JP3908424B2 - Manufacturing method of endless belt - Google Patents

Manufacturing method of endless belt Download PDF

Info

Publication number
JP3908424B2
JP3908424B2 JP35759699A JP35759699A JP3908424B2 JP 3908424 B2 JP3908424 B2 JP 3908424B2 JP 35759699 A JP35759699 A JP 35759699A JP 35759699 A JP35759699 A JP 35759699A JP 3908424 B2 JP3908424 B2 JP 3908424B2
Authority
JP
Japan
Prior art keywords
raw material
stirring
dispersion
control agent
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35759699A
Other languages
Japanese (ja)
Other versions
JP2001171013A (en
Inventor
稔 松尾
亜希子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP35759699A priority Critical patent/JP3908424B2/en
Publication of JP2001171013A publication Critical patent/JP2001171013A/en
Application granted granted Critical
Publication of JP3908424B2 publication Critical patent/JP3908424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ポリイミド樹脂からなる無端状ベルトの製造方法に関し、より詳しくは、無端状ベルトの抵抗バラツキを防止するために抵抗制御剤をベルト基材中に均一に分散させる方法に関する。
本発明の応用分野としては、各種ベルト作製用の原料液を調製するための攪拌方法が挙げられる。また、本発明により製造される無端状ベルトは、画像形成装置用の中間転写ベルトとして有効に適用できるものである。
【0002】
【従来の技術】
複写機、ファクシミリ、プリンタ等の画像形成装置において、最近多色特にフルカラーの再生画像の要求が高まっており、この要求に答えることができる画像形成装置として、中間転写体を使用した転写方式の画像形成装置が普及している。上記中間転写方式では、中間転写体としてローラを用いる場合と、ベルトを用いる場合とがある。
【0003】
中間転写方式による画像形成方法は、感光体上に形成された潜像を電荷担持体トナーにより顕像化し、一次転写工程において上記感光体を中間転写体に転写色重ね(顕像化した画像の一次転写)した後、二次転写工程において上記顕像化画像を被転写体(複写紙)へ二次転写するものである。そして、この画像形成方法では中間転写体へ転写する際、電荷担持体(トナー)を移動転写させるために、感光体とこの中間転写体との間にバイアスの電圧を印加する必要があり、したがってこのバイアス電圧は、最適な画像が得られるように調整されている。
【0004】
ところで、中間転写方式の画像形成に無端状ベルトを用いる場合、このベルトは非使用時(走行停止状態)には、ベルト駆動用の駆動ローラや、バイアスを印加するための電極となるローラのローラ径の曲率に添った形態となっており、走行再開の際には、その曲率に添った形に変形しており、いわゆるカール癖という現象が生じる。そして、その経歴が残ると画像形成の際にカールした部分、あるいはその前後でトナー付着不足に起因する白抜けという画像不良が発生してしまう。
【0005】
このカール癖は、ベルト基材の熱物性に関係しており、融点あるいは軟化温度、さらに熱可塑性樹脂においてはガラス転移温度の高低と密接に関連しており、ガラス転移温度が高い材質ではカール癖が出にくいことが判明している。
【0006】
ポリイミド樹脂製のベルトは、耐熱性の良好なベルトであることが知られているが、このポリイミド樹脂はその耐熱性及び耐薬品性の良さの故に、逆に加工がしにくいという欠点を有しており、そのためベルト成形の際は、ワニスと呼ばれる未反応の前駆体の状態で成形型に塗布し、成形後この塗布膜を反応硬化させてベルト膜とする製造方法がとられている。
【0007】
すなわち、ポリイミド樹脂の合成では、上記前駆体としてポリアミド酸を用いる。このポリアミド酸は特定の溶剤に溶解する性質と、熱または触媒によってイミド閉環(イミド転化)してポリイミド樹脂に変化する性質とを有する。また、ポリイミド樹脂製の無端状ベルトを作製する方法としては一般的に、回転する円筒型内にポリアミド酸を注入・成形した後、これをイミド転化させる遠心成形法が知られている。
【0008】
ところで中間転写ベルトでは、良好な中間転写を行うために感光体とこのベルトとの間に電界印加バイアスをかける必要があるが、そのためにはベルトに、108 Ωレベルの適正な表面抵抗が要求される。そこで、ベルトの抵抗制御のために、ベルトの機械的な強度を確保することやコスト等を考慮して、主にカーボンブラックが抵抗制御剤として使用されている。
【0009】
【発明が解決しようとする課題】
しかしながら、従来技術ではベルトの抵抗を狙いの値にするために所定量のカーボンブラックを添加・分散させても、分散処理バッチ毎に抵抗がばらつくため、事前検査で適正抵抗を示す分散バッチを確認して使用しなければならないうえ、適合しないバッチは廃棄してしまうので、作業が煩雑なだけでなく、ベルトの歩留り向上が難しく、このため高品質のベルトを効率良く量産するのが困難であった。
【0010】
したがって本発明の目的は、抵抗制御剤をベルト基材中に均一に分散させることにより、ベルト全体にわたって抵抗が均一なポリイミド樹脂製の無端状ベルトを効率良く製造する方法を提供することにある。すなわち、本発明はポリアミド酸の溶剤溶液中に抵抗制御剤を分散させた原料液(ベルト成形用分散液)を調製する場合において、抵抗制御剤の分散量を同一にしたときには、同一抵抗のベルトを再現性良く作製することができる原料液調製方法を提示するものである。
【0011】
【課題を解決するための手段】
本発明の無端状ベルトの製造方法は、ポリイミド前駆体溶液であるポリアミド酸含有溶剤溶液中に抵抗制御剤を分散させた原料液を用いてポリイミド製の無端状ベルトを作製する方法において、前記原料液として、吸湿水分を含む水分率が前記溶剤の10wt%未満であるものを用いることを特徴とする。上記無端状ベルト作製のための成形方法としては遠心成形法、ディッピング法等の公知方法が用いられる。上記ディッピング法は、成形型を容器内の原料液に浸漬し、徐々に引上げるものである。
【0012】
また、本発明方法においては、ポリアミド酸を溶解する溶剤に抵抗制御剤を投入して攪拌することにより得た抵抗制御剤の分散液と、ポリイミド前駆体溶液とを混合攪拌することにより前記原料液を作製することを特徴とする。
【0013】
また、本発明方法においては、ポリアミド酸を溶解可能な溶剤と、ポリイミド前駆体溶液と、抵抗制御剤とを混合攪拌することにより前記原料液を作製することもできる。
【0014】
また、本発明方法においては、前記抵抗制御剤の分散液調製のための攪拌操作、前記抵抗制御剤の分散液と前記ポリイミド前駆体溶液との混合攪拌操作(すなわち、溶剤によるポリイミド前駆体溶液の攪拌希釈操作)の少なくとも一方を、外気中の湿気を遮断した状態で行うことを特徴とする。
【0015】
また、本発明方法においては、原料液作製のための混合攪拌操作を、外気中の湿気を遮断した状態で行うことを特徴とする。
【0016】
また、前記混合攪拌操作を湿気遮断状態で行う方法としては、(1)できるだけ小さい容積の容器に被攪拌液を入れ、該容器を密閉して上記混合攪拌操作を行うもの、(2)窒素ガス等の不活性ガス置換を行った容器に被攪拌液を入れ、該容器を密閉して上記混合攪拌を行うものが挙げられる。
【0017】
請求項2に記載の無端状ベルトの製造方法は、前記抵抗制御剤の分散液調製のための攪拌操作、前記抵抗制御剤の分散液と前記ポリイミド前駆体溶液との混合攪拌操作の少なくとも一方を、遠心攪拌法により行うことを特徴とする。
【0018】
請求項3に記載の無端状ベルトの製造方法においては、前記原料液作製のための混合攪拌操作を、遠心攪拌法により行うことを特徴とする。
【0019】
請求項4に記載の無端状ベルトの製造方法は、請求項またはにおいて、前記抵抗制御剤としてカーボンブラックを用いるとともに、前記遠心攪拌法による攪拌操作を、分散メディアを共存させて行うことを特徴とする。
【0020】
本発明に係る無端状ベルトの製造法では、上記抵抗制御剤としてカーボンブラック、酸化インジウム(In2 3 )などから任意に選んだものが使用できる。カーボンブラックの具体例としては、アセチレンブラック、ファーネスブラック、サーマルブラック、チャネルブラックが挙げられる。
【0021】
本発明者らの検討により、以下のことが判明した。ポリイミドの前駆体溶液であるポリアミド酸の溶剤溶液に抵抗制御剤を分散させた分散液(上記原料液)を用いて無端状ベルトを作製する方法において、前記分散液調製用およびこの分散液希釈用の溶剤としてジメチルアセトアミド(DMAC)や、N−メチルピロリドン(NMP)のような有機溶剤が使用されるが、これらの有機溶剤は吸湿性が強く、上記した前駆体溶液あるいは、その希釈溶液を大気に解放して放置すると、大気中の湿気(水分)を吸収して重量が増加していき、上記前駆体溶液または希釈溶液の表面に透明な液膜が形成されることが判明した。この透明液膜を熱分析すると水分が主成分であることが判った。
【0022】
また、吸水による重量増加が20wt%以上になると、上記原料液の表面が不透明化し、吸水量増加とともに不透明化が進行し、遂には全体が不透明化することが確認された。これを顕微鏡観察すると、微小な球形物質が発生成長していることが認められた。これは、原料液中の吸湿性溶剤が大気中の水分を吸収することによって、ある含水率になったときに原料液がゲル化あるいは結晶化したためと推定される。このため原料液中の抵抗制御剤の濃度分布が変動して不均一となり、これが、最終的に得られる無端状ベルトの抵抗バラツキになって現れるものと考えられる。
【0023】
本発明者らは、以上の検討結果をもとに上記ゲル化あるいは結晶化の防止と、抵抗バラツキの防止のために、上記有機溶剤の水分吸収をできるだけ少なくする方法を開発したものである。
【0024】
【実施例】
以下、本発明の実施例、および比較例について説明する。
実施例1−1
プラスチック製容器に溶剤DMACと、抵抗制御剤(導電剤)としてカーボンブラック(ファーネスブラック)と、1mm径のガラス製分散メディアとを投入してこの容器を密閉し、遠心攪拌機で混合攪拌することにより、カーボンブラックの平均粒径が1μm以下で、濃度が4wt%(DMAC100重量部に対する比率が4重量部の意味。以下の実施例および比較例においても同様である。)のカーボンブラック分散液を作製した。
【0025】
つぎに、別の容器に上記分散液と、予め用意した単一ロットのポリイミド前駆体溶液(ポリアミド酸をDMAC/NMP混合液に溶解したもの)を注入して容器を密閉した。この場合、後に成形して得られる無端状膜を構成するポリイミド樹脂100重量部に対するカーボンブラックの比率が20重量部(カーボンブラックの樹脂固形分比率が20wt%)となるようにした。そして、この容器を遠心攪拌機にセットし、カーボンブラックの分散および脱泡を行って遠心成形用の原料液(別称ワニス)を作製した。
【0026】
この原料液の一部を採取して遠心成形型に注入塗布した後、塗布膜を乾燥固化させた。ついで、この遠心成形型を焼成炉に入れて300℃で上記乾燥固化膜の加熱硬化処理を行い、厚さ100μmの無端状膜(ポリイミド膜)とした。
同様に上記原料液の一部を採取し、以上の操作を繰り返すことで無端状膜を複数バッチ作製した。
【0027】
実施例1−2
複数ロットのポリイミド前駆体溶液を個別に用い、実施例1−1と同一の手順・条件により無端状膜を複数バッチ作製した。この場合、カーボンブラック分散液として、実施例1−1で作製したカーボンブラック分散液を使用した。
【0028】
実施例1−1および実施例1−2で得られたポリイミド膜の表面抵抗を測定したところ、抵抗値は1×108 〜9×108 Ωの範囲内におさまっていた。上記複数の遠心成形用原料液(ポリイミド前駆体溶液とカーボンブラック分散液との混合液)では、いずれも水分量が溶剤DMACの10wt%未満(DMAC100重量部に対し10重量部未満)であった。すなわち、単一ロットのポリイミド前駆体溶液を用いた場合には抵抗値がロット内で、また、複数ロットのポリイミド前駆体溶液を使用した場合には抵抗値がロット間で、それぞれバラツキの小さいポリイミド膜が得られた。
【0029】
実施例2−1
実施例1−1と同様の操作を行った。ただしこの場合、遠心成形用原料液を作製する際、徹底して湿気を遮断するために、下記のように不活性ガス置換を行った。予め窒素ガスで空気をパージしたプラスチック製容器にDMACと、抵抗制御剤としてカーボンブラック(ファーネスブラック)と、1mm径のガラス製分散メディアとを投入し、さらに窒素ガスを流入させたのち密閉し、遠心攪拌機で混合攪拌することにより、カーボンブラックの平均粒径が1μm以下で、濃度が4wt%のカーボンブラック分散液を作製した。
【0030】
次に、同じように窒素置換した別の容器にこの分散液と、単一ロットのポリイミド前駆体溶液(ポリアミド酸をDMAC/NMP混合液に溶解したもの)とを注入したのち窒素ガスを封入した。この場合、後に得られる無端状膜を構成するポリイミド樹脂100重量部に対するカーボンブラックの比率が20重量部となるようにした。そして、上記容器を密閉して遠心攪拌機にセットし、カーボンブラックの分散および脱泡を行って遠心成形用の原料液を作製した。この原料液の一部を採取して遠心成形型に注入塗布した後、塗布膜を乾燥固化させた。ついで、この遠心成形型を焼成炉に入れて300℃で上記乾燥固化膜の加熱硬化処理を行い、厚さ100μmの無端状膜とした。同様に上記原料液の一部を採取し、以上の操作を繰り返すことで無端状膜を複数バッチ作製した。
【0031】
実施例2−2
複数ロットのポリイミド前駆体溶液を個別に用い、実施例2−1と同一の手順・条件により無端状膜を複数バッチ作製した。この場合、カーボンブラック分散液として、実施例2−1で作製したカーボンブラック分散液を使用した。
【0032】
実施例2−1および実施例2−2で得られたポリイミド膜の表面抵抗を測定したところ、抵抗値は5×108 〜9×108 Ωの範囲内におさまっていた。上記複数の遠心成形用原料液では、いずれも水分量が溶剤DMACの1wt%未満(DMAC100重量部に対し1重量部未満)であった。すなわち、単一ロットのポリイミド前駆体溶液を用いた場合には抵抗値がロット内で、また、複数ロットのポリイミド前駆体溶液を使用した場合には抵抗値がロット間で、それぞれバラツキの小さいポリイミド膜が得られた。
【0033】
実施例3−1
実施例2−1および実施例2−2と同様に、徹底して湿気を遮断するために不活性ガス置換を行った容器を用いて遠心成形用の原料液を作製した。この場合、予め窒素ガスで空気をパージしたプラスチック製容器にDMACと、ポリイミド前駆体溶液と、抵抗制御剤として平均粒径0.1μm以下の酸化インジウム(In2 3 )とを投入し、さらに窒素ガスを流入させたのち密閉し、遠心攪拌機で混合攪拌することにより、酸化インジウムの樹脂固形分比率が55wt%の原料液を作製した。
【0034】
この原料液の一部を採取して遠心成形型に注入塗布した後、塗布膜を乾燥固化させた。ついで、この遠心成形型を焼成炉に入れて300℃で上記乾燥固化膜の加熱硬化処理を行い、厚さ100μmの無端状膜とした。同様に上記原料液の一部を採取し、以上の操作を繰り返すことで無端状膜を複数バッチ作製した。
【0035】
実施例3−2
ポリイミド前駆体溶液として複数ロットの溶液を個別に用いたこと以外は実施例3−1と同一の手順・条件により、無端状膜を複数バッチ作製した。
【0036】
実施例3−1および実施例3−2で得られたポリイミド膜の表面抵抗を測定したところ、抵抗値は5×108 〜9×108 Ωの範囲内におさまっていた。上記複数の遠心成形用原料液では、いずれも水分量が溶剤DMACの0.5wt%未満であった。すなわち、単一ロットのポリイミド前駆体溶液を用いた場合には抵抗値がロット内で、また、複数ロットのポリイミド前駆体溶液を使用した場合には抵抗値がロット間で、それぞれバラツキの小さいポリイミド膜が得られた。
【0037】
比較例1
実施例1−1,1−2および、実施例2−1,2−2におけるカーボンブラック分散液の作製時に、上記分散メディアを使用せずに遠心攪拌した原料液では、微小ではあるが未破砕のカーボンブラックの凝集塊が認められ、遠心成形型の表面に原料液による塗布膜を形成すると、膜表面にブツブツの突起が多数発生した。また、得られたポリイミド製の中間転写ベルトを用いて画像を形成したところ、白斑点の異常画像になってしまった。
【0038】
ところで、実施例1−1,1−2および実施例2−1,2−2では、分散メディアを用いて調製した抵抗制御剤分散液と、ポリイミド前駆体溶液とを混合・攪拌して原料液を作製したのに対し、実施例3−1,3−2では、抵抗制御剤とポリイミド前駆体溶液とを、ポリアミド酸を溶解する溶剤であるDMACに混合して原料液を作製した点で相違している。
【0039】
そこで、実施例3−1,3−2において、分散メディアを投入して遠心攪拌を行って得た原料液からなる中間転写ベルトと、分散メディアを使用せずに遠心攪拌した原料液からなる中間転写ベルトとを個別に用いて画像を形成したところ画像品質に大差がなく、実施例3−1,3−2では分散メディアの必要性がないことが判った。
【0040】
比較例2−1
容器にDMACと、カーボンブラック(ファーネスブラック)とを投入し、遠心攪拌機で混合攪拌することにより、カーボンブラックの平均粒径が1μm以下で、濃度が4wt%のカーボンブラック分散液を作製した。この分散液と単一ロットのポリイミド前駆体溶液とを瓶容器に注入し、ホモニナイザーで機械攪拌して、カーボンブラックの樹脂固形分比率が20wt%の原料液を作製した。この原料液の一部を用い、実施例1−1と同様にして遠心成形型に塗布したのち乾燥・硬化し、厚さ100μmの無端状膜を作製した。同様に上記原料液の一部を用い、以上の操作を繰り返すことで無端状膜を複数バッチ作製した。
【0041】
比較例2−2
複数ロットのポリイミド前駆体溶液を個別に用いた以外は比較例2−1と同一の手順・条件により無端状膜を複数バッチ作製した。この場合、カーボンブラック分散液として、比較例2−1で作製したものを使用した。
【0042】
比較例2−1および比較例2−2で得られたポリイミド膜の表面抵抗を測定したところ、抵抗値は5×106 〜9×1010Ωの範囲で大きくばらついた。すなわち、ポリイミド前駆体溶液の単一ロット内および、ポリイミド前駆体溶液の複数ロット間でポリイミド膜の抵抗値が大きくばらついた。上記カーボンブラック分散液の水分量は、溶剤DMACの9wt%であり、上記複数の遠心成形用原料液では、いずれも水分量が溶剤DMACの15%wt%であった。
【0043】
また、以上の原料液作製工程を調温調湿のない部屋で、高温高湿の梅雨時(平均28℃・90%RH)に行った結果、遠心成形型に原料液を塗布した塗布液の表面には透明な水分層が現れ、溶剤に対する水分率が20wt%以上になると原料液は白濁化してしまった。また、これにより得られたポリイミド膜の抵抗値は、1×106 〜9×1012Ωの範囲で大きくばらつき、安定した抵抗値を得ることは不可能であった。
【0044】
比較例3−1
容器にDMACと、カーボンブラック(ファーネスブラック)を4wt%投入してサンドミルで攪拌分散し、平均粒径1μm以下のカーボンブラックの分散液を作製した。この分散液と、予め用意した単一ロットのポリイミド前駆体溶液とを、窒素パージした容器に注入して遠心攪拌機で分散・脱泡し、カーボンブラックの樹脂固形分比率が20wt%の原料液を得た。この原料液の一部を用い、実施例1−1と同様にして遠心成形型に塗布乾燥したのちこれを硬化し、厚さ100μmの無端状膜を作製した。同様に上記原料液の一部を用い、以上の操作を繰り返すことで無端状膜を複数バッチ作製した。
【0045】
比較例3−2
複数ロットのポリイミド前駆体溶液を個別に用いた以外は比較例3−1と同一の手順・条件により無端状膜を複数バッチ作製した。この場合、カーボンブラック分散液として、比較例3−1で作製したものを使用した。
【0046】
比較例3−1および比較例3−2で得られたポリイミド膜の表面抵抗を測定したところ、抵抗値は1×107 〜5×109 Ωの範囲になり、バラツキの幅は比較的小さいものの、安定した抵抗値を再現性良く得ることはできなかった。これら比較例3−1,比較例3−2で使用した原料液の水分量は、この原料液中の溶剤(カーボンブラック分散液中のDMACおよび、ポリイミド前駆体溶液中の溶剤)100重量部に対しの12wt%前後であった。
【0047】
以上のように、ポリアミド酸含有溶剤溶液中に抵抗制御剤が分散した原料液を成形して得たポリイミド膜の抵抗値のバラツキには、上記溶剤の水分率が大きく影響していることが判った。
【0048】
サンドミルによるカーボンブラックの分散は、1時間以上も容器を解放したままで行わなければならないので、その間に大気中の水分を吸収するのは避けられない。また、上記分散操作では、被分散液を回転速度2000rpm以上で回転させるため、分散液に泡が混入する。そして、この泡が大気中の水蒸気を含んでいるとこれが溶剤に吸収されるが、この吸収水分は脱泡処理を行っても除去できないので分散液中に水分が含まれ、これが上記悪影響の原因になっているものと考えられる。このように、吸湿性の溶剤を含有したポリアミド前駆体溶液を用いるポリイミド膜の作製工程では、外部雰囲気中の湿気を遮断した状態でポリイミド膜成形用原料液の作製を行うことが、望ましい抵抗等の特性を有するポリイミド膜を得るために重要であることが明白になった。
【0049】
【発明の効果】
以上の説明で明らかなように、本発明によれば以下の効果が得られる。
(1)請求項の発明の効果
発明では原料液として、吸湿水分を含む水分率が溶剤の10wt%未満であるものを用いる。これにより、膜抵抗のバラツキを1オーダー以内(最大値/最低値の比が10以下)に抑えることができる。したがって、発明により得られたポリイミド樹脂製無端状ベルトからなる中間転写ベルトを用いた画像形成装置では、良好な品質の画像を安定して得ることが可能となる。ポリイミド前駆体溶液を含有する原料液を使用してポリイミド膜を作製する場合、原料液中の溶剤が吸湿して水分率が増大すると、前駆体成分が微細結晶塊化したり、ゲル化したりする結果、抵抗制御剤の微粒子が原料液中に均一に分散しなくなる。したがって、原料液の水分吸収をなるべく低く抑えるようにしなければならない。
【0050】
発明では、抵抗制御剤分散のための攪拌操作、ポリイミド前駆体溶液の溶剤による希釈攪拌操作などの原料液作製操作を、外気中の湿気を遮断した状態で行う。上記吸湿・吸水を抑えるためには、外部環境の湿度を低くするとともに、攪拌操作中に吸水しない条件を採用するのが有効である。それには例えば、容器を密閉するか、あるいは容器内の雰囲気を不活性ガスで置換すればよい。こうすることで発明の効果が得られる。
【0051】
)請求項2、3の発明の効果
これらの発明では、抵抗制御剤分散などのための攪拌操作を遠心攪拌法により行う。密閉状態での液の攪拌法として遠心攪拌法は最適である。また、攪拌と同時に脱泡も密閉状態で可能であり、加熱による含有気泡の離脱に起因する膜表面の外観以上も低減することができる。
【0052】
)請求項の発明の効果
本発明では、抵抗制御剤としてカーボンブラックを用いるとともに、遠心攪拌法による攪拌操作を分散メディアを共存させて行う。カーボンブラックは凝集性が強く、単純な遠心攪拌では凝集塊が完全には分散しにくい。そのために、分散不良の原料液を用いて膜を作製すると、膜表面に凹凸の外観以上が生じて良好な画像が形成されなくなる。したがって、カーボンブラックの分散性を向上させなければならないが、そのためにはサンドミルの場合のように、サンド(メディア)を同時に投入しておけば、凝集塊が粉砕され微粒子となって分散するので、良好な形態の膜を形成することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an endless belt made of a polyimide resin, and more particularly to a method for uniformly dispersing a resistance control agent in a belt base material in order to prevent resistance variation of the endless belt.
As an application field of the present invention, a stirring method for preparing various liquids for producing belts can be mentioned. The endless belt manufactured according to the present invention can be effectively applied as an intermediate transfer belt for an image forming apparatus.
[0002]
[Prior art]
In image forming apparatuses such as copiers, facsimiles, and printers, there has recently been a growing demand for multi-color, especially full-color reconstructed images. As an image forming apparatus that can meet these demands, a transfer-type image using an intermediate transfer member. Forming devices are widespread. In the intermediate transfer method, there are cases where a roller is used as an intermediate transfer member and a belt is used.
[0003]
In the image forming method using the intermediate transfer method, the latent image formed on the photosensitive member is visualized with a charge carrier toner, and the photosensitive member is superimposed on the intermediate transfer member in the primary transfer step (transfer of the visualized image). After the primary transfer, the visualized image is secondarily transferred to a transfer target (copy paper) in a secondary transfer step. In this image forming method, it is necessary to apply a bias voltage between the photosensitive member and the intermediate transfer member in order to move and transfer the charge carrier (toner) when transferring to the intermediate transfer member. This bias voltage is adjusted so as to obtain an optimum image.
[0004]
By the way, when an endless belt is used for intermediate transfer type image formation, when this belt is not used (running stop state), a driving roller for driving the belt or a roller roller serving as an electrode for applying a bias. The shape follows the curvature of the diameter, and when the traveling is resumed, the shape is deformed according to the curvature, and a so-called curl phenomenon occurs. If the history remains, an image defect such as white spots caused by insufficient toner adhesion occurs at a portion curled during image formation or before and after the curled portion.
[0005]
This curl is related to the thermophysical properties of the belt base material, and is closely related to the melting point or softening temperature, and further to the glass transition temperature of thermoplastic resins. Has been found to be difficult.
[0006]
Polyimide resin belts are known to have good heat resistance, but this polyimide resin has the disadvantage that it is difficult to process due to its good heat resistance and chemical resistance. For this reason, at the time of belt forming, a production method is adopted in which a coating film is applied to a mold in the form of an unreacted precursor called varnish, and this coating film is reacted and cured after forming to form a belt film.
[0007]
That is, in the synthesis of the polyimide resin, polyamic acid is used as the precursor. This polyamic acid has a property of being dissolved in a specific solvent and a property of being changed to a polyimide resin by imide ring closure (imide conversion) by heat or a catalyst. As a method for producing an endless belt made of polyimide resin, a centrifugal molding method is generally known in which polyamic acid is injected and molded into a rotating cylindrical mold and then converted into an imide.
[0008]
By the way, in the intermediate transfer belt, it is necessary to apply an electric field application bias between the photosensitive member and the belt in order to perform good intermediate transfer. For this purpose, an appropriate surface resistance of 10 8 Ω level is required for the belt. Is done. Therefore, in order to control the resistance of the belt, carbon black is mainly used as a resistance control agent in consideration of securing the mechanical strength of the belt and cost.
[0009]
[Problems to be solved by the invention]
However, in the conventional technology, even if a predetermined amount of carbon black is added and dispersed in order to bring the resistance of the belt to the target value, the resistance varies for each dispersion treatment batch. In addition, the batches that do not fit are discarded, which is not only cumbersome but also difficult to improve the yield of the belt, which makes it difficult to efficiently mass-produce high-quality belts. It was.
[0010]
Accordingly, an object of the present invention is to provide a method for efficiently producing an endless belt made of polyimide resin having uniform resistance throughout the belt by uniformly dispersing a resistance control agent in the belt base material. That is, in the case of preparing a raw material liquid (belt molding dispersion liquid) in which a resistance control agent is dispersed in a polyamic acid solvent solution, the present invention provides a belt having the same resistance when the resistance control agent is dispersed in the same amount. Presents a method for preparing a raw material solution that can be produced with good reproducibility.
[0011]
[Means for Solving the Problems]
The method for producing an endless belt according to the present invention is a method for producing an endless belt made of polyimide using a raw material liquid in which a resistance control agent is dispersed in a polyamic acid-containing solvent solution that is a polyimide precursor solution. A liquid having a moisture content including moisture absorption is less than 10 wt% of the solvent is used. As a molding method for producing the endless belt, known methods such as a centrifugal molding method and a dipping method are used. In the dipping method, the mold is immersed in the raw material liquid in the container and gradually pulled up.
[0012]
In the method of the present invention, the raw material liquid is prepared by mixing and stirring the resistance control agent dispersion obtained by adding and stirring the resistance control agent to the solvent in which the polyamic acid is dissolved, and the polyimide precursor solution. It is characterized by producing.
[0013]
In the method of the present invention, the raw material liquid can also be prepared by mixing and stirring a solvent capable of dissolving polyamic acid, a polyimide precursor solution, and a resistance control agent.
[0014]
Further, in the method of the present invention, a stirring operation for preparing the dispersion of the resistance control agent, a mixing stirring operation of the dispersion of the resistance control agent and the polyimide precursor solution (that is, the polyimide precursor solution with a solvent) At least one of the stirring / dilution operation is performed in a state where moisture in the outside air is blocked.
[0015]
In the method of the present invention, the mixing and stirring operation for preparing the raw material liquid is performed in a state where moisture in the outside air is shut off.
[0016]
In addition, as a method of performing the mixing and stirring operation in a moisture cut-off state, (1) putting the liquid to be stirred into a container having a volume as small as possible, sealing the container and performing the mixing and stirring operation, (2) nitrogen gas The liquid to be stirred is put into a container that has been replaced with an inert gas such as the above, and the container is sealed and the mixture is stirred.
[0017]
Method for producing an endless belt according to claim 2, at least one of mixing and stirring operation of the stirring operation for Dispersion Preparation before Symbol resistance control agent, a dispersion of the resistance control agent and the polyimide precursor solution Is performed by a centrifugal stirring method.
[0018]
In the method for producing an endless belt according to claim 3, the mixing and stirring operations for pre SL material solution prepared, and carrying out the centrifugal stirring method.
[0019]
A method for producing an endless belt according to claim 4 is the method according to claim 2 or 3 , wherein carbon black is used as the resistance control agent, and the stirring operation by the centrifugal stirring method is performed in the presence of a dispersion medium. Features.
[0020]
In the method for producing an endless belt according to the present invention, a material arbitrarily selected from carbon black, indium oxide (In 2 O 3 ) and the like can be used as the resistance control agent. Specific examples of carbon black include acetylene black, furnace black, thermal black, and channel black.
[0021]
The following has been found by the study of the present inventors. In a method for producing an endless belt using a dispersion liquid (the raw material liquid) in which a resistance control agent is dispersed in a polyamic acid solvent solution that is a polyimide precursor solution, the dispersion liquid preparation and the dispersion liquid dilution As the solvent, organic solvents such as dimethylacetamide (DMAC) and N-methylpyrrolidone (NMP) are used, but these organic solvents are highly hygroscopic, and the above precursor solution or diluted solution thereof can be used in the atmosphere. It was found that when left open, the moisture (moisture) in the atmosphere is absorbed and the weight increases, and a transparent liquid film is formed on the surface of the precursor solution or diluted solution. Thermal analysis of this transparent liquid film revealed that water was the main component.
[0022]
Moreover, when the weight increase by water absorption became 20 wt% or more, it was confirmed that the surface of the said raw material liquid became opaque, opaqueness progressed with the increase in water absorption amount, and finally the whole became opaque. When this was observed with a microscope, it was recognized that minute spherical substances were generated and grown. This is presumably because the raw material liquid was gelled or crystallized when the moisture content in the raw material liquid absorbed moisture in the atmosphere to reach a certain water content. For this reason, it is considered that the concentration distribution of the resistance control agent in the raw material liquid fluctuates and becomes non-uniform, which appears as resistance variation of the endless belt finally obtained.
[0023]
Based on the above examination results, the present inventors have developed a method for reducing the water absorption of the organic solvent as much as possible in order to prevent the gelation or crystallization and the resistance variation.
[0024]
【Example】
Examples of the present invention and comparative examples will be described below.
Example 1-1
By putting solvent DMAC, carbon black (furnace black) as a resistance control agent (conductive agent), and 1 mm diameter glass dispersion media into a plastic container, sealing the container, and mixing and stirring with a centrifugal stirrer A carbon black dispersion having an average particle size of carbon black of 1 μm or less and a concentration of 4 wt% (meaning that the ratio to 100 parts by weight of DMAC is 4 parts by weight, the same applies to the following examples and comparative examples) is prepared. did.
[0025]
Next, the above dispersion and a single lot of polyimide precursor solution (polyamic acid dissolved in a DMAC / NMP mixed solution) prepared in advance were poured into another container, and the container was sealed. In this case, the ratio of the carbon black to 100 parts by weight of the polyimide resin constituting the endless film obtained later was set to 20 parts by weight (carbon black resin solid content ratio was 20 wt%). And this container was set to the centrifugal stirrer, the carbon black was disperse | distributed and defoamed, and the raw material liquid for centrifuging (another name varnish) was produced.
[0026]
A part of this raw material solution was collected and injected and applied to a centrifugal mold, and then the coating film was dried and solidified. Next, this centrifugal mold was placed in a baking furnace and the dried and solidified film was heat-cured at 300 ° C. to obtain an endless film (polyimide film) having a thickness of 100 μm.
Similarly, a part of the raw material liquid was collected, and the above operation was repeated to produce a plurality of batches of endless films.
[0027]
Example 1-2
A plurality of batches of endless membranes were produced using the same procedures and conditions as in Example 1-1, using a plurality of lots of polyimide precursor solutions individually. In this case, the carbon black dispersion prepared in Example 1-1 was used as the carbon black dispersion.
[0028]
When the surface resistance of the polyimide film obtained in Example 1-1 and Example 1-2 was measured, the resistance value was within the range of 1 × 10 8 to 9 × 10 8 Ω. In the plurality of centrifugal molding raw material liquids (mixed liquid of the polyimide precursor solution and the carbon black dispersion liquid), the water content was less than 10 wt% of the solvent DMAC (less than 10 parts by weight with respect to 100 parts by weight of DMAC). . That is, when a single lot of polyimide precursor solution is used, the resistance value is within a lot, and when multiple lots of polyimide precursor solution are used, the resistance value is small between the lots. A membrane was obtained.
[0029]
Example 2-1
The same operation as in Example 1-1 was performed. However, in this case, when producing the raw material liquid for centrifugal molding, in order to thoroughly block moisture, the inert gas replacement was performed as follows. Into a plastic container purged with nitrogen gas in advance, DMAC, carbon black (furnace black) as a resistance control agent, and 1 mm diameter glass dispersion media are added, and after nitrogen gas is introduced, it is sealed, By mixing and stirring with a centrifugal stirrer, a carbon black dispersion having an average particle size of carbon black of 1 μm or less and a concentration of 4 wt% was prepared.
[0030]
Next, this dispersion and a single lot of polyimide precursor solution (polyamic acid dissolved in a DMAC / NMP mixed solution) were injected into another container similarly purged with nitrogen, and nitrogen gas was sealed. . In this case, the ratio of carbon black to 100 parts by weight of polyimide resin constituting the endless film obtained later was set to 20 parts by weight. And the said container was sealed and set to the centrifugal stirrer, the dispersion | distribution and defoaming of carbon black were performed, and the raw material liquid for centrifugal molding was produced. A part of this raw material solution was collected and injected and applied to a centrifugal mold, and then the coating film was dried and solidified. Next, this centrifugal mold was placed in a baking furnace, and the dried and solidified film was heat-cured at 300 ° C. to obtain an endless film having a thickness of 100 μm. Similarly, a part of the raw material liquid was collected, and the above operation was repeated to produce a plurality of batches of endless films.
[0031]
Example 2-2
A plurality of batches of endless membranes were produced using the same procedures and conditions as in Example 2-1, using a plurality of lots of polyimide precursor solutions individually. In this case, the carbon black dispersion prepared in Example 2-1 was used as the carbon black dispersion.
[0032]
When the surface resistance of the polyimide film obtained in Example 2-1 and Example 2-2 was measured, the resistance value was within a range of 5 × 10 8 to 9 × 10 8 Ω. In the plurality of centrifugal molding raw material liquids, the water content was less than 1 wt% of the solvent DMAC (less than 1 part by weight with respect to 100 parts by weight of DMAC). That is, when a single lot of polyimide precursor solution is used, the resistance value is within a lot, and when multiple lots of polyimide precursor solution are used, the resistance value is small between the lots. A membrane was obtained.
[0033]
Example 3-1.
In the same manner as in Example 2-1 and Example 2-2, a raw material solution for centrifugal molding was prepared using a container in which inert gas replacement was performed in order to thoroughly block moisture. In this case, DMAC, a polyimide precursor solution, and indium oxide (In 2 O 3 ) having an average particle size of 0.1 μm or less as a resistance control agent are charged into a plastic container purged with nitrogen gas in advance. After injecting nitrogen gas, the mixture was sealed, and mixed and stirred with a centrifugal stirrer to prepare a raw material liquid with a resin solid content ratio of indium oxide of 55 wt%.
[0034]
A part of this raw material solution was collected and injected and applied to a centrifugal mold, and then the coating film was dried and solidified. Next, this centrifugal mold was placed in a baking furnace, and the dried and solidified film was heat-cured at 300 ° C. to obtain an endless film having a thickness of 100 μm. Similarly, a part of the raw material liquid was collected, and the above operation was repeated to produce a plurality of batches of endless films.
[0035]
Example 3-2
A plurality of endless films were produced in the same procedure and conditions as in Example 3-1, except that a plurality of lots of solutions were individually used as the polyimide precursor solution.
[0036]
When the surface resistance of the polyimide film obtained in Example 3-1 and Example 3-2 was measured, the resistance value was within the range of 5 × 10 8 to 9 × 10 8 Ω. In each of the plurality of centrifugal molding raw material liquids, the water content was less than 0.5 wt% of the solvent DMAC. That is, when a single lot of polyimide precursor solution is used, the resistance value is within a lot, and when multiple lots of polyimide precursor solution are used, the resistance value is small between the lots. A membrane was obtained.
[0037]
Comparative Example 1
In the preparation of the carbon black dispersions in Examples 1-1 and 1-2 and Examples 2-1 and 2-2, the raw material liquid obtained by centrifugally stirring without using the dispersion medium was fine but uncrushed. A carbon black aggregate was observed, and when a coating film of the raw material liquid was formed on the surface of the centrifugal mold, many bumps were generated on the film surface. Further, when an image was formed using the obtained intermediate transfer belt made of polyimide, an abnormal image of white spots was formed.
[0038]
By the way, in Examples 1-1 and 1-2 and Examples 2-1 and 2-2, a raw material liquid was prepared by mixing and stirring a resistance control agent dispersion prepared using a dispersion medium and a polyimide precursor solution. However, in Examples 3-1 and 3-2, the resistance control agent and the polyimide precursor solution were mixed with DMAC, which is a solvent for dissolving polyamic acid, to produce a raw material solution. is doing.
[0039]
Therefore, in Examples 3-1 and 3-2, an intermediate transfer belt made of a raw material liquid obtained by introducing a dispersion medium and performing centrifugal stirring, and an intermediate made of a raw material liquid centrifugally stirred without using the dispersion medium. When images were formed using the transfer belt separately, it was found that there was no great difference in image quality, and in Examples 3-1 and 3-2, there was no need for a dispersion medium.
[0040]
Comparative Example 2-1
DMAC and carbon black (furnace black) were charged into a container and mixed and stirred with a centrifugal stirrer to prepare a carbon black dispersion having an average particle size of carbon black of 1 μm or less and a concentration of 4 wt%. This dispersion and a single lot of polyimide precursor solution were poured into a bottle container and mechanically stirred with a homogenizer to prepare a raw material liquid having a carbon black resin solid content ratio of 20 wt%. A part of this raw material solution was applied to a centrifugal mold in the same manner as in Example 1-1, and then dried and cured to produce an endless film having a thickness of 100 μm. Similarly, a plurality of endless films were produced by repeating the above operation using a part of the raw material liquid.
[0041]
Comparative Example 2-2
A plurality of endless films were produced in the same procedure and conditions as in Comparative Example 2-1, except that a plurality of lots of polyimide precursor solutions were used individually. In this case, the carbon black dispersion prepared in Comparative Example 2-1 was used.
[0042]
When the surface resistance of the polyimide film obtained in Comparative Example 2-1 and Comparative Example 2-2 was measured, the resistance value varied widely in the range of 5 × 10 6 to 9 × 10 10 Ω. That is, the resistance value of the polyimide film varied greatly within a single lot of the polyimide precursor solution and between a plurality of lots of the polyimide precursor solution. The amount of water in the carbon black dispersion liquid was 9 wt% of the solvent DMAC, and in each of the plurality of centrifugal molding raw material liquids, the water amount was 15% wt% of the solvent DMAC.
[0043]
In addition, as a result of performing the above raw material liquid preparation process in a room without temperature control and humidity in a high temperature and high humidity rainy season (average 28 ° C./90% RH), A transparent moisture layer appeared on the surface, and when the moisture content with respect to the solvent became 20 wt% or more, the raw material liquid became clouded. Moreover, the resistance value of the polyimide film obtained by this greatly fluctuated in the range of 1 × 10 6 to 9 × 10 12 Ω, and it was impossible to obtain a stable resistance value.
[0044]
Comparative Example 3-1
DMAC and 4% by weight of carbon black (furnace black) were charged into a container and dispersed by stirring with a sand mill to prepare a carbon black dispersion having an average particle size of 1 μm or less. This dispersion and a single lot of polyimide precursor solution prepared in advance are poured into a nitrogen purged container, and dispersed and defoamed with a centrifugal stirrer to obtain a raw material liquid having a carbon black resin solid content ratio of 20 wt%. Obtained. A part of this raw material solution was applied and dried on a centrifugal mold in the same manner as in Example 1-1, and then cured to prepare an endless film having a thickness of 100 μm. Similarly, a plurality of endless films were produced by repeating the above operation using a part of the raw material liquid.
[0045]
Comparative Example 3-2
A plurality of endless films were produced in the same procedure and conditions as in Comparative Example 3-1, except that a plurality of lots of polyimide precursor solutions were used individually. In this case, the carbon black dispersion prepared in Comparative Example 3-1 was used.
[0046]
When the surface resistance of the polyimide film obtained in Comparative Example 3-1 and Comparative Example 3-2 was measured, the resistance value was in the range of 1 × 10 7 to 5 × 10 9 Ω, and the variation width was relatively small. However, a stable resistance value could not be obtained with good reproducibility. The water content of the raw material liquids used in these Comparative Examples 3-1 and 3-2 was 100 parts by weight of the solvent (DMAC in the carbon black dispersion and the solvent in the polyimide precursor solution) in the raw material liquid. It was around 12 wt%.
[0047]
As described above, it has been found that the moisture content of the solvent greatly affects the dispersion of the resistance value of the polyimide film obtained by molding the raw material liquid in which the resistance control agent is dispersed in the polyamic acid-containing solvent solution. It was.
[0048]
Dispersion of carbon black by the sand mill must be carried out with the container open for more than 1 hour, so it is inevitable to absorb moisture in the air during that time. Further, in the dispersion operation, the dispersion liquid is rotated at a rotational speed of 2000 rpm or more, so that bubbles are mixed into the dispersion liquid. And if this bubble contains water vapor in the atmosphere, it is absorbed by the solvent, but this absorbed moisture cannot be removed even after defoaming treatment, so the dispersion contains moisture, which is the cause of the above adverse effects It is considered that. In this way, in the polyimide film production process using the polyamide precursor solution containing the hygroscopic solvent, it is desirable to produce the polyimide film forming raw material liquid in a state where moisture in the external atmosphere is blocked. It became clear that it is important to obtain a polyimide film having the following characteristics.
[0049]
【The invention's effect】
As is apparent from the above description, the present invention provides the following effects.
(1) Effect of the invention of claim 1
In the present invention, a raw material liquid having a moisture content including moisture absorption is less than 10 wt% of the solvent. Thereby, the dispersion | variation in film resistance can be suppressed within one order (ratio of maximum value / minimum value is 10 or less). Therefore, in the image forming apparatus using the intermediate transfer belt made of the polyimide resin endless belt obtained by the present invention, it is possible to stably obtain a good quality image. When producing a polyimide film using a raw material solution containing a polyimide precursor solution, the moisture content of the solvent in the raw material solution increases and the moisture content increases. As a result, the precursor component is agglomerated or gelled. The resistance control agent fine particles are not uniformly dispersed in the raw material liquid. Therefore, the water absorption of the raw material liquid must be kept as low as possible.
[0050]
In the present invention, the raw material liquid preparation operations such as the stirring operation for dispersing the resistance control agent and the diluting stirring operation with the solvent of the polyimide precursor solution are performed in a state where moisture in the outside air is shut off. In order to suppress the above-described moisture absorption / water absorption, it is effective to reduce the humidity of the external environment and adopt a condition that does not absorb water during the stirring operation. For example, the container may be sealed or the atmosphere in the container may be replaced with an inert gas. By doing so, the effect of the present invention can be obtained.
[0051]
( 2 ) Effects of the Inventions of Claims 2 and 3 In these inventions, the stirring operation for dispersing the resistance control agent is performed by a centrifugal stirring method. Centrifugal stirring is the most suitable method for stirring the liquid in a sealed state. Further, defoaming can be performed in a sealed state simultaneously with stirring, and the appearance of the film surface due to the detachment of the contained bubbles by heating can be reduced.
[0052]
( 3 ) Effect of Invention of Claim 4 In the present invention, carbon black is used as a resistance control agent, and a stirring operation by a centrifugal stirring method is performed in the presence of a dispersion medium. Carbon black has strong cohesiveness, and aggregates are difficult to disperse completely by simple centrifugal stirring. For this reason, when a film is produced using a raw material liquid with poor dispersion, an uneven appearance or more appears on the film surface, and a good image cannot be formed. Therefore, it is necessary to improve the dispersibility of carbon black. To that end, if sand (media) is added at the same time as in the case of a sand mill, the agglomerates are crushed and dispersed as fine particles. A film having a good shape can be formed.

Claims (4)

ポリイミド前駆体溶液であるポリアミド酸含有溶剤中に抵抗制御剤を分散させた原料液を用いてポリイミド製の無端状ベルトを作製する方法において、
前記原料液は、吸湿水分を含む水分率が前記溶剤の10wt%未満であるものを用いることとし、
前記原料液は、ポリアミド酸を溶解する溶剤として、ジメチルアセトアミド、又はジメチルアセトアミド含有溶剤を用い、当該溶剤に抵抗制御剤を投入して攪拌することにより得た分散液と、ポリイミド前駆体溶液とを、混合攪拌することにより得られたものであり、
前記抵抗制御剤の分散液を調整するための攪拌操作、あるいは/及び、当該分散液にポリイミド前駆体溶液を混合する攪拌操作を、外気中の湿気を遮断した状態で行ったものであるか、あるいは、前記原料液は、ポリアミド酸を溶解可能な溶剤と、ポリイミド前駆体溶液と、抵抗制御剤とを混合攪拌することにより得られたものであり、当該混合攪拌工程を、外気中の湿気を遮断した状態で行ったものであることを特徴とする無端状ベルトの製造方法。
In a method for producing an endless belt made of polyimide using a raw material liquid in which a resistance control agent is dispersed in a polyamic acid-containing solvent that is a polyimide precursor solution,
The raw material liquid uses a moisture content containing moisture absorption moisture that is less than 10 wt% of the solvent ,
As the solvent for dissolving the polyamic acid, the raw material liquid uses dimethylacetamide or a dimethylacetamide-containing solvent, a dispersion obtained by adding a resistance control agent to the solvent and stirring, and a polyimide precursor solution. , Obtained by mixing and stirring,
The stirring operation for adjusting the dispersion of the resistance control agent, or / and the stirring operation of mixing the polyimide precursor solution in the dispersion, performed in a state where moisture in the outside air is blocked, Alternatively, the raw material liquid is obtained by mixing and stirring a solvent capable of dissolving polyamic acid, a polyimide precursor solution, and a resistance control agent. The mixing and stirring step is performed by removing moisture in the outside air. A process for producing an endless belt, wherein the process is performed in a closed state .
前記抵抗制御剤の分散液調整のための攪拌操作、前記抵抗制御剤の分散液と前記ポリイミド前駆体溶液との混合攪拌操作の少なくとも一方を、遠心攪拌法により行うことを特徴とする請求項1に記載の無端状ベルトの製造方法。  The stirring operation for adjusting the dispersion of the resistance control agent and at least one of the mixing and stirring operation of the dispersion of the resistance control agent and the polyimide precursor solution are performed by a centrifugal stirring method. A process for producing an endless belt as described in 1. 前記原料液作製のための混合攪拌操作を、遠心攪拌法により行うことを特徴とする請求項1に記載の無端状ベルトの製造方法。  The method for producing an endless belt according to claim 1, wherein the mixing and stirring operation for preparing the raw material liquid is performed by a centrifugal stirring method. 前記抵抗制御剤としてカーボンブラックを用いるとともに、前記遠心攪拌を、分散メディアを共存させて行うことを特徴とする請求項2又は3に記載の無端状ベルトの製造方法。  4. The method for producing an endless belt according to claim 2, wherein carbon resistance is used as the resistance control agent, and the centrifugal stirring is performed in the presence of a dispersion medium.
JP35759699A 1999-12-16 1999-12-16 Manufacturing method of endless belt Expired - Fee Related JP3908424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35759699A JP3908424B2 (en) 1999-12-16 1999-12-16 Manufacturing method of endless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35759699A JP3908424B2 (en) 1999-12-16 1999-12-16 Manufacturing method of endless belt

Publications (2)

Publication Number Publication Date
JP2001171013A JP2001171013A (en) 2001-06-26
JP3908424B2 true JP3908424B2 (en) 2007-04-25

Family

ID=18454938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35759699A Expired - Fee Related JP3908424B2 (en) 1999-12-16 1999-12-16 Manufacturing method of endless belt

Country Status (1)

Country Link
JP (1) JP3908424B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485191B (en) 2009-10-09 2015-05-21 Ube Industries A colored polyimide molded article and a method for producing the same

Also Published As

Publication number Publication date
JP2001171013A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
KR101449694B1 (en) Carbon-black-dispersed polyamic acid solution composition, and process for producing semiconductive polyimide resin belt therewith
CN103502893B (en) Ionic conductivity resin and conductive member for electrophotography
JP5687139B2 (en) Continuous emulsification process using solvent to produce polyester latex
KR20090103800A (en) Latex processes
CN102604335A (en) Resin particle and method for producing the same
US8686106B2 (en) Polyamic acid solution composition having carbon black dispersed therein, process for production of semiconductive polyimide resin belt using the composition, and semiconductive polyimide resin belt
TW202110957A (en) Dispersion composition, dispersant, anisotropic film and method for producing same, and apparatus for forming anisotropic film
JP3908424B2 (en) Manufacturing method of endless belt
JP2005247988A (en) Semiconducting high-concentration polyimide precursor composition and semiconducting polyimide tubular product using the same
US6303054B1 (en) Electrically-semiconductive poly(amic acid) liquid compositions and their use
JP2003277502A (en) Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it
JP4551583B2 (en) Method for producing semiconductive polyimide belt
WO2024011919A1 (en) Preparation method for eva material and eva material
CN109280192B (en) Preparation method of black low-matte polyimide film
JP2007298692A (en) Anisotropic conductive polyimide belt and method for manufacturing the same
CN110172165A (en) A kind of preparation method of silica-filled polytetrafluoroethyldispersion dispersion
KR20110117234A (en) Endless tubular polyimide film
CN103842912B (en) endless belt
JP5171000B2 (en) Semiconductive polyimide resin belt and method for manufacturing the same
JP4037950B2 (en) Manufacturing method of polyimide multilayer belt
JP2004196869A (en) Method for producing porous polyimide-based fine particle
JP4091722B2 (en) Endless belt and method of forming the same
CN106466897B (en) The manufacturing method of polyimides tubulose body
JP4510685B2 (en) Endless electrophotographic image forming intermediate transfer belt, image forming apparatus having the intermediate transfer belt, and image forming method using the intermediate transfer belt
JP2001166308A (en) Method for regenerating liquid crystal alignment material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees