908782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350