JP3907567B2 - Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus - Google Patents

Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus Download PDF

Info

Publication number
JP3907567B2
JP3907567B2 JP2002286415A JP2002286415A JP3907567B2 JP 3907567 B2 JP3907567 B2 JP 3907567B2 JP 2002286415 A JP2002286415 A JP 2002286415A JP 2002286415 A JP2002286415 A JP 2002286415A JP 3907567 B2 JP3907567 B2 JP 3907567B2
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic
dimethylamine
electrophotographic photosensitive
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002286415A
Other languages
Japanese (ja)
Other versions
JP2004125907A (en
Inventor
正人 田中
淳史 藤井
隆司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002286415A priority Critical patent/JP3907567B2/en
Publication of JP2004125907A publication Critical patent/JP2004125907A/en
Application granted granted Critical
Publication of JP3907567B2 publication Critical patent/JP3907567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体並びに該電子写真感光体を有するプロセスカ−トリッジおよび電子写真装置に関する。
【0002】
【従来の技術】
電子写真感光体の光導電材料としてセレン、硫化カドミウムや酸化亜鉛などの無機光導電材料が従来より用いられている。一方、ポリビニルカルバゾール、オキサジアゾール、アゾ顔料やフタロシアニンなどの有機光導電材料は無機光導電材料に比べてその無公害性や高生産性等の利点があるが、感度が低くその実用化は困難であった。そのため、いくつかの増感方法が提案されているが、その効果的な方法としては電荷発生層と電荷輸送層を積層した機能分離型の感光体を用いることが主流となり実用化されるようになってきた。
【0003】
一方、近年、端末用プリンターとして従来のインパクト型のプリンターにかわり、電子写真技術を応用したノンインパクト型のプリンターが広く普及してきている。これらは主としてレーザー光を光源とするレーザービームプリンターであり、その光源としては、コストや装置の大きさ等の点から半導体レーザーが用いられ、その発振波長の光に十分な感度を有する電子写真感光体の開発が進められてきた。
【0004】
フタロシアニン化合物は、こうした半導体レーザー発振波長領域に感度を有する電荷発生材料として極めて有効であり、特にオキソチタニウムフタロシアニンやガリウムフタロシアニンは、従来のフタロシアニン化合物に比べ優れた感度特性を有しており、これまでに様々な結晶形が報告されている(例えば,特許文献1〜8参照)。
【0005】
また、フタロシアニン化合物においては、結晶形が同じでも使用原料や溶剤といった製造法、および反応温度や仕込み比等の製造条件の差により電子写真感光体として使用する場合、電子写真特性が著しく変化し、特に感度や帯電性に著しく違いが出ることがわかっている。
【0006】
ガリウムフタロシアニン結晶の製造方法に関しては種々開示されている(例えば,特許文献9〜13参照)。また、N,N−ジメチルホルムアミド等の極性有機溶剤を含有するヒドロキシガリウムフタロシアニン結晶が開示されている(例えば,特許文献14参照)が、これ等のガリウムフタロシアニン結晶を用いた電子写真感光体は、製造毎の電子写真特性にバラツキが生じ、また電子写真プロセスの高速化あるいは高画質化の観点からみて必ずしも満足できるものではない。
【0007】
また、アミン化合物を感光体に含有させる例として、3級アミン化合物を電荷輸送材料として用いるのは周知の事実であり、1級または2級アミン化合物に関しても開示されている(例えば,特許文献15〜18参照)が、これらの効果はホール輸送能力の向上による感度や耐久電位変動の向上、または酸化防止効果による帯電劣化の低下や、表層の磨耗性改良であり、高画質化の観点からみて満足できるものではなく、複写機やレーザービームプリンターなどの電子写真装置の更なる小型化、また高画質フルカラー化の中でゴーストの出ない電子写真感光体が望まれている。
【0008】
【特許文献1】
特開昭61−239248号公報
【特許文献2】
特開昭61−217050号公報
【特許文献3】
特開昭62−67094号公報
【特許文献4】
特開昭63−218768号公報
【特許文献5】
特開昭64−17066号公報
【特許文献6】
特開平5−098181号公報
【特許文献7】
特開平5−263007号公報
【特許文献8】
特開平10−67946号公報
【特許文献9】
特開平8−100134号公報
【特許文献10】
特開平9−111148号公報
【特許文献11】
特開平9−124967号公報
【特許文献12】
特開平10−7927号公報
【特許文献13】
特開平10−17784号公報
【特許文献14】
特開平7−331107号公報
【特許文献15】
特開昭59−171741号公報
【特許文献16】
特開平8−254844号公報
【特許文献17】
特開平8−262760号公報
【特許文献18】
特開2000−122314公報
【0009】
【発明が解決しようとする課題】
本発明はこうした問題点に鑑みなされたもので、その目的は、高感度、特に半導体レーザー波長領域に高感度特性を有し、繰り返し使用時の電位安定性、加えて画像欠陥、特にゴーストの出にくい電子写真感光体並びに該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することである。
【0010】
【課題を解決するための手段】
本発明は、導電性支持体上に電荷発生材料としてガリウムフタロシアニン化合物を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層の少なくとも二層からなる感光層を有する電子写真感光体において、該電荷発生層がガリウムフタロシアニン化合物に対してジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物を1500ppm含有することを特徴とする電子写真感光体である
【0011】
た、本発明は、上記電子写真感光体、および帯電手段、現像手段およびクリーニング手段からなる群より選ばれる少なくとも一つの手段を一体に支持し、電子写真装置に着脱自在であることを特徴とするプロセスカートリッジである。
【0012】
また、本発明は、上記電子写真感光体、帯電手段、像露光手段、現像手段および転写手段を有することを特徴とする電子写真装置である。
【0013】
【発明の実施の形態】
以下に本発明について詳しく説明する。
【0016】
電荷発生材料として用いられるガリウムフタロシアニン化合物は、置換基を有してもよく、いかなる結晶形でもよいが、CuKα特性X線回折におけるブラッグ角2θの7.4±0.3°および28.2±0.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニンが電子写真特性の面で好ましい。更に、ジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物を結晶中に含有したガリウムフタロシアニン結晶が優れた電子写真特性を発現するため特に好ましい。
【0017】
ジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物のガリウムフタロシアニン化合物に対する含有量は、電子写真特性の面から5〜200ppmが特に好ましい。
【0020】
次に、本発明の電子写真感光体について詳しく説明する。
【0021】
導電性支持体としては、導電性を有するものであればよく、アルミニウムおよびステンレス等の金属あるいは導電層を設けた金属、プラスチックおよび紙等が挙げられ、形状としては円筒状またはフィルム状等が挙げられる。
【0022】
導電性支持体と感光層の間にはバリヤー機能と接着機能を持つ下引き層を設けることもできる。下引き層の材料としてはポリビニルアルコール、ポリエチレンオキシド、エチルセルロース、メチルセルロース、カゼイン、ポリアミド、にかわおよびゼラチン等が用いられる。これ等は過当な溶剤に溶解して導電性支持体上に塗布される。その膜厚は0.2〜3.0μmが好ましい。
【0023】
さらに、支持体と下引き層との間に、支持体のムラや欠陥の被覆、干渉縞防止を目的とした導電層を設けることが好適である。これは、カーボンブラック、金属粒子および金属酸化物等の導電性粉体を、バインダー樹脂中に分散して形成することができる。導電層の膜厚は、好ましくは5〜40μm、より好ましくは10〜30μmである。
【0024】
電荷発生層は、ガリウムフタロシアニン化合物とジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物、好ましくはジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物を結晶中に含有したガリウムフタロシアニン化合物を適当なバインダー樹脂溶液に分散し、この分散液を塗布し、乾燥して形成する。
【0025】
電荷輸送層は、主として電荷輸送材料とバインダー樹脂とを溶剤中に溶解させた塗料を塗布乾燥して形成する。電荷輸送材料としては各種のトリアリールアミン系化合物、ヒドラゾン系化合物、スチルベン系化合物、ピラゾリン系化合物、オキサゾール系化合物、チアゾール系化合物およびトリアリルメタン系化合物等が挙げられる。
【0026】
各層に用いるバインダー樹脂としては、例えばポリエステル、アクリル樹脂、ポリビニルカルバゾール、フェノキシ樹脂、ポリカーボネート、ポリビニルブチラール、ポリスチレン、ポリビニルアセテート、ポリサルホン、ポリアリレート、塩化ビニリデン、アクリロニトリル共重合体およびポリビニルベンザール等の樹脂が用いられる。
【0027】
感光層の塗布方法としては、ディッピング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ブレードコーティング法およびビームコーティング法等の塗布方法を用いることができる。
【0028】
電荷発生層中のガリウムフタロシアニン化合物の含有量は、電荷発生層の全固形分に対して30〜90質量%が好ましく、より好ましくは50〜80質量%である。電荷輸送材料の含有量は、電荷輸送層の全固形分に対して20〜80質量%が好ましく、より好ましくは30〜70質量%である。
【0029】
感光層上には、必要に応じて保護層を設けてもよい。保護層はポリビニルブチラール、ポリエステル、ポリカーボネート(ポリカーボネートZや変性ポリカーボネート等)、ポリアミド、ポリイミド、ポリアリレート、ポリウレタン、スチレン−ブタジエンコポリマー、スチレン−アクリル酸コポリマーおよびスチレン−アクリロニトリルコポリマーなどの樹脂を適当な有機溶剤によって溶解し、感光層の上に塗布し、乾燥して形成できる。保護層の膜厚は、0.05〜20μmが好ましい。また、保護層中に導電性粒子や紫外線吸収剤などを含有させてもよい。導電性粒子としては、例えば酸化錫粒子等の金属酸化物が好ましい。
【0030】
次に、本発明の電子写真感光体を有する電子写真装置について説明する。
【0031】
図1において、1は本発明のドラム型感光体であり軸1aを中心に矢印方向に所定の周速度で回転駆動する。該感光体1はその回転過程で帯電手段2によりその周面に正または負の所定電位の均一帯電を受け、次いで露光部3にて不図示の露光手段により光像露光L(スリット露光あるいはレーザービーム走査露光など)を受ける。これにより感光体周面に露光像に対応した静電潜像が順次形成されていく。その静電潜像は、次いで現像手段4でトナー現像され、そのトナー像がコロナ転写手段5により不図示の給紙部から感光体1と転写手段5との間に感光体1の回転と同期取りされて給送された転写材9の面に順次転写されていく。像転写を受けた転写材9は感光体面から分離されて定着手段8へ導入されて像定着を受けて複写物(コピー)として機外へプリントアウトされる。像転写後の感光体1の表面はクリーニング手段6にて転写残りトナーの除去を受けて清浄面化され、前露光手段7により除電処理がされて繰り返して像形成に使用される。
【0032】
また、図2に示す装置では、少なくとも感光体1、帯電手段2および現像手段4を容器20に納めてプロセスカートリッジとし、このプロセスカートリッジを装置本件のレールなどの案内手段12を用いて着脱自在に構成している。クリーニング手段6は容器20内に配置しても配置しなくてもよい。
【0033】
また、図3および図4に示すように、帯電手段として直接帯電部材10を用い、電圧印加された直接帯電部材10を感光体1に接触させることにより感光体1の帯電を行ってもよい(この帯電方法を、以下直接帯電という)。図3および図4に示す装置では、感光体1上のトナー像も直接帯電部材23で転写材9に転写される。即ち、電圧印加された直接帯電部材23を転写材9に接触させることにより感光体1上のトナー像を転写材9に転写させる。
【0034】
更に、図4に示す装置では、少なくとも感光体1および直接帯電部材10を第1の容器21に納めて第1のプロセスカートリッジとし、少なくとも現像手段4を第2の容器22に納めて第2のプロセスカートリッジとし、これら第1のプロセスカートリッジと、第2のプロセスカートリッジとを着脱自在に構成している。クリーニング手段6は容器21内に配置しても配置しなくてもよい。
【0035】
光像露光Lは、電子写真装置を複写機やプリンターとして使用する場合には、原稿からの反射光や透過光を用いる、あるいは、原稿を読み取り信号化に従って、この信号によりレーザービームの走査、発光ダイオードアレイの駆動、または液晶シャッターアレイの駆動などにより行われる。
【0036】
以下、製造例、実施例および比較例に従って本発明を更に詳細に説明する。
【0037】
以下に示す「%」および「部」は、それぞれ「質量%」および「質量部」を意味する。α−クロロナフタレンは東京化成工業(株)製、純度85%以上品を使用。
【0038】
製造例1−1
窒素フロー下、フタロニトリル5.46部およびα−クロロナフタレン45部を反応釜に投入後、加熱し、60℃まで昇温しこの温度をキープした。この時点でフタロニトリルは完全に溶解していた。次に、この温度(60℃)で三塩化ガリウム3.75部を投入(投入時の反応液の水分値は83ppmであった)し、その後、200℃まで昇温した。窒素フロー下、200℃で5.5時間反応させた後、冷却し150℃に達した時に生成物をろ過した。得られた生成物をN,N−ジメチルホルムアミドを用いて140℃で2時間分散洗浄した後、ろ過し、メタノールで洗浄後乾燥し、クロロガリウムフタロシアニンを4.2部得た。
【0039】
製造例1−2
窒素フロー下、フタロニトリル5.46部およびα−クロロナフタレン45部を反応釜に投入後、加熱し、60℃まで昇温しこの温度をキープした。この時点でフタロニトリルは完全に溶解していた。次に、この温度(60℃)で三塩化ガリウム3.75部を投入(投入時の反応液の水分値は30ppmであった)し、その後、200℃まで昇温した。窒素フロー下、200℃で5.5時間反応させた後、冷却し150℃に達した時に生成物をろ過した。得られた生成物をN,N−ジメチルホルムアミドを用いて140℃で2時間分散洗浄した後、ろ過し、メタノールで洗浄後乾燥し、クロロガリウムフタロシアニンを4.0部得た。
【0040】
製造例1−3
窒素フロー下、フタロニトリル5.46部およびα−クロロナフタレン45部を反応釜に投入後、加熱し、30℃まで昇温しこの温度をキープした。この時点でフタロニトリルは完全には溶解していなかった。次に、この温度(30℃)で三塩化ガリウム3.75部を投入(投入時の反応液の水分値は20ppmであった)し、その後、200℃まで昇温した。窒素フロー下、200℃で5.5時間反応させた後、冷却し150℃に達した時に生成物をろ過した。得られた生成物をN,N−ジメチルホルムアミドを用いて140℃で2時間分散洗浄した後、ろ過し、メタノールで洗浄後乾燥し、クロロガリウムフタロシアニンを4.5部得た。
【0041】
製造例1−4
窒素フロー下、フタロニトリル5.46部およびα−クロロナフタレン45部を反応釜に投入後、加熱し、30℃まで昇温しこの温度をキープした。この時点でフタロニトリルは完全には溶解していなかった。次にこの温度(30℃)で三塩化ガリウム3.75部を投入(投入時の反応液の水分値は100ppmであった)し、その後、200℃まで昇温した。窒素フロー下、200℃で3.5時間反応させた後、冷却し150℃に達した時に生成物をろ過した。得られた生成物をN,N−ジメチルホルムアミドを用いて140℃で2時間分散洗浄した後、ろ過し、メタノールで洗浄後乾燥し、クロロガリウムフタロシアニンを4.3部得た。
【0042】
製造例2−1
製造例1−1で得られたクロロガリウムフタロシアニン2.25部を5〜10℃の濃硫酸67.5部に溶解させ、氷水300部中に攪拌下に滴下して再析出させた後ろ過した。2%アンモニア水で分散洗浄、次いでイオン交換水で分散洗浄を4回行った後、乾燥してヒドロキシガリウムフタロシアニンを2.1部得た。
【0043】
製造例2−2、2−3および2−4
製造例1−2、1−3および1−4で、それぞれ得られたクロロガリウムフタロシアニンを製造例2−1と同様に処理した。
【0044】
製造例3−1
製造例2−1で得られたヒドロキシガリウムフタロシアニン0.8部およびN,N−ジメチルホルムアミド16部を1.2mmφのガラスビーズ24部と共にサンドミルでミリング処理を25±3℃で10時間行った。この分散液より固形分を取り出し、テトラヒドロフランで十分に洗浄後、真空乾燥して、CuKα特性X線回折におけるブラッグ角2θの7.5°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を0.7部得た。得られた結晶の粉末X線回折図を図5に示す。この結晶をメタノールに湿潤させた後、純水で熱処理してイオンクロマトグラフ法により分析し、ジメチルアミンを400ppm検出した。
【0045】
製造例3−2、3−3および3−4
製造例2−2、2−3および2−4で、それぞれ得られたヒドロキシガリウムフタロシアニンを製造例3−1と同様に処理した。それぞれ得られた結晶の粉末X線回折は図5と同様であった。製造例3−1と同様に分析しジメチルアミンをそれぞれ280ppm、360ppm、および660ppm検出した。
【0046】
製造例3−5
製造例2−1で得られたヒドロキシガリウムフタロシアニン0.8部およびN,N−ジメチルホルムアミド16部を1.2mmφのガラスビーズ24部と共にサンドミルでミリング処理を25±3℃で10時間行った。この分散液より固形分を取り出し、イオン交換水で分散洗浄、それに続くろ過工程とを3回繰り返しN,N−ジメチルホルムアミドウエットから完全に水ウエットとした後、凍結乾燥して、CuKα特性X線回折におけるブラッグ角2θがの7.5°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を0.7部得た。得られた結晶の粉末X線回折は図5と同様であった。製造例3−1と同様に分析しジメチルアミンを40ppm検出した。
【0047】
製造例3−6
製造例2−4で得られたヒドロキシガリウムフタロシアニン0.8部およびN,N−ジメチルホルムアミド16部を1.2mmφのガラスビーズ24部と共にサンドミルでミリング処理を25±3℃で10時間行った。この分散液より固形分を取り出し、イオン交換水で分散洗浄、それに続くろ過工程とを3回繰り返した後、真空乾燥して、CuKα特性X線回折におけるブラッグ角2θの7.5°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を0.7部得た。得られた結晶の粉末X線回折は図5と同様であった。製造例3−1と同様に分析しジメチルアミンを570ppm検出した。
【0048】
製造例3−7
製造例2−1で得られたヒドロキシガリウムフタロシアニン0.8部およびテトラヒドロフラン16部を1.2mmφのガラスビーズ24部と共にサンドミルでミリング処理を25℃で10時間行った。この分散液より固形分を取り出し、真空乾燥して、CuKα特性X線回折におけるブラッグ角2θの7.5°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を0.7部得た。製造例3−1と同様に分析したが、ジメチルアミンは検出されなかった。
【0049】
実施例1−1
10%の酸化アンチモンを含有する酸化スズで被覆した酸化チタン粉体50部、レゾール型フェノール樹脂25部、メチルセロソルブ20部、メタノール5部およびシリコーンオイル(ポリジメチルシロキサンポリオキシアルキレン共重合体、平均分子量3000)0.002部を1.2mmφガラスビーズを用いたサンドミル装置で2時間分散して導電層用塗料を調製した。
【0050】
アルミニウムシリンダー(φ30mm)上に、上記塗料をディッピング法で塗布し、140℃で30分間乾燥させて、膜厚が16μmの導電層を形成した。
【0051】
この上に6−66−610−12四元系ポリアミド共重合体樹脂5部をメタノール70部とブタノール25部の混合溶媒に溶解した溶液をディッピング法で塗布し、乾燥させて、膜厚が0.5μmの下引き層を設けた。
【0052】
次に、製造例3−1で製造したヒドロキシガリウムフタロシアニン結晶2部とポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)1部をシクロヘキサノン50部に添加し1.2mmφのガラスビーズを用いたサンドミルで6時間分散し、これにシクロヘキサノン50部と酢酸エチル120部を加えて希釈し、これを下引き層上に塗布した後、100℃で10分間乾燥させて、膜厚が0.18μmの電荷発生層を形成した。
【0053】
次に下記構造式(化合物I−1)
【0054】
【化3】

Figure 0003907567
で示される電荷輸送材料7部と下記構造式
【0055】
【化4】
Figure 0003907567
で示される電荷輸送材料1部とポリアリレート樹脂10部をモノクロルベンゼン70部とメチラール30部に溶解した溶液を調製し、電荷発生層上にディッピング法により塗布した。これを110℃の温度で1時間乾燥させて、膜厚が18μmの電荷輸送層を形成し電子写真感光体を作成した。
【0056】
実施例1−2〜1−4および比較例1−1〜1−3
実施例1−1において用いたフタロシアニン結晶に代えて、表1に示したように製造例3−2、3−3、3−5、および3−4、3−6、3−7で製造したガリウムフタロシアニン結晶を用いた他は、実施例1−1と同様にして電子写真感光体をそれぞれ作成した。
【0059】
実施例2−
実施例1−1において用いたフタロシアニン結晶に代えて、製造例3−7で製造したガリウムフタロシアニン結晶を電荷発生材料として用い、ジメチルアミン硫酸塩をフタロシアニン化合物に対して400ppm添加した他は、実施例1−1と同様にして電子写真感光体を作成した。
【0060】
比較例2−1
実施例1−1において用いたフタロシアニン結晶に代えて、製造例3−7で製造したガリウムフタロシアニン結晶を電荷発生材料として用い、下記構造式の電荷輸送材料(化合物I−1)をフタロシアニン化合物に対して400ppm添加した他は、実施例1−1と同様にして電子写真感光体を作成した。
【0061】
【化5】
Figure 0003907567
【0062】
比較例2−2
実施例1−1において用いたフタロシアニン結晶に代えて、製造例3−7で製造したガリウムフタロシアニン結晶を電荷発生材料として用い、下記構造式のフェニレンジアミン誘導体(化合物I−2)をフタロシアニン化合物に対して10%添加した他は、実施例1−1と同様にして電子写真感光体を作成した。
【0063】
【化6】
Figure 0003907567
【0064】
比較例2−3
比較例2−2において用いた、前記フェニレンジアミン誘導体をフタロシアニン化合物に対して400ppm添加した他は、比較例2−2と同様にして電子写真感光体を作成した。
【0065】
比較例2−4
比較例2−2において用いた、前記フェニレンジアミン誘導体をフタロシアニン化合物に対して40ppm添加した他は、比較例2−2と同様にして電子写真感光体を作成した。
【0066】
比較例2−5
実施例1−1において用いたフタロシアニン結晶に代えて、製造例3−7で製造したガリウムフタロシアニン結晶を電荷発生材料として用い、t−ブチルアミンをフタロシアニン化合物に対して400ppm添加した他は、実施例1−1と同様にして電子写真感光体を作成した。
【0067】
実施例3−1
実施例1−4と同様に電荷発生層までを形成した。次に下記構造式
【0068】
【化7】
Figure 0003907567
で示される電荷輸送材料7部と下記構造式
【0069】
【化8】
Figure 0003907567
で示される電荷輸送材料3部、およびポリカーボネート樹脂(商品名:ユーピロンZ−200、三菱ガス化学社製)10部をモノクロロベンゼン70部に溶解した溶液を調製し、電荷発生層上にディッピング法により塗布した。これを110℃の温度で1時間乾燥させて、膜厚が22μmの電荷輸送層を形成し電子写真感光体を作成した。
【0070】
比較例3−1
比較例1−1と同様に電荷発生層までを形成した。次に、実施例3−1と同様に電荷輸送層を形成し電子写真感光体を形成した。
【0071】
比較例4−1
実施例1−1において用いたフタロシアニン結晶に代えて、下記構造式のアゾ化合物(化合物I−3)を電荷発生材料として用い、ジメチルアミンをアゾ化合物に対して400ppm添加した他は、実施例1−1と同様にして電子写真感光体を作成した。
【0072】
【化9】
Figure 0003907567
【0073】
実施例1−1〜1−4、2−1、3−1、および比較例1−1〜1−3、2−1〜2−5、3−1、4−1で作成した電子写真感光体を以下の方法で評価した。
【0074】
評価機はヒューレットパッカード社製LBP「レーザージェット4000」(プロセススピード94.2mm/sec)を使用して、レーザー光を照射後の表面電位(明部電位)を測定した。表面電位は、評価機から、現像用カートリッジを抜き取り、そこに電位測定装置を挿入し測定を行った。電位測定装置は、現像用カートリッジの現像位置に電位測定プローブを配置することで構成されており、電子写真感光体に対する電位測定プローブの位置は、ドラム軸方向のほぼ中央、ドラム表面からのギャップを3mmとした。測定は25℃、相対湿度が50%となる環境で行い、電子写真感光体ドラムは、測定の24時間前から、測定環境に放置したものを用いた。
【0075】
また、ポジゴーストの評価は以下のように行った。ベタ黒画像を2枚打ち出した後、プリント画像書き出しから感光体1回転の部分に25mm角の正方形のベタ黒部を並べ、感光体2回転目以降に1ドットを桂馬パターンで印字したハーフトーンのテストチャートを打ち出し、ハーフトーンのテストチャート上に表れる、25mm角のベタ黒部の履歴の程度を目視により評価した。ゴーストの程度は以下のようにランク基準に従い、数値化を行った。
ランクA:ゴーストは全く見えない。
ランクB:履歴の輪郭が極わずかに見える。
ランクC:履歴の輪郭がうっすら見える。
ランクD:履歴の輪郭がはっきりと見える。
ランクE:履歴の25mm角がはっきりと見える。
【0076】
評価結果を表1および表2に示す。
【0077】
【表2】
Figure 0003907567
【0078】
【表3】
Figure 0003907567
【0079】
【発明の効果】
本発明は、高感度、特に半導体レーザー波長領域に高感度特性を有し、繰り返し使用時の電位安定性、加えて画像欠陥、特にゴーストの出にくい電子写真感光体が得られという顕著な効果を奏する電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を可能にした。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有する電子写真装置の概略構成の例を示す図である。
【図2】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【図3】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【図4】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【図5】製造例3−1で得られたヒドロキシガリウムフタロシアニンのCuKαの特性X線回折図である。
【符号の説明】
1 感光体
1a 軸
2 帯電手段
3 露光部
4 現像手段
5 コロナ転写手段
6 クリーニング手段
7 前露光手段
8 定着手段
9 転写材
10 直接帯電部材
12 案内手段
20、21、22 容器
23 直接帯電部材
L 露光光[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus.
[0002]
[Prior art]
Inorganic photoconductive materials such as selenium, cadmium sulfide and zinc oxide have been conventionally used as photoconductive materials for electrophotographic photoreceptors. On the other hand, organic photoconductive materials such as polyvinylcarbazole, oxadiazole, azo pigments, and phthalocyanines have advantages such as pollution-free and high productivity compared to inorganic photoconductive materials, but their sensitivity is low and their practical application is difficult. Met. For this reason, several sensitization methods have been proposed. As an effective method, use of a function-separated type photoconductor in which a charge generation layer and a charge transport layer are laminated has become the mainstream and is put into practical use. It has become.
[0003]
On the other hand, in recent years, non-impact printers using electrophotographic technology have been widely used in place of conventional impact printers as terminal printers. These are mainly laser beam printers that use laser light as a light source. As the light source, a semiconductor laser is used from the viewpoint of cost, the size of the apparatus, etc., and electrophotographic photosensitive having sufficient sensitivity to light of the oscillation wavelength. The body has been developed.
[0004]
Phthalocyanine compounds are extremely effective as charge generation materials having sensitivity in such a semiconductor laser oscillation wavelength region, and in particular, oxotitanium phthalocyanine and gallium phthalocyanine have superior sensitivity characteristics compared to conventional phthalocyanine compounds. Have reported various crystal forms (for example, see Patent Documents 1 to 8).
[0005]
In addition, in the phthalocyanine compound, even when the crystal form is the same, when used as an electrophotographic photosensitive member due to a production method such as a raw material and a solvent, and a production condition such as a reaction temperature and a charging ratio, the electrophotographic characteristics are remarkably changed. In particular, it has been found that the sensitivity and chargeability are significantly different.
[0006]
Various methods for producing gallium phthalocyanine crystals have been disclosed (see, for example, Patent Documents 9 to 13). Further, hydroxygallium phthalocyanine crystals containing a polar organic solvent such as N, N-dimethylformamide have been disclosed (for example, see Patent Document 14). An electrophotographic photoreceptor using these gallium phthalocyanine crystals is Variations in the electrophotographic characteristics of each production occur, and are not always satisfactory from the viewpoint of increasing the speed of the electrophotographic process or improving the image quality.
[0007]
In addition, as an example of including an amine compound in a photoreceptor, it is a well-known fact that a tertiary amine compound is used as a charge transport material, and a primary or secondary amine compound is also disclosed (for example, Patent Document 15). However, these effects are improvement of sensitivity and durability potential fluctuation by improvement of hole transport capability, reduction of charging deterioration by antioxidation effect and improvement of wear of surface layer, from the viewpoint of high image quality. There is a demand for an electrophotographic photosensitive member that is not satisfactory, and that does not cause ghosting in further miniaturization of electrophotographic apparatuses such as copying machines and laser beam printers, and in high-quality full color.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 61-239248
[Patent Document 2]
JP-A-61-217050
[Patent Document 3]
JP-A 62-67094
[Patent Document 4]
Japanese Unexamined Patent Publication No. 63-218768
[Patent Document 5]
JP-A 64-17066
[Patent Document 6]
JP-A-5-098181
[Patent Document 7]
Japanese Patent Laid-Open No. 5-263007
[Patent Document 8]
JP 10-67946 A
[Patent Document 9]
JP-A-8-100134
[Patent Document 10]
JP-A-9-111148
[Patent Document 11]
JP-A-9-124967
[Patent Document 12]
Japanese Patent Laid-Open No. 10-7927
[Patent Document 13]
Japanese Patent Laid-Open No. 10-17784
[Patent Document 14]
JP 7-331107 A
[Patent Document 15]
JP 59-171741 A
[Patent Document 16]
JP-A-8-254844
[Patent Document 17]
JP-A-8-262760
[Patent Document 18]
JP 2000-122314 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of these problems, and its object is to have high sensitivity, particularly high sensitivity characteristics in the semiconductor laser wavelength region, potential stability during repeated use, in addition to image defects, particularly ghosting. It is an object of the present invention to provide an electrophotographic photosensitive member which is difficult to obtain, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[0010]
[Means for Solving the Problems]
  The present invention provides a charge generating material on a conductive support.galliumAn electrophotographic photoreceptor having a photosensitive layer comprising at least two layers of a charge generation layer containing a phthalocyanine compound and a charge transport layer containing a charge transport material, wherein the charge generation layer comprises:galliumFor phthalocyanine compoundsDimethylamine selected from dimethylamine and dimethylamine sulfate1 compoundAn electrophotographic photoreceptor characterized by containing 500 ppm..
[0011]
  MaThe present invention is characterized in that the electrophotographic photosensitive member and at least one means selected from the group consisting of a charging means, a developing means and a cleaning means are integrally supported, and are detachable from the electrophotographic apparatus. Process cartridge.
[0012]
The present invention also provides an electrophotographic apparatus comprising the electrophotographic photosensitive member, a charging unit, an image exposing unit, a developing unit, and a transfer unit.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0016]
  Used as a charge generation materialgalliumPhthalocyanine compounds are, PlaceCrystal form having strong peaks at 7.4 ± 0.3 ° and 28.2 ± 0.3 ° of Bragg angle 2θ in CuKα characteristic X-ray diffraction Of these, hydroxygallium phthalocyanine is preferred in terms of electrophotographic characteristics. Furthermore,Dimethylamine selected from dimethylamine and dimethylamine sulfateCompound contained in crystalgalliumPhthalocyanine crystals are particularly preferred because they exhibit excellent electrophotographic characteristics.
[0017]
  Dimethylamine selected from dimethylamine and dimethylamine sulfateCompoundgalliumThe content relative to the phthalocyanine compound is particularly preferably 5 to 200 ppm from the viewpoint of electrophotographic characteristics.
[0020]
Next, the electrophotographic photoreceptor of the present invention will be described in detail.
[0021]
The conductive support only needs to have conductivity, and examples thereof include metals such as aluminum and stainless steel, metals provided with a conductive layer, plastics, paper, and the like, and examples of the shape include a cylindrical shape or a film shape. It is done.
[0022]
An undercoat layer having a barrier function and an adhesive function may be provided between the conductive support and the photosensitive layer. As the material for the undercoat layer, polyvinyl alcohol, polyethylene oxide, ethyl cellulose, methyl cellulose, casein, polyamide, glue, gelatin and the like are used. These are dissolved in an appropriate solvent and coated on the conductive support. The film thickness is preferably 0.2 to 3.0 μm.
[0023]
Furthermore, it is preferable to provide a conductive layer between the support and the undercoat layer for the purpose of covering unevenness or defects on the support and preventing interference fringes. This can be formed by dispersing conductive powder such as carbon black, metal particles and metal oxide in a binder resin. The film thickness of the conductive layer is preferably 5 to 40 μm, more preferably 10 to 30 μm.
[0024]
  The charge generation layer isgalliumWith phthalocyanine compoundsDimethylamine selected from dimethylamine and dimethylamine sulfateCompound, preferablyDimethylamine selected from dimethylamine and dimethylamine sulfateCompound contained in crystalgalliumPhthalocyanine compoundThingsDisperse in a suitable binder resin solution, apply this dispersion, and dry.
[0025]
The charge transport layer is formed by applying and drying a paint in which a charge transport material and a binder resin are mainly dissolved in a solvent. Examples of the charge transport material include various triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triallylmethane compounds.
[0026]
Examples of the binder resin used in each layer include resins such as polyester, acrylic resin, polyvinyl carbazole, phenoxy resin, polycarbonate, polyvinyl butyral, polystyrene, polyvinyl acetate, polysulfone, polyarylate, vinylidene chloride, acrylonitrile copolymer, and polyvinyl benzal. Used.
[0027]
As a method for applying the photosensitive layer, application methods such as a dipping method, a spray coating method, a spinner coating method, a bead coating method, a blade coating method, and a beam coating method can be used.
[0028]
  In the charge generation layergalliumThe content of the phthalocyanine compound is preferably 30 to 90% by mass, more preferably 50 to 80% by mass, based on the total solid content of the charge generation layer. The content of the charge transport material is preferably 20 to 80% by mass, more preferably 30 to 70% by mass with respect to the total solid content of the charge transport layer.
[0029]
A protective layer may be provided on the photosensitive layer as necessary. The protective layer is made of polyvinyl butyral, polyester, polycarbonate (polycarbonate Z, modified polycarbonate, etc.), polyamide, polyimide, polyarylate, polyurethane, styrene-butadiene copolymer, styrene-acrylic acid copolymer, and styrene-acrylonitrile copolymer. It can be dissolved by coating, coated on the photosensitive layer, and dried. The thickness of the protective layer is preferably 0.05 to 20 μm. Moreover, you may contain electroconductive particle, a ultraviolet absorber, etc. in a protective layer. As the conductive particles, metal oxides such as tin oxide particles are preferable.
[0030]
Next, an electrophotographic apparatus having the electrophotographic photosensitive member of the present invention will be described.
[0031]
In FIG. 1, reference numeral 1 denotes a drum type photoconductor of the present invention, which is driven to rotate at a predetermined peripheral speed in the direction of an arrow about a shaft 1a. The photosensitive member 1 is uniformly charged at a predetermined positive or negative potential on the peripheral surface thereof by the charging means 2 during the rotation process, and then the light image exposure L (slit exposure or laser exposure) is performed by the exposure means (not shown) in the exposure unit 3. Beam scanning exposure). As a result, electrostatic latent images corresponding to the exposure image are sequentially formed on the peripheral surface of the photosensitive member. The electrostatic latent image is then developed with toner by the developing unit 4, and the toner image is synchronized with the rotation of the photoconductor 1 between the photoconductor 1 and the transfer unit 5 from a paper feeding unit (not shown) by the corona transfer unit 5. It is sequentially transferred onto the surface of the transfer material 9 taken and fed. The transfer material 9 that has received the image transfer is separated from the surface of the photosensitive member, introduced into the fixing means 8, and subjected to image fixing, and printed out as a copy (copy). After the image transfer, the surface of the photoreceptor 1 is cleaned by the transfer unit 6 after removal of the transfer residual toner, is subjected to a charge removal process by the pre-exposure unit 7 and repeatedly used for image formation.
[0032]
Further, in the apparatus shown in FIG. 2, at least the photosensitive member 1, the charging means 2 and the developing means 4 are accommodated in a container 20 to form a process cartridge, and this process cartridge is detachable using a guide means 12 such as a rail of the apparatus. It is composed. The cleaning means 6 may or may not be disposed in the container 20.
[0033]
Further, as shown in FIGS. 3 and 4, the photosensitive member 1 may be charged by using the direct charging member 10 as charging means and bringing the direct charging member 10 to which voltage is applied into contact with the photosensitive member 1 ( This charging method is hereinafter referred to as direct charging). In the apparatus shown in FIGS. 3 and 4, the toner image on the photoreceptor 1 is also directly transferred to the transfer material 9 by the charging member 23. That is, the direct charging member 23 to which voltage is applied is brought into contact with the transfer material 9 to transfer the toner image on the photoreceptor 1 to the transfer material 9.
[0034]
Further, in the apparatus shown in FIG. 4, at least the photosensitive member 1 and the direct charging member 10 are housed in a first container 21 to form a first process cartridge, and at least the developing means 4 is housed in a second container 22 to form a second container. The process cartridge is configured such that the first process cartridge and the second process cartridge are detachable. The cleaning means 6 may or may not be disposed in the container 21.
[0035]
When the electrophotographic apparatus is used as a copying machine or a printer, the optical image exposure L uses reflected light or transmitted light from a manuscript, or scans and emits a laser beam by this signal according to a signal read from the manuscript. This is performed by driving a diode array or a liquid crystal shutter array.
[0036]
Hereinafter, the present invention will be described in more detail in accordance with Production Examples, Examples, and Comparative Examples.
[0037]
“%” And “part” shown below mean “% by mass” and “part by mass”, respectively. α-Chloronaphthalene is manufactured by Tokyo Chemical Industry Co., Ltd. and has a purity of 85% or higher.
[0038]
Production Example 1-1
Under a nitrogen flow, 5.46 parts of phthalonitrile and 45 parts of α-chloronaphthalene were added to the reaction kettle and heated, and the temperature was raised to 60 ° C. to keep this temperature. At this point, the phthalonitrile was completely dissolved. Next, 3.75 parts of gallium trichloride was charged at this temperature (60 ° C.) (the water value of the reaction liquid at the time of charging was 83 ppm), and then the temperature was raised to 200 ° C. After reacting at 200 ° C. for 5.5 hours under a nitrogen flow, the product was filtered when cooled to 150 ° C. The obtained product was dispersed and washed at 140 ° C. for 2 hours with N, N-dimethylformamide, filtered, washed with methanol and dried to obtain 4.2 parts of chlorogallium phthalocyanine.
[0039]
Production Example 1-2
Under a nitrogen flow, 5.46 parts of phthalonitrile and 45 parts of α-chloronaphthalene were added to the reaction kettle and heated, and the temperature was raised to 60 ° C. to keep this temperature. At this point, the phthalonitrile was completely dissolved. Next, 3.75 parts of gallium trichloride was added at this temperature (60 ° C.) (the water content of the reaction liquid at the time of the addition was 30 ppm), and then the temperature was raised to 200 ° C. After reacting at 200 ° C. for 5.5 hours under a nitrogen flow, the product was filtered when cooled to 150 ° C. The obtained product was dispersed and washed with N, N-dimethylformamide at 140 ° C. for 2 hours, filtered, washed with methanol and dried to obtain 4.0 parts of chlorogallium phthalocyanine.
[0040]
Production Example 1-3
Under a nitrogen flow, 5.46 parts of phthalonitrile and 45 parts of α-chloronaphthalene were added to the reaction kettle and heated, and the temperature was raised to 30 ° C. to keep this temperature. At this point, phthalonitrile was not completely dissolved. Next, 3.75 parts of gallium trichloride was added at this temperature (30 ° C.) (the water content of the reaction liquid at the time of the addition was 20 ppm), and then the temperature was increased to 200 ° C. After reacting at 200 ° C. for 5.5 hours under a nitrogen flow, the product was filtered when cooled to 150 ° C. The obtained product was dispersed and washed with N, N-dimethylformamide at 140 ° C. for 2 hours, filtered, washed with methanol and dried to obtain 4.5 parts of chlorogallium phthalocyanine.
[0041]
Production Example 1-4
Under a nitrogen flow, 5.46 parts of phthalonitrile and 45 parts of α-chloronaphthalene were added to the reaction kettle and heated, and the temperature was raised to 30 ° C. to keep this temperature. At this point, phthalonitrile was not completely dissolved. Next, at this temperature (30 ° C.), 3.75 parts of gallium trichloride was added (the water value of the reaction liquid at the time of charging was 100 ppm), and then the temperature was raised to 200 ° C. After reacting at 200 ° C. for 3.5 hours under a nitrogen flow, the product was filtered when cooled to 150 ° C. The obtained product was dispersed and washed with N, N-dimethylformamide at 140 ° C. for 2 hours, filtered, washed with methanol and dried to obtain 4.3 parts of chlorogallium phthalocyanine.
[0042]
Production Example 2-1
2.25 parts of chlorogallium phthalocyanine obtained in Production Example 1-1 was dissolved in 67.5 parts of concentrated sulfuric acid at 5 to 10 ° C., dropped into 300 parts of ice water with stirring, and then reprecipitated, followed by filtration. . Dispersion washing with 2% aqueous ammonia, followed by dispersion washing with ion exchange water four times, followed by drying to obtain 2.1 parts of hydroxygallium phthalocyanine.
[0043]
Production Examples 2-2, 2-3, and 2-4
The chlorogallium phthalocyanine obtained in Production Examples 1-2, 1-3, and 1-4 was treated in the same manner as in Production Example 2-1.
[0044]
Production Example 3-1
Milling was performed at 25 ± 3 ° C. for 10 hours with 0.8 parts of hydroxygallium phthalocyanine obtained in Production Example 2-1 and 16 parts of N, N-dimethylformamide together with 24 parts of 1.2 mmφ glass beads. The solid content is taken out from this dispersion, sufficiently washed with tetrahydrofuran, and then vacuum-dried to obtain hydroxygallium phthalocyanine crystals having strong peaks at 7.5 ° and 28.3 ° of Bragg angle 2θ in CuKα characteristic X-ray diffraction. 0.7 parts were obtained. FIG. 5 shows a powder X-ray diffraction pattern of the obtained crystal. The crystals were wetted in methanol, then heat-treated with pure water and analyzed by ion chromatography to detect 400 ppm of dimethylamine.
[0045]
Production Examples 3-2, 3-3 and 3-4
In Production Examples 2-2, 2-3, and 2-4, the obtained hydroxygallium phthalocyanine was treated in the same manner as in Production Example 3-1. The powder X-ray diffraction of each of the crystals obtained was the same as in FIG. Analysis was conducted in the same manner as in Production Example 3-1, and dimethylamine was detected at 280 ppm, 360 ppm, and 660 ppm, respectively.
[0046]
Production Example 3-5
Milling was performed at 25 ± 3 ° C. for 10 hours with 0.8 parts of hydroxygallium phthalocyanine obtained in Production Example 2-1 and 16 parts of N, N-dimethylformamide together with 24 parts of 1.2 mmφ glass beads. The solid content is taken out from this dispersion, dispersed and washed with ion-exchanged water, and the subsequent filtration step is repeated three times to make completely wet from N, N-dimethylformamide wet, then freeze-dried, and CuKα characteristic X-ray 0.7 parts of a hydroxygallium phthalocyanine crystal having strong peaks at 7.5 ° and 28.3 ° with a Bragg angle 2θ of diffraction were obtained. The powder X-ray diffraction pattern of the obtained crystal was the same as in FIG. Analysis was conducted in the same manner as in Production Example 3-1, and 40 ppm of dimethylamine was detected.
[0047]
Production Example 3-6
Milling was performed at 25 ± 3 ° C. for 10 hours with 0.8 parts of hydroxygallium phthalocyanine obtained in Production Example 2-4 and 16 parts of N, N-dimethylformamide together with 24 parts of 1.2 mmφ glass beads. The solid content is taken out from this dispersion, dispersed and washed with ion-exchanged water, and the subsequent filtration step is repeated three times, followed by vacuum drying, and a Bragg angle 2θ of 7.5 ° and 28.28 in CuKα characteristic X-ray diffraction. 0.7 part of a hydroxygallium phthalocyanine crystal having a strong peak at 3 ° was obtained. The powder X-ray diffraction pattern of the obtained crystal was the same as in FIG. Analysis was conducted in the same manner as in Production Example 3-1, and 570 ppm of dimethylamine was detected.
[0048]
Production Example 3-7
Milling of the hydroxygallium phthalocyanine obtained in Production Example 2-1 and 16 parts of tetrahydrofuran together with 24 parts of 1.2 mmφ glass beads was carried out at 25 ° C. for 10 hours. The solid content was taken out from this dispersion and vacuum dried to obtain 0.7 parts of hydroxygallium phthalocyanine crystals having strong peaks at 7.5 ° and 28.3 ° of Bragg angle 2θ in CuKα characteristic X-ray diffraction. Analysis was conducted in the same manner as in Production Example 3-1, but dimethylamine was not detected.
[0049]
Example 1-1
50 parts of titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of resol type phenol resin, 20 parts of methyl cellosolve, 5 parts of methanol and silicone oil (polydimethylsiloxane polyoxyalkylene copolymer, average A conductive layer coating material was prepared by dispersing 0.002 part of molecular weight 3000) in a sand mill apparatus using 1.2 mmφ glass beads for 2 hours.
[0050]
The paint was applied by dipping on an aluminum cylinder (φ30 mm) and dried at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 16 μm.
[0051]
A solution prepared by dissolving 5 parts of 6-66-610-12 quaternary polyamide copolymer resin in a mixed solvent of 70 parts of methanol and 25 parts of butanol was applied by a dipping method and dried. A subbing layer of .5 μm was provided.
[0052]
Next, 2 parts of a hydroxygallium phthalocyanine crystal produced in Production Example 3-1 and 1 part of a polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) are added to 50 parts of cyclohexanone and a 1.2 mmφ glass. Disperse in a sand mill using beads for 6 hours, add 50 parts of cyclohexanone and 120 parts of ethyl acetate, dilute, apply this onto the undercoat layer, and dry at 100 ° C. for 10 minutes. A charge generation layer of 0.18 μm was formed.
[0053]
Next, the following structural formula (Compound I-1)
[0054]
[Chemical Formula 3]
Figure 0003907567
7 parts of the charge transport material shown by the following structural formula
[0055]
[Formula 4]
Figure 0003907567
A solution prepared by dissolving 1 part of the charge transport material and 10 parts of the polyarylate resin in 70 parts of monochlorobenzene and 30 parts of methylal was prepared and applied on the charge generation layer by dipping. This was dried at a temperature of 110 ° C. for 1 hour to form a charge transport layer having a film thickness of 18 μm, thereby producing an electrophotographic photosensitive member.
[0056]
Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-3
Instead of the phthalocyanine crystal used in Example 1-1, it was produced in Production Examples 3-2, 3-3, 3-5, and 3-4, 3-6, 3-7 as shown in Table 1. Except for using gallium phthalocyanine crystals, electrophotographic photoreceptors were prepared in the same manner as in Example 1-1.
[0059]
  Example 2-1
  Instead of the phthalocyanine crystal used in Example 1-1, the gallium phthalocyanine crystal produced in Production Example 3-7 was used as a charge generation material, and 400 ppm of dimethylamine sulfate was added to the phthalocyanine compound. An electrophotographic photoreceptor was prepared in the same manner as in 1-1.
[0060]
Comparative Example 2-1
Instead of the phthalocyanine crystal used in Example 1-1, the gallium phthalocyanine crystal produced in Production Example 3-7 was used as a charge generation material, and a charge transport material (compound I-1) having the following structural formula was used for the phthalocyanine compound. An electrophotographic photosensitive member was prepared in the same manner as in Example 1-1 except that 400 ppm was added.
[0061]
[Chemical formula 5]
Figure 0003907567
[0062]
Comparative Example 2-2
Instead of the phthalocyanine crystal used in Example 1-1, the gallium phthalocyanine crystal produced in Production Example 3-7 was used as a charge generation material, and a phenylenediamine derivative (Compound I-2) having the following structural formula was used for the phthalocyanine compound. An electrophotographic photosensitive member was prepared in the same manner as in Example 1-1 except that 10% was added.
[0063]
[Chemical 6]
Figure 0003907567
[0064]
Comparative Example 2-3
An electrophotographic photosensitive member was prepared in the same manner as in Comparative Example 2-2, except that 400 ppm of the phenylenediamine derivative used in Comparative Example 2-2 was added to the phthalocyanine compound.
[0065]
Comparative Example 2-4
An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 2-2, except that 40 ppm of the phenylenediamine derivative used in Comparative Example 2-2 was added to the phthalocyanine compound.
[0066]
Comparative Example 2-5
Example 1 except that the gallium phthalocyanine crystal produced in Production Example 3-7 was used as a charge generation material in place of the phthalocyanine crystal used in Example 1-1 and 400 ppm of t-butylamine was added to the phthalocyanine compound. An electrophotographic photoreceptor was prepared in the same manner as in Example-1.
[0067]
Example 3-1.
The layers up to the charge generation layer were formed as in Example 1-4. Next, the following structural formula
[0068]
[Chemical 7]
Figure 0003907567
7 parts of the charge transport material shown by the following structural formula
[0069]
[Chemical 8]
Figure 0003907567
A solution in which 3 parts of the charge transport material shown in FIG. 1 and 10 parts of polycarbonate resin (trade name: Iupilon Z-200, manufactured by Mitsubishi Gas Chemical Company) are dissolved in 70 parts of monochlorobenzene is prepared, and the solution is dipped on the charge generation layer. Applied. This was dried at a temperature of 110 ° C. for 1 hour to form a charge transport layer having a film thickness of 22 μm, thereby producing an electrophotographic photosensitive member.
[0070]
Comparative Example 3-1
Similar to Comparative Example 1-1, the layers up to the charge generation layer were formed. Next, a charge transport layer was formed in the same manner as in Example 3-1, and an electrophotographic photosensitive member was formed.
[0071]
Comparative Example 4-1
In place of the phthalocyanine crystal used in Example 1-1, an azo compound (Compound I-3) having the following structural formula was used as a charge generation material, and 400 ppm of dimethylamine was added to the azo compound. An electrophotographic photoreceptor was prepared in the same manner as in Example-1.
[0072]
[Chemical 9]
Figure 0003907567
[0073]
  Examples 1-1 to 1-4, 2-1,The electrophotographic photoreceptors prepared in 3-1, and Comparative Examples 1-1 to 1-3, 2-1 to 2-5, 3-1 and 4-1 were evaluated by the following methods.
[0074]
The evaluation machine used LBP “Laser Jet 4000” (process speed 94.2 mm / sec) manufactured by Hewlett-Packard Co., and measured the surface potential (light part potential) after irradiation with laser light. The surface potential was measured by removing the developing cartridge from the evaluation machine and inserting a potential measuring device there. The potential measuring device is configured by arranging a potential measuring probe at the developing position of the developing cartridge, and the position of the potential measuring probe with respect to the electrophotographic photosensitive member is substantially at the center in the drum axis direction, with a gap from the drum surface. It was 3 mm. The measurement was performed in an environment where the temperature was 25 ° C. and the relative humidity was 50%, and the electrophotographic photosensitive drum was left in the measurement environment for 24 hours before the measurement.
[0075]
The positive ghost was evaluated as follows. After printing two solid black images, a halftone test was performed in which a solid black portion of 25 mm square was placed on the rotation of the photoconductor after the print image was written, and one dot was printed with a Keima pattern after the second rotation of the photoconductor. A chart was launched, and the degree of history of a solid black part of 25 mm square appearing on a halftone test chart was visually evaluated. The degree of ghost was quantified according to the rank criteria as follows.
Rank A: The ghost is not visible at all.
Rank B: The history outline is very slightly visible.
Rank C: The outline of the history is slightly visible.
Rank D: The outline of the history is clearly visible.
Rank E: The 25 mm square of the history is clearly visible.
[0076]
The evaluation results are shown in Tables 1 and 2.
[0077]
[Table 2]
Figure 0003907567
[0078]
[Table 3]
Figure 0003907567
[0079]
【The invention's effect】
The present invention has a remarkable effect that an electrophotographic photosensitive member having high sensitivity, particularly high sensitivity characteristics in a semiconductor laser wavelength region, and potential stability during repeated use, in addition to image defects, in particular, ghosts are hardly generated. An electrophotographic photosensitive member, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member are made possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having an electrophotographic photosensitive member of the present invention.
FIG. 2 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
FIG. 3 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
FIG. 4 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
FIG. 5 is a characteristic X-ray diffraction pattern of CuKα of hydroxygallium phthalocyanine obtained in Production Example 3-1.
[Explanation of symbols]
1 Photoconductor
1a axis
2 Charging means
3 exposure part
4 Development means
5 Corona transfer means
6 Cleaning means
7 Pre-exposure means
8 Fixing means
9 Transfer material
10 Direct charging member
12 Guide means
20, 21, 22 container
23 Direct charging member
L Exposure light

Claims (7)

導電性支持体上に電荷発生材料としてガリウムフタロシアニン化合物を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層の少なくとも二層からなる感光層を有する電子写真感光体において、該電荷発生層がガリウムフタロシアニン化合物に対してジメチルアミン及びジメチルアミン硫酸塩から選ばれたジメチルアミン化合物を1500ppm含有することを特徴とする電子写真感光体 An electrophotographic photoreceptor having a photosensitive layer comprising at least two layers of a charge generation layer containing a gallium phthalocyanine compound as a charge generation material and a charge transport layer containing a charge transport material on a conductive support, wherein the charge generation layer comprises: dimethylamine compound selected from dimethylamine and dimethylamine sulphate 1 against phthalocyanine compound - 500 ppm electrophotographic photoreceptor, characterized in that it contains. 前記ジメチルアミン化合物がジメチルアミンである請求項に記載の電子写真感光体。The electrophotographic photosensitive member according to claim 1 , wherein the dimethylamine compound is dimethylamine . 前記ガリウムフタロシアニン化合物がヒドロキシガリウムフタロシアニンである請求項1又は2に記載の電子写真感光体。The electrophotographic photosensitive member according to claim 1 or 2 wherein the phthalocyanine compound is hydroxygallium phthalocyanine. 前記電荷発生材料に対して前記ジメチルアミン化合物を5200ppm含有する請求項1乃至3のいずれかに記載の電子写真感光体。It said dimethylamine compound 5 with respect to the charge generating material - 200 ppm electrophotographic photosensitive member according to any one of claims 1 to 3 containing. 前記ガリウムフタロシアニン化合物が、前記ジメチルアミン化合物を結晶中に含有したガリウムフタロシアニン化合物である請求項1乃至4のいずれかに記載の電子写真感光体。The phthalocyanine compound, an electrophotographic photosensitive member according to any one of claims 1 to 4 dimethylamine compound is gallium phthalocyanine compound contained in the crystal. 請求項1乃至5のいずれかに記載の電子写真感光体、および帯電手段、現像手段およびクリーニング手段からなる群より選ばれる少なくとも一つの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。 6. The electrophotographic photosensitive member according to claim 1, and at least one unit selected from the group consisting of a charging unit, a developing unit, and a cleaning unit are integrally supported and detachable from the main body of the electrophotographic apparatus. A process cartridge characterized by that. 請求項1乃至5のいずれかに記載の電子写真感光体、帯電手段、像露光手段、現像手段および転写手段を有することを特徴とする電子写真装置。The electrophotographic photosensitive member according to any one of claims 1 to 5, a charging means, image exposure means, the electrophotographic apparatus, characterized in that it comprises a developing means and transfer means.
JP2002286415A 2002-09-30 2002-09-30 Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus Expired - Fee Related JP3907567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286415A JP3907567B2 (en) 2002-09-30 2002-09-30 Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286415A JP3907567B2 (en) 2002-09-30 2002-09-30 Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2004125907A JP2004125907A (en) 2004-04-22
JP3907567B2 true JP3907567B2 (en) 2007-04-18

Family

ID=32279473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286415A Expired - Fee Related JP3907567B2 (en) 2002-09-30 2002-09-30 Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP3907567B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770613B2 (en) * 2006-07-10 2011-09-14 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5734093B2 (en) * 2010-06-30 2015-06-10 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2014134774A (en) 2012-12-14 2014-07-24 Canon Inc Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and gallium phthalocyanine crystal
JP6004930B2 (en) 2012-12-14 2016-10-12 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6061660B2 (en) 2012-12-14 2017-01-18 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6080573B2 (en) * 2013-01-31 2017-02-15 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6949545B2 (en) * 2017-04-28 2021-10-13 キヤノン株式会社 Electrophotographic photosensitive members, process cartridges and electrophotographic equipment

Also Published As

Publication number Publication date
JP2004125907A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP6478750B2 (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, phthalocyanine crystal and method for producing the same
JP6609116B2 (en) Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and method for producing phthalocyanine crystal
JPH1020514A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2007052063A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus with the same
JP3907567B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP3080444B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP4322345B2 (en) Mixed crystal composition, electrophotographic photosensitive member, electrophotographic method and electrophotographic apparatus using the same
JP2879369B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP3077855B2 (en) Electrophotographic photosensitive member, and electrophotographic apparatus and facsimile using the same
JPH07104495A (en) Electrophotographic photoreceptor and electrophotographic device having the photoreceptor
JP2920323B2 (en) Electrophotographic photoreceptor
JP2879370B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP2001288188A (en) Phthalocyanine crystal, preparative method for the same, electrophotographic photoreceptor electrophotographic apparatus
JPH07271072A (en) Electrophotographic photoreceptor and electrophotographic device
JP2002099105A (en) Manufacturing method for pigment for charge generating layer, electrophotographic photoreceptor using the same pigment for charge generating layer, process cartridge having the same electrophotographic photoreceptor, and electrophotographic device
JP3604745B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus using the electrophotographic photoreceptor, and electrophotographic apparatus unit
JP2841242B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP2931070B2 (en) Novel crystal form of oxytitanium phthalocyanine and electrophotographic photoreceptor using the same
JPH04318557A (en) Electrophotographic sensitive body
JP2857486B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JPH0744065A (en) Electrophotographic device
JP2509040B2 (en) Electrophotographic photoreceptor
JP2872795B2 (en) Novel crystal form of oxytitanium phthalocyanine and electrophotographic photoreceptor using the same
JP2814017B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JP3969882B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Ref document number: 3907567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees