JP3907456B2 - V belt for high load transmission - Google Patents

V belt for high load transmission Download PDF

Info

Publication number
JP3907456B2
JP3907456B2 JP2001364555A JP2001364555A JP3907456B2 JP 3907456 B2 JP3907456 B2 JP 3907456B2 JP 2001364555 A JP2001364555 A JP 2001364555A JP 2001364555 A JP2001364555 A JP 2001364555A JP 3907456 B2 JP3907456 B2 JP 3907456B2
Authority
JP
Japan
Prior art keywords
rubber
belt
canvas
tension band
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364555A
Other languages
Japanese (ja)
Other versions
JP2003166597A (en
Inventor
茂樹 奥野
敬三 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2001364555A priority Critical patent/JP3907456B2/en
Publication of JP2003166597A publication Critical patent/JP2003166597A/en
Application granted granted Critical
Publication of JP3907456B2 publication Critical patent/JP3907456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • F16G5/166V-belts, i.e. belts of tapered cross-section consisting of several parts with non-metallic rings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高負荷伝動用Vベルトに関し、特に、その伝動効率及び耐久性向上対策に係るものである。
【0002】
【従来の技術】
コンバインやトラクタ等の農業用機械及び自動車等の変速装置として、変速時の操作性の向上や燃費の改善等を図る観点から、ベルト式無段変速装置の開発が進められている。このベルト式無段変速装置は、駆動軸及び従動軸の各々に溝間隔が可変なプーリを取り付けるとともに、この2個のプーリ間にVベルトを巻き掛け、上記各プーリの溝間隔を調整して回転ピッチを変化させることで無段階に変速するように構成されている。
【0003】
このようなVベルトとして、例えば、特開2000―120779号公報に開示されているように、エンドレスの一対のゴム製張力帯と、ベルト幅方向両側部に上記各張力帯を嵌合する嵌合溝及びプーリのベルト溝側部と接触する接触部を有する多数のブロックとで構成され、上記各張力帯の上下面に形成された凹溝と各ブロックの嵌合溝の上下面に形成された凸部とを互いに係合させることにより、各ブロックが両張力帯に係止されてベルト長手方向全長に亘って所定ピッチで並設されたいわゆるブロックVベルトと呼ばれる高負荷伝動用Vベルトが知られている。上記各張力帯は、本体ゴムの上下面に耐摩耗性を向上させるための帆布部材が接着されて構成されている。この帆布部材は、ゴムを含浸させた後に本体ゴムと共に加硫することで該本体ゴムに接着されている。
【0004】
上記Vベルトは、プーリの側圧を各ブロックで受けるとともに、動力伝達を張力帯で行うようになされており、従来のゴムVベルトに比べて屈曲性が良く、高側圧に耐え得るようにすることが可能であり、また、金属Vベルトに比べて軽量化が図れて潤滑が不要になるとともに、騒音が少ない等の多くの利点を有している。
【0005】
【発明が解決しようとする課題】
ところで、上記高負荷伝動用Vベルトにおいては、その走行時の高負荷伝動中に各張力帯がブロックを介してプーリから高荷重を受けるために、各張力帯の上下面に形成された凹溝間の凸状のコグが変形する。そして、この張力帯のコグが一定以上変形すると、プーリから与えられる推力が効率よくベルト張力に変換されないために、ベルトの伝動能力が低下するという問題が生ずる。
【0006】
更に、コグの過度の変形によってブロックの向きを一定に維持できなくなり、その結果、高負荷を伝動することができなくなってしまうことがある。
【0007】
また、ベルト走行中に張力帯のコグが一定以上変形すると、プーリ溝に対するブロックの固定度が低下してブロックが揺動するために騒音が大きくなると共に、張力帯にクラックが発生し、ベルトの耐久性が低下するという問題が生ずる。
【0008】
本発明は、かかる点に鑑みてなされたものであり、張力帯表面のゴムの組成を所定範囲に特定することで、高負荷伝動用Vベルトの伝動効率及び耐久性を向上することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、張力帯のコグにおける硬度を所定範囲に特定するようにしたものである。
【0010】
具体的に、本発明は、帆布にゴムを含浸させた帆布部材が本体ゴムの上下表面に接着される一方、上下両面に凹凸部が形成された張力帯と、上記張力帯の長さ方向に複数配置され、上記張力帯に凹凸部と噛み合わせて固定されたブロックとにより構成された高負荷伝動用Vベルトを前提として、上記張力帯の凸状のコグにおける平坦部の帆布部材の上からJIS−C硬度計を用いて測定される硬度が、75以上且つ83以下であり、上記帆布部材は、その長さ方向の貯蔵弾性率が温度100℃、静荷重0.294MPa、動歪1%、周波数10 Hz 及び引張モードの測定条件で、60.2MPa以上且つ130MPa以下である。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0012】
図1から図3に示すように、本発明の実施形態に係る高負荷伝動Vベルトは、左右一対のエンドレスの張力帯1と、この張力帯1にベルト長さ方向に連続的に係止固定された多数のブロック7とにより構成されている。
【0013】
上記各張力帯1は、硬質ゴムから成る本体ゴムである保形ゴム層2を備え、この保形ゴム層2の内部には、アラミド繊維等の高強度高弾性率の心線3がベルト長さ方向にスパイラル状にかつ平行に埋設されている。
【0014】
上記保形ゴム層2の上面には、各ブロック7に対応してベルト幅方向に延びるU字状溝からなる多数の上側凹部4がベルト長さ方向全長に亘って所定ピッチで形成され、下面には、ベルト幅方向に延びるU字状溝からなる多数の下側凹部5が上記上側凹部4に対応してベルト長手方向全長に亘って所定ピッチで形成されている。上記保形ゴム層2の上下両面には、耐摩耗性を向上させるための帆布部材6が一体に接着されている。この帆布部材6は、例えば、ナイロン製の帆布にメタクリル酸亜鉛で補強された水素添加ニトリルゴムを含有するゴムを含浸させた後に加硫されて作製されている。
【0015】
上記張力帯1において、上面の隣り合う上側凹部4,4間と、下面の隣り合う下側凹部5,5間とは、それぞれ台形凸状のコグ15に形成されている。上面側のコグ15は、下面側のコグ15に比べ、その平坦部の幅が狭く形成されている。
【0016】
上記保形ゴム層2を構成する硬質ゴムは、メタクリル酸亜鉛やアクリル酸亜鉛などの金属塩モノマーで強化された水素添加ニトリルゴムで、それに補強を目的として有機短繊維を全体に混入して強化することで、耐熱性に優れかつ永久変形し難い硬質ゴムとされたものが用いられている。また、上記硬質ゴムには、JIS−C硬度計で測定したときに75°以上のゴム硬度のものが用いられる。
【0017】
そして、上記保形ゴム層2と心線3及び帆布部材6とは、その心線3及び帆布部材6に対する適切な接着処理により、ゴムの架橋時に強固に接着されて一体化されている。
【0018】
本実施形態の特徴として、帆布部材6は、帆布に含浸されたゴムが、重合性有機酸の金属塩モノマーであるメタクリル酸亜鉛で補強された水素添加ニトリルゴムを含有するゴム組成物により構成されている。そして、張力帯1のコグの平坦部の帆布部材6の上からJIS−C硬度計を用いて測定される硬度(JIS−C硬度)が75以上且つ83以下になるように帆布部材6の硬度が調整されている。尚、帆布に含有させるゴムは、アクリル酸亜鉛で補強した水素添加ニトリルゴムを含有するゴム組成物で構成するようにしてもよい。
【0019】
上記帆布部材6は、ベルト長さ方向の貯蔵弾性率が、温度100℃、静荷重0.29MPa(3Kgf/cm2)、動歪1%、周波数10Hz、引張モードの条件(Rheometrics 社製RSAIIによる)において、60MPa以上且つ130MPa以下に調整するように構成することが望ましい。尚、帆布部材6は、ゴムのポリマー鎖の配向方向がベルトの幅方向とされている。
【0020】
上記帆布に含浸させるゴムは、帆布部材6の作製時における加硫条件(170℃、20分)で加硫したときの硬度(JIS−C)が68以上且つ82以下になるように構成ことが望ましい。
【0021】
また、上記帆布に含浸させるゴムは、帆布部材6の作製時における加硫条件(170℃、20分)で加硫したときの、ポリマー鎖の配向方向と垂直方向における貯蔵弾性率が、温度100℃、静荷重0.294MPa、動歪1%、周波数10Hz及び引張モードの測定条件で測定したときに、60MPa以上且つ110MPa以下になるように構成することが望ましい。
【0022】
上記各ブロック7は、ベルト幅方向左右側部に上記各張力帯1を幅方向から着脱可能に嵌装せしめる切欠き溝状の嵌合部8を有している。この嵌合部8を除いた左右側面は、Vプーリのプーリ溝面(図示せず)に接触する接触部11に構成されている。このブロック7の左右の接触部11同士がなすベルト角度は、プーリ溝面の角度と同じとされている。
【0023】
各ブロック7は、上記嵌合部8の上側に位置し且つベルト幅方向に延びる上側ビーム7aと、上記嵌合部8の下側に位置し且つベルト幅方向に延びる下側ビーム7bと、両ビーム7a,7bの左右中央部同士を上下に接続するセンタピラー7cとにより、略H字状に形成されている。
【0024】
そして、各ブロック7の嵌合部8にそれぞれ張力帯1を圧入して嵌合することで、各ブロック7が張力帯1にベルト長手方向に連続的に係止固定されている。すなわち、各ブロック7における各嵌合部8の上壁面には上記張力帯1上面の各上側凹部4に噛合する上側噛合部としての上側凸部9が、また嵌合部8の下壁面には張力帯1下面の各下側凹部5に噛合する下側噛合部としての下側凸部10がそれぞれ互いに平行に配置されて形成されている。そして、この各ブロック7の両凸部9,10をそれぞれ張力帯1の両凹部4,5に噛合せしめることで、ブロック7が張力帯1にベルト長さ方向に配列されて係止固定されている。相隣り合うブロック7同士がコグ15によって繋がれるように、ブロックが張力帯に係止固定されている。この係止状態で各張力帯1の外側側面と各ブロック7の側面である接触部11との双方がプーリ溝面に接触している。
【0025】
上記各ブロック7は、図3に示すように、補強材12と、該補強材12の表面を被覆する硬質樹脂部13とを備えている。補強材12は、ブロック7の嵌合部8の上側に位置し且つ下端縁部が略水平に延びる上ビーム部12aと、嵌合部8の下側に位置し且つ上端縁部が上ビーム部12aの下端縁部と平行に略水平に延びる下ビーム部12bと、両ビーム部12a,12bの左右中央部同士を上下に接続し且つ左右両端縁部が略上下方向に延びるピラー部12cとからなる略H字状のものに形成されている。
【0026】
上記硬質樹脂部13は、例えば、繊維強化フェノール系樹脂により形成されている。硬質樹脂部13は、補強材12の上下両面、左右両側面及び嵌合部8を被覆するように形成されている。尚、硬質樹脂部13は、ブロック7の嵌合部8の周囲部分と左右側面の接触部11(プーリ溝面との摺動接触部)とにおいて補強材12を被覆するようにしておけばよく、その他の部分は補強材12が表面に露出していてもよい。
【0027】
そして、上述の如く構成されたブロック7と張力帯1との組合わせからなる高負荷伝動Vベルトは、図外の駆動側及び従動側の2つの変速プーリ間に巻き掛けられてベルト式無段変速装置を構成する。
【0028】
したがって、本実施形態においては、ベルト走行時の高荷重伝動中に各張力帯1がブロック7を介してプーリを介して高荷重を受けても、コグ15の変形を一定範囲内に抑えることができて、高負荷伝動によっても安定して効率よく動力を伝達することができると共に、ブロック7の揺動を防止して、低騒音でベルト走行することができる。更に、張力帯1にクラックが発生せず、耐久性を向上させることができる。
【0029】
【実施例】
次に、具体的に実施した実施例について説明する。高負荷伝動用Vベルトは、ベルト角度を26度、ベルトピッチ幅を25mm、ブロックピッチ(ベルト長さ方向)を3mm、ブロックの厚さを2.95mm、ベルトの長さを612mmとした。
【0030】
まず、帆布に含浸させる含浸ゴムの配合について表1に示す。
【0031】
【表1】

Figure 0003907456
【0032】
表1に示すように、母体ゴムとして水素添加ニトリルゴム(日本ゼオン社製、商品名;ゼットポール2020)及びメタクリル酸亜鉛補強水素添加ニトリルゴム(日本ゼオン社製、商品名;ZSC-2295)を使用し、両ゴムの配合割合を振ってゴム(i)〜ゴム(vi)の6種類の含浸ゴムを作製した。尚、表1には、両ゴムの配合割合を質量%で示している。各含浸ゴムは、両ゴム100質量部に対して、酸化亜鉛(堺化学社製)が10質量部、カーボンブラック(旭カーボン社製、商品名;旭#50)が30質量部、パーオキサイド(日本油脂社製、商品名;ペルキシモンF40)が7質量部の割合でそれぞれ配合されている。
【0033】
そして、上記ゴム(i)〜ゴム(vi)の含浸ゴムをMEK(メチルエチルケトン)で溶解して糊ゴムを作成し、ナイロン製の帆布の原反を上記糊ゴムに含浸した後に乾燥させることでゴム含浸部材を作成した。尚、糊ゴムにおける含浸ゴムとMEKとの混合比は、1対5の割合とした。そして、ゴム含浸部材における糊ゴムのゴム含浸量をゴム含浸部材1m当たりの質量から求めた。
【0034】
上記ゴム(i)〜ゴム(vi)の含浸ゴムを構成部材とするゴム含浸部材について帆布を長さ方向に40%伸長させた状態でプレス架橋して帆布部材6を作製した。このプレス条件は、170℃、20分とした。更に、この帆布部材6を使用して張力帯1を作製し、高負荷伝動用Vベルトを作製した。以下、各実施例及び比較例について説明する。
【0035】
実施例1に係る高負荷伝動用Vベルトは、表2に示すように、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が23対77の含浸ゴム(ゴム(ii))をMEKで溶解した糊ゴムを帆布に含浸させた後にプレス架橋して作製されている。尚、ゴム(ii)は、メタクリル酸亜鉛が質量百分率で23%配合されている。
【0036】
実施例2に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が15対85の含浸ゴム(ゴム(iii))をMEKで溶解した糊ゴムを帆布に含浸させた後にプレス架橋して作製されている。
【0037】
実施例3に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が5対95の含浸ゴム(ゴム(iv))をMEKで溶解した糊ゴムを帆布に含浸させた後にプレス架橋して作製されている。尚、ゴム(iv)は、メタクリル酸亜鉛が質量百分率で30%配合されている。
【0038】
実施例4及び5に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6にゴム(ii)が使用されているが、表3に示すように、実施例1と異なり、実施例4では含浸量が110g/m2となっており、実施例5では含浸量が311g/m2となっている。尚、実施例1では含浸量が220g/m2となっている。つまり、実施例4及び5は、実施例1について糊ゴムの含浸量を増減させたものである。
【0039】
実施例6及び7に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6にゴム(iv)が使用されているが、実施例3と異なり、実施例で6は含浸量が111g/m2となっており、実施例7では含浸量が305g/m2となっている。尚、実施例3では含浸量が221g/m2となっている。つまり、実施例6及び7は、実施例3について糊ゴムの含浸量を増減させたものである。
【0040】
【表2】
Figure 0003907456
【0041】
【表3】
Figure 0003907456
【0042】
上記各実施例では、張力帯1の帆布部材6は、重合性有機酸の金属塩モノマーとしてメタクリル酸亜鉛を用いているが、アクリル酸亜鉛を用いてもよい。
【0043】
比較例1に係る高負荷伝動用Vベルトは、表2に示すように、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が30対70の含浸ゴム(ゴム(i))をMEKで溶解した糊ゴムに帆布を含浸した後にプレス架橋して作製されている。
【0044】
比較例2に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が0対100の含浸ゴム(ゴム(v))をMEKで溶解した糊ゴムに帆布を含浸した後にプレス架橋して作製されている。
【0045】
比較例3に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6が水素添加ニトリルゴム対メタクリル酸亜鉛補強水素添加ニトリルゴムの質量割合が100対0の含浸ゴム(ゴム(vi))をMEKで溶解した糊ゴムに帆布を含浸した後にプレス架橋して作製されている。
【0046】
比較例4及び5に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6にゴム(ii)が使用されているが、表3に示すように、実施例1と異なり、比較例4では糊ゴムの含浸量が51g/m2となっており、比較例5では糊ゴムの含浸量が433g/m2となっている。つまり、比較例4及び5は、実施例4及び5よりさらに含浸量を増減させたものである。
【0047】
比較例6及び7に係る高負荷伝動用Vベルトは、張力帯1の帆布部材6にゴム(iv)が使用されているが、実施例3と異なり、比較例6では糊ゴムの含浸量が50g/m2となっており、比較例7では糊ゴムの含浸量が428g/m2となっている。つまり、比較例6及び7は、実施例6及び7よりさらに含浸量を増減させたものである。
【0048】
上記含浸ゴムのゴム硬度及び貯蔵弾性率を測定した。尚、含浸ゴムでは、170℃で20分間プレスすることにより架橋させた後に、ゴム硬度及び貯蔵弾性率を測定した。また、帆布部材6の貯蔵弾性率を測定した。さらに、実施例及び比較例の各高負荷伝動用Vベルトについて、耐久性及び推力−張力変換率を測定すると共に、張力帯のコグにおける平坦部の硬度を帆布部材の上からJIS−C硬度計を用いて測定した。
【0049】
上記貯蔵弾性率は、試験機としてRheometrics 社製RSAIIを使用し、測定条件として温度100℃、静荷重0.29MPa(3Kgf/cm2)、動歪1%、周波数10Hz、引張モードで測定を行った。引張方向は、含浸ゴムではポリマー鎖の配向方向と垂直方向とし、帆布部材6ではベルトの長さ方向に対応した方向とした。
【0050】
上記耐久性は、実施例及び比較例のそれぞれについて、図4に示す耐熱試験装置を用いたベルトの耐久走行試験により評価を行った。図4(a)は耐熱試験装置を上側から、図4(b)は前側からそれぞれ見た概略断面図である。この耐熱試験装置は、前面上部の左右略中央位置に直径40mmの熱風入口20aが、上面の左側端部に直径90mmの熱風出口20bがそれぞれ開口した耐熱ボックス20を有している。この耐熱ボックス20内の左側部(熱風出口20b側)には駆動軸21に設けたピッチ円直径126.43mmの駆動プーリ22が、また右側部には従動軸23に設けたピッチ円直径70.8mmの従動プーリ24が、互いに軸間距離148.5mmを離して配置されている。そして、これら両プーリ22,24間に各実施例及び比較例の各ベルトBを巻き掛け、耐熱ボックス20内に熱風入口20aから熱風を送ってそれを熱風出口20bから排出させながら、各ベルトBを下記表4の条件で500時間走行させた。そして、走行後において、張力帯1のクラックの発生の有無及びコグの変形の有無により耐久性を評価した。
【0051】
【表4】
Figure 0003907456
【0052】
表2に示すように、上記含浸ゴムとしてゴム硬度(JIS−C)が71〜80で且つ貯蔵弾性率が70.2〜105.1MPaであるゴム(ii)、ゴム(iii)及びゴム(iv)を使用した実施例1,2及び3では、耐久走行試験後において張力帯1のクラックの発生がなく、且つコグの変形が確認されなかった。更に、実施例1,2及び3では、推力−張力変換率が1.4以下と良好な値を示している。
【0053】
一方、ゴム硬度が66と低く、貯蔵弾性率が48.8MPaと低いゴム(i)を使用した比較例1では、耐久走行試験後において張力帯1にクラックが発生し、且つコグの変形が確認された。これは、含浸ゴムの貯蔵弾性率が低過ぎるために、走行時にコグの変形が過度に大きくなってクラックが誘発されるためと考えられる。また、比較例1では、プーリ側圧によるコグの変形が大きいために、推力が張力に有効に変換されず、推力−張力変換率が2と高い値になっている。
【0054】
比較例1より更に硬度が低く、貯蔵弾性率が低い比較例3では、比較例1と同様に、耐久走行試験後において張力帯1にクラックが発生し、且つコグの変形が確認された。
【0055】
含浸ゴムとしてゴム硬度が85と硬く、貯蔵弾性率が120.5MPaと高いゴム(v)を使用した比較例2では、耐久走行試験後においてコグの変形が確認されなかったものの、張力帯1にクラックが発生した。これは、貯蔵弾性率が高過ぎるために屈曲性が悪く、屈曲疲労性が低下してプーリに巻き付く際に発生する歪みによってクラックが発生するためと考えられる。尚、比較例2では推力−張力変換率が1.2と良好な値を示しているが、これは、コグの変形が小さいことによるものと考えられる。
【0056】
表3に示すように、上記帆布部材6として貯蔵弾性率60.2〜130MPaのものを使用した実施例4,5,6及び7において、耐久走行試験後における張力帯1のクラックの発生がなく、且つコグの変形が確認されなかった。また、これら実施例では、推力−張力変換率が1.2〜1.4と良好な値を示している。尚、これら実施例4,5,6及び7における張力帯1のコグの硬度、つまり帆布部材6の表面の硬度は、75〜83となっている。
【0057】
一方、貯蔵弾性率が41.1MPa、55MPaと低い帆布部材6を使用した比較例4、6では、耐久走行試験後において張力帯1にクラックが発生し、且つコグの変形が確認された。つまり、硬度及び貯蔵弾性率が適正な範囲内にある含浸ゴムを使用しても、糊ゴムの含浸量が低い比較例4,6では、帆布の空隙に十分に含浸ゴムが充填されていないために、帆布部材6としての貯蔵弾性率が低くなり、耐久走行試験後において張力帯のコグに過度の変形が生じると共に張力帯1にクラックが発生したと考えられる。即ち、帆布部材6の貯蔵弾性率が低過ぎるために、走行時にコグの変形が一定以上に大きくなり、このコグの過度の変形によってクラックが誘発されると考えられる。尚、これらの張力帯1におけるコグの硬度は、70、72となっている。また、走行中におけるコグの変形が大きいために、上記同様に推力−張力変換率は高い値を示し、推力が張力に効率よく変換されていないことがわかる。
【0058】
また、貯蔵弾性率が135、154と高い比較例5及び7では、耐久走行試験後においてコグの変形が確認されなかったものの、張力帯1にクラックが発生している。これは、硬度及び貯蔵弾性率が適正な範囲内にある含浸ゴムを使用しても、糊ゴムの含浸量が多いと帆布部材6の貯蔵弾性率が高くなり過ぎるために屈曲性が悪く、屈曲疲労性が低下してプーリに巻き付く際に発生する歪みによってクラックが発生するためと考えられる。これらの張力帯1におけるコグの硬度は、84、85となっている。尚、比較例5及び7では、コグの変形が見られず、推力−張力変換率は、1.4以下と良好な値を示している。
【0059】
上記の如く糊ゴムの含浸量には最適範囲が存在するが、この範囲は原反帆布の材質や厚みによって変化するために、特定することが困難である。
【0060】
【発明の効果】
以上説明してきたように、発明によれば、ベルト走行時に高荷重が負荷されても、走行中のコグの変形を一定範囲内に抑えることができて、高負荷伝動によっても安定して効率よく動力を伝達することができると共に、ブロックの揺動を防止して、低騒音でベルト走行することができる。更に、張力帯にクラックが発生せず、耐久性を向上させることができる。
【図面の簡単な説明】
【図1】実施形態1に係る高負荷伝動用Vベルトの構成を示す斜視図である。
【図2】実施形態1に係る高負荷伝動用Vベルトの構成を示す側面図である。
【図3】図2におけるI−I断面を示す断面図である。
【図4】(a)は耐熱試験装置を上側から見た断面図であり、(b)は耐熱試験装置を前側から見た断面図である。
【符号の説明】
1 張力帯
6 帆布部材
7 ブロック
15 コグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a V-belt for high load transmission, and particularly relates to measures for improving transmission efficiency and durability.
[0002]
[Prior art]
Development of belt-type continuously variable transmissions is being promoted from the viewpoint of improving operability during shifting, improving fuel efficiency, and the like as transmissions for agricultural machines such as combines and tractors and automobiles. In this belt type continuously variable transmission, a pulley having a variable groove interval is attached to each of the drive shaft and the driven shaft, and a V belt is wound between the two pulleys to adjust the groove interval of each pulley. By changing the rotation pitch, the speed is changed continuously.
[0003]
As such a V-belt, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-12079, a pair of endless rubber tension bands and a fitting for fitting the tension bands on both sides in the belt width direction It is composed of a plurality of blocks having contact portions that come into contact with the belt groove side portions of the grooves and pulleys, and formed on the upper and lower surfaces of the concave grooves formed on the upper and lower surfaces of the tension bands and the fitting grooves of the blocks. A high load transmission V belt known as a so-called block V belt in which each block is locked to both tension bands and arranged in parallel at a predetermined pitch over the entire length in the longitudinal direction of the belt by engaging the projections with each other is known. It has been. Each of the tension bands is configured by adhering canvas members for improving wear resistance to the upper and lower surfaces of the main rubber. The canvas member is bonded to the main rubber by impregnating the rubber and then vulcanizing with the main rubber.
[0004]
The V-belt receives the pulley side pressure at each block and transmits power through a tension band. It is more flexible than a conventional rubber V-belt and can withstand high side pressure. In addition, as compared with the metal V-belt, the weight is reduced, lubrication is unnecessary, and there are many advantages such as less noise.
[0005]
[Problems to be solved by the invention]
By the way, in the high load transmission V-belt, since each tension band receives a high load from the pulley through the block during the high load transmission during the traveling, the concave grooves formed on the upper and lower surfaces of each tension band. The convex cogs in between are deformed. When the cogs of the tension band are deformed more than a certain level, the thrust applied from the pulley is not efficiently converted into belt tension, and thus the problem arises that the transmission capability of the belt is reduced.
[0006]
Furthermore, excessive deformation of the cogs may prevent the block orientation from being kept constant, and as a result, high loads may not be transmitted.
[0007]
Also, if the cog of the tension band is deformed more than a certain level while the belt is running, the degree of fixing of the block with respect to the pulley groove decreases and the block swings, resulting in increased noise and cracks in the tension band. There arises a problem that durability is lowered.
[0008]
This invention is made in view of this point, and it aims at improving the transmission efficiency and durability of the V belt for high load transmission by specifying the composition of the rubber | gum of the surface of a tension belt to a predetermined range. To do.
[0009]
[Means for Solving the Problems]
In the present invention, the hardness of the cogs of the tension band is specified within a predetermined range.
[0010]
Specifically, according to the present invention , a canvas member obtained by impregnating a canvas with rubber is bonded to the upper and lower surfaces of the main rubber, while a tension band having uneven portions formed on both upper and lower surfaces, and a length direction of the tension band. Assuming a high-load transmission V-belt that is arranged in plural and is fixed to the tension band in mesh with the concavo-convex part, from above the flat canvas member in the convex cog of the tension band hardness measured by using a JIS-C hardness scale state, and are 75 or more and 83 or less, the fabric member, the longitudinal direction of the storage modulus temperature 100 ° C., static load 0.294 MPa, dynamic strain of 1 %, A frequency of 10 Hz, and a tensile mode measurement condition of 60.2 MPa or more and 130 MPa or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
As shown in FIGS. 1 to 3, the high-load transmission V-belt according to the embodiment of the present invention includes a pair of left and right endless tension bands 1, and the tension bands 1 are continuously locked and fixed in the belt length direction. And a large number of blocks 7.
[0013]
Each of the tension bands 1 includes a shape-retaining rubber layer 2 that is a main rubber body made of hard rubber. Inside the shape-retaining rubber layer 2, a high-strength, high-elasticity core wire 3 such as an aramid fiber is disposed in the belt length. It is buried spirally and parallel to the vertical direction.
[0014]
On the upper surface of the shape-retaining rubber layer 2, a large number of upper concave portions 4 made of U-shaped grooves extending in the belt width direction corresponding to the respective blocks 7 are formed at a predetermined pitch over the entire length in the belt length direction. A plurality of lower recesses 5 formed of U-shaped grooves extending in the belt width direction are formed at a predetermined pitch over the entire length in the belt longitudinal direction corresponding to the upper recesses 4. A canvas member 6 for improving wear resistance is integrally bonded to the upper and lower surfaces of the shape retaining rubber layer 2. The canvas member 6 is produced, for example, by impregnating a nylon canvas with a rubber containing hydrogenated nitrile rubber reinforced with zinc methacrylate and then vulcanizing.
[0015]
In the tension band 1, the upper concave portions 4, 4 adjacent to each other on the upper surface and the lower concave portions 5, 5 adjacent to each other on the lower surface are respectively formed as trapezoidal convex cogs 15. The cog 15 on the upper surface side is formed with a narrower width than the cog 15 on the lower surface side.
[0016]
The hard rubber constituting the shape-retaining rubber layer 2 is a hydrogenated nitrile rubber reinforced with a metal salt monomer such as zinc methacrylate or zinc acrylate, and it is reinforced by mixing organic short fibers for the purpose of reinforcement. Thus, a hard rubber that is excellent in heat resistance and hard to be permanently deformed is used. The hard rubber has a rubber hardness of 75 ° or more when measured with a JIS-C hardness meter.
[0017]
The shape-retaining rubber layer 2 and the core wire 3 and the canvas member 6 are firmly bonded and integrated when the rubber is cross-linked by an appropriate bonding process to the core wire 3 and the canvas member 6.
[0018]
As a feature of the present embodiment, the canvas member 6 is composed of a rubber composition in which the rubber impregnated in the canvas contains hydrogenated nitrile rubber reinforced with zinc methacrylate, which is a metal salt monomer of a polymerizable organic acid. ing. The hardness of the canvas member 6 is such that the hardness (JIS-C hardness) measured using a JIS-C hardness meter from above the flat canvas member 6 of the tension band 1 is 75 or more and 83 or less. Has been adjusted. The rubber contained in the canvas may be composed of a rubber composition containing hydrogenated nitrile rubber reinforced with zinc acrylate.
[0019]
The canvas member 6 has a storage elastic modulus in the belt length direction of a temperature of 100 ° C., a static load of 0.29 MPa (3 kgf / cm 2), a dynamic strain of 1%, a frequency of 10 Hz, and a tensile mode condition (according to RSAII manufactured by Rheometrics). In this case, it is desirable that the pressure is adjusted to 60 MPa or more and 130 MPa or less. In the canvas member 6, the orientation direction of the polymer chain of rubber is the width direction of the belt.
[0020]
The rubber impregnated in the canvas may be configured so that the hardness (JIS-C) when vulcanized under the vulcanization conditions (170 ° C., 20 minutes) at the time of producing the canvas member 6 is 68 or more and 82 or less. desirable.
[0021]
Further, the rubber impregnated in the canvas has a storage elastic modulus in the direction perpendicular to the orientation direction of the polymer chain when vulcanized under the vulcanization conditions (170 ° C., 20 minutes) at the time of producing the canvas member 6 at a temperature of 100. It is desirable that the temperature be set to 60 MPa or more and 110 MPa or less when measured under measurement conditions of ° C, static load 0.294 MPa, dynamic strain 1%, frequency 10 Hz, and tensile mode.
[0022]
Each of the blocks 7 has a notch groove-like fitting portion 8 in which the tension bands 1 are detachably fitted from the width direction on the left and right side portions in the belt width direction. The left and right side surfaces excluding the fitting portion 8 are configured as a contact portion 11 that contacts a pulley groove surface (not shown) of the V pulley. The belt angle formed by the left and right contact portions 11 of the block 7 is the same as the angle of the pulley groove surface.
[0023]
Each block 7 includes an upper beam 7a located above the fitting portion 8 and extending in the belt width direction, a lower beam 7b located below the fitting portion 8 and extending in the belt width direction, It is formed in a substantially H shape by a center pillar 7c that connects the left and right central portions of the beams 7a and 7b up and down.
[0024]
The tension bands 1 are press-fitted and fitted into the fitting portions 8 of the blocks 7 so that the blocks 7 are continuously locked and fixed to the tension bands 1 in the belt longitudinal direction. That is, an upper convex portion 9 as an upper meshing portion meshing with each upper concave portion 4 on the upper surface of the tension band 1 is formed on the upper wall surface of each fitting portion 8 in each block 7, and on the lower wall surface of the fitting portion 8. Lower convex portions 10 as lower meshing portions meshing with the respective lower concave portions 5 on the lower surface of the tension band 1 are formed in parallel with each other. Then, by engaging the both convex portions 9 and 10 of each block 7 with the both concave portions 4 and 5 of the tension band 1, the block 7 is arranged in the tension band 1 in the belt length direction and locked and fixed. Yes. The blocks are locked and fixed to the tension band so that the adjacent blocks 7 are connected by the cogs 15. In this locked state, both the outer side surface of each tension band 1 and the contact portion 11 which is the side surface of each block 7 are in contact with the pulley groove surface.
[0025]
As shown in FIG. 3, each of the blocks 7 includes a reinforcing material 12 and a hard resin portion 13 that covers the surface of the reinforcing material 12. The reinforcing member 12 is located above the fitting portion 8 of the block 7 and has an upper beam portion 12a whose lower end edge extends substantially horizontally, and located at the lower side of the fitting portion 8 and whose upper end edge is an upper beam portion. A lower beam portion 12b extending substantially horizontally in parallel with the lower end edge of 12a, and a pillar portion 12c which connects the left and right central portions of both beam portions 12a and 12b vertically and has both left and right edge portions extending substantially in the vertical direction. It is formed in the substantially H-shaped thing.
[0026]
The hard resin portion 13 is formed of, for example, a fiber reinforced phenolic resin. The hard resin portion 13 is formed so as to cover the upper and lower surfaces, both the left and right surfaces, and the fitting portion 8 of the reinforcing material 12. The hard resin portion 13 only needs to cover the reinforcing material 12 at the peripheral portion of the fitting portion 8 of the block 7 and the contact portion 11 on the left and right side surfaces (sliding contact portion with the pulley groove surface). In other parts, the reinforcing material 12 may be exposed on the surface.
[0027]
A high-load transmission V-belt composed of the combination of the block 7 and the tension band 1 configured as described above is wound between two transmission pulleys on the driving side and the driven side, not shown, and is belt-type continuously variable. A transmission is configured.
[0028]
Therefore, in this embodiment, even if each tension belt 1 receives a high load via the pulley via the block 7 during the high load transmission during belt running, the deformation of the cogs 15 can be suppressed within a certain range. In addition, power can be stably and efficiently transmitted even with high load transmission, and the block 7 can be prevented from swinging, and the belt can be driven with low noise. Furthermore, no cracks are generated in the tension band 1 and durability can be improved.
[0029]
【Example】
Next, specific examples will be described. The high load transmission V-belt had a belt angle of 26 degrees, a belt pitch width of 25 mm, a block pitch (belt length direction) of 3 mm, a block thickness of 2.95 mm, and a belt length of 612 mm.
[0030]
First, Table 1 shows the composition of the impregnated rubber impregnated into the canvas.
[0031]
[Table 1]
Figure 0003907456
[0032]
As shown in Table 1, hydrogenated nitrile rubber (manufactured by Zeon Corporation, trade name: Zetpol 2020) and zinc methacrylate reinforced hydrogenated nitrile rubber (manufactured by Zeon Corporation, trade name: ZSC-2295) are used as the base rubber. The rubbers (i) to (vi) were produced in various kinds of impregnated rubbers by changing the blending ratio of both rubbers. In Table 1, the blending ratio of both rubbers is shown in mass%. Each impregnated rubber is 10 parts by mass of zinc oxide (manufactured by Sakai Chemical Co., Ltd.), 30 parts by mass of carbon black (manufactured by Asahi Carbon Co., Ltd .; trade name: Asahi # 50), and peroxide (100 parts by mass of both rubbers). Nippon Oil & Fats Co., Ltd., trade name: Peroximon F40) is blended at a ratio of 7 parts by mass.
[0033]
Then, an impregnated rubber of the rubber (i) to rubber (vi) is dissolved with MEK (methyl ethyl ketone) to prepare a glue rubber, and after the impregnated nylon canvas is impregnated with the glue rubber, the rubber is dried. An impregnated member was prepared. The mixing ratio of the impregnated rubber and MEK in the glue rubber was set to a ratio of 1: 5. The rubber impregnation amount of the glue rubber in the rubber impregnated member was determined from the mass per 1 m 2 of the rubber impregnated member.
[0034]
The rubber impregnated member having the rubber (i) to rubber (vi) impregnated rubber as a constituent member was press-crosslinked in a state where the canvas was stretched by 40% in the length direction to produce a canvas member 6. The pressing conditions were 170 ° C. and 20 minutes. Further, a tension band 1 was produced using the canvas member 6 to produce a V-belt for high load transmission. Hereinafter, each Example and a comparative example are demonstrated.
[0035]
As shown in Table 2, the high-load power transmission V-belt according to Example 1 is impregnated in which the canvas member 6 in the tension band 1 has a mass ratio of hydrogenated nitrile rubber to zinc methacrylate reinforced hydrogenated nitrile rubber of 23 to 77. It is manufactured by impregnating canvas with rubber paste (rubber (ii)) dissolved in MEK and then press-crosslinking. The rubber (ii) contains 23% by weight of zinc methacrylate.
[0036]
The high-load power transmission V-belt according to Example 2 is an impregnated rubber (rubber (iii)) in which the canvas member 6 in the tension band 1 has a mass ratio of hydrogenated nitrile rubber to zinc methacrylate-reinforced hydrogenated nitrile rubber of 15 to 85 This is made by impregnating canvas with paste rubber dissolved in MEK and then press-crosslinking.
[0037]
The high-load power transmission V-belt according to Example 3 is an impregnated rubber (rubber (iv)) in which the canvas member 6 in the tension band 1 has a mass ratio of hydrogenated nitrile rubber to zinc methacrylate reinforced hydrogenated nitrile rubber of 5 to 95 This is made by impregnating canvas with paste rubber dissolved in MEK and then press-crosslinking. The rubber (iv) contains 30% by mass of zinc methacrylate.
[0038]
In the high load transmission V-belt according to Examples 4 and 5, rubber (ii) is used for the canvas member 6 of the tension band 1, but as shown in Table 3, unlike Example 1, Example 4 In Example 5, the impregnation amount is 110 g / m 2, and in Example 5, the impregnation amount is 311 g / m 2 . In Example 1, the impregnation amount is 220 g / m 2 . That is, in Examples 4 and 5, the impregnation amount of the adhesive rubber is increased or decreased with respect to Example 1.
[0039]
In the high load transmission V-belt according to Examples 6 and 7, rubber (iv) is used for the canvas member 6 of the tension band 1, but unlike Example 3, in Example 6, the impregnation amount is 111 g / has a m 2, the impregnation amount in example 7 is a 305 g / m 2. In Example 3, the impregnation amount is 221 g / m 2 . That is, in Examples 6 and 7, the amount of glue rubber impregnated in Example 3 was increased or decreased.
[0040]
[Table 2]
Figure 0003907456
[0041]
[Table 3]
Figure 0003907456
[0042]
In each of the above embodiments, the canvas member 6 of the tension band 1 uses zinc methacrylate as the metal salt monomer of the polymerizable organic acid, but zinc acrylate may be used.
[0043]
As shown in Table 2, the high-load power transmission V-belt according to Comparative Example 1 is impregnated with the canvas member 6 in the tension band 1 having a mass ratio of hydrogenated nitrile rubber to zinc methacrylate reinforced hydrogenated nitrile rubber of 30 to 70. It is produced by impregnating canvas with rubber paste (rubber (i)) dissolved in MEK and then press-crosslinking.
[0044]
The high load transmission V-belt according to Comparative Example 2 is an impregnated rubber (rubber (v)) in which the canvas member 6 in the tension band 1 has a mass ratio of hydrogenated nitrile rubber to zinc methacrylate reinforced hydrogenated nitrile rubber of 0 to 100 This is made by impregnating canvas with glue rubber dissolved with MEK and then press-crosslinking.
[0045]
The high-load power transmission V-belt according to Comparative Example 3 is an impregnated rubber (rubber (vi)) in which the canvas member 6 in the tension band 1 has a mass ratio of hydrogenated nitrile rubber to zinc methacrylate-reinforced hydrogenated nitrile rubber of 100 to 0. This is made by impregnating canvas with glue rubber dissolved with MEK and then press-crosslinking.
[0046]
In the high load transmission V-belt according to Comparative Examples 4 and 5, rubber (ii) is used for the canvas member 6 of the tension band 1, but as shown in Table 3, unlike Example 1, Comparative Example 4 is used. , The impregnated amount of glue rubber is 51 g / m 2 , and in Comparative Example 5, the impregnated amount of glue rubber is 433 g / m 2 . That is, in Comparative Examples 4 and 5, the impregnation amount was further increased or decreased as compared with Examples 4 and 5.
[0047]
In the high load transmission V-belt according to Comparative Examples 6 and 7, rubber (iv) is used for the canvas member 6 of the tension band 1, but unlike Example 3, the Comparative Example 6 has an impregnation amount of glue rubber. 50 g / m 2 , and in Comparative Example 7, the amount of impregnation of the glue rubber is 428 g / m 2 . That is, in Comparative Examples 6 and 7, the impregnation amount was further increased / decreased compared to Examples 6 and 7.
[0048]
The rubber hardness and storage elastic modulus of the impregnated rubber were measured. In the impregnated rubber, the rubber hardness and the storage elastic modulus were measured after crosslinking by pressing at 170 ° C. for 20 minutes. Further, the storage elastic modulus of the canvas member 6 was measured. Further, for each of the high-load transmission V-belts of the example and the comparative example, the durability and the thrust-tension conversion rate are measured, and the hardness of the flat portion at the cog of the tension band is measured from above the canvas member by a JIS-C hardness meter. It measured using.
[0049]
The above storage elastic modulus is measured by using Rheometrics RSAII as a testing machine, measuring conditions of a temperature of 100 ° C., a static load of 0.29 MPa (3 kgf / cm 2 ), a dynamic strain of 1%, a frequency of 10 Hz, and a tensile mode. It was. In the impregnated rubber, the tensile direction was a direction perpendicular to the polymer chain orientation direction, and in the canvas member 6, the tensile direction was a direction corresponding to the belt length direction.
[0050]
The durability was evaluated for each of the Examples and Comparative Examples by a belt running test using the heat resistance test apparatus shown in FIG. 4A is a schematic cross-sectional view of the heat resistance test apparatus as viewed from the upper side, and FIG. 4B is a schematic cross-sectional view as viewed from the front side. The heat resistance test apparatus has a heat resistant box 20 having a hot air inlet 20a having a diameter of 40 mm at a substantially central position on the left and right of the upper surface of the front surface and a hot air outlet 20b having a diameter of 90 mm being opened at the left end of the upper surface. A drive pulley 22 having a pitch circle diameter of 126.43 mm provided on the drive shaft 21 is provided on the left side (hot air outlet 20b side) of the heat-resistant box 20, and a pitch circle diameter provided on the driven shaft 23 is 70.43 mm on the right side. 8 mm driven pulleys 24 are arranged at a distance of 148.5 mm between the axes. Then, each belt B of each of the examples and comparative examples is wound between these pulleys 22 and 24, and each belt B is sent while hot air is sent from the hot air inlet 20a into the heat resistant box 20 and discharged from the hot air outlet 20b. Was run for 500 hours under the conditions shown in Table 4 below. And after driving | running | working, durability was evaluated by the presence or absence of the generation | occurrence | production of the crack of the tension band 1, and the presence or absence of a deformation | transformation of a cog.
[0051]
[Table 4]
Figure 0003907456
[0052]
As shown in Table 2, rubber (ii), rubber (iii) and rubber (iv) having a rubber hardness (JIS-C) of 71 to 80 and a storage elastic modulus of 70.2 to 105.1 MPa as the impregnated rubber. In Examples 1, 2 and 3 using), no cracks were generated in the tension band 1 after the endurance running test, and no deformation of the cogs was confirmed. Furthermore, in Examples 1, 2, and 3, the thrust-tension conversion rate is a favorable value of 1.4 or less.
[0053]
On the other hand, in Comparative Example 1 using rubber (i) having a low rubber hardness of 66 and a low storage elastic modulus of 48.8 MPa, cracks occurred in the tension band 1 after the durability running test, and deformation of the cogs was confirmed. It was done. This is presumably because the storage elastic modulus of the impregnated rubber is too low, so that the deformation of the cogs becomes excessively large at the time of running and induces cracks. Further, in Comparative Example 1, since the deformation of the cog due to the pulley side pressure is large, the thrust is not effectively converted into tension, and the thrust-tension conversion rate is a high value of 2.
[0054]
In Comparative Example 3, where the hardness is lower than that of Comparative Example 1 and the storage elastic modulus is low, as in Comparative Example 1, cracks occurred in the tension band 1 after the endurance running test, and deformation of the cogs was confirmed.
[0055]
In Comparative Example 2 in which rubber (v) having a rubber hardness as high as 85 and a storage elastic modulus as high as 120.5 MPa was used as the impregnated rubber, the deformation of the cogs was not confirmed after the endurance running test. A crack occurred. This is presumably because the storage elastic modulus is too high, the flexibility is poor, and the bending fatigue properties are reduced, and cracks are generated due to the strain that occurs when the pulley is wound. In Comparative Example 2, the thrust-tension conversion rate is a good value of 1.2, which is considered to be due to the small deformation of the cogs.
[0056]
As shown in Table 3, in Examples 4, 5, 6 and 7 using the canvas member 6 having a storage elastic modulus of 60.2 to 130 MPa, there was no crack in the tension band 1 after the durability running test. And no deformation of the cogs was confirmed. Further, in these examples, the thrust-tension conversion rate is a good value of 1.2 to 1.4. The cogs hardness of the tension band 1 in Examples 4, 5, 6 and 7, that is, the hardness of the surface of the canvas member 6 is 75 to 83.
[0057]
On the other hand, in Comparative Examples 4 and 6 using the canvas member 6 having a low storage elastic modulus of 41.1 MPa and 55 MPa, cracks occurred in the tension band 1 after the durability running test, and deformation of the cogs was confirmed. That is, even when using impregnated rubber having hardness and storage elastic modulus within appropriate ranges, in Comparative Examples 4 and 6 where the amount of glue rubber impregnated is low, the impregnated rubber is not sufficiently filled in the voids of the canvas. In addition, it is considered that the storage elastic modulus as the canvas member 6 was lowered, excessive deformation occurred in the cogs of the tension band after the endurance running test, and cracks occurred in the tension band 1. That is, since the storage elastic modulus of the canvas member 6 is too low, the deformation of the cogs becomes larger than a certain level during traveling, and it is considered that cracks are induced by the excessive deformation of the cogs. The hardness of the cogs in these tension bands 1 is 70 and 72. In addition, since the deformation of the cogs during traveling is large, the thrust-tension conversion rate shows a high value as described above, and it can be seen that the thrust is not efficiently converted into tension.
[0058]
Moreover, in Comparative Examples 5 and 7 having a high storage elastic modulus of 135 and 154, cracks occurred in the tension band 1 although no deformation of the cogs was confirmed after the durability running test. This is because even if an impregnated rubber whose hardness and storage elastic modulus are in the proper ranges is used, if the amount of glue rubber impregnated is large, the storage elastic modulus of the canvas member 6 becomes too high, so the flexibility is poor and the bending It is thought that cracks are generated due to strain generated when the fatigue property is lowered and the pulley is wound. The hardness of the cogs in these tension bands 1 is 84 and 85. In Comparative Examples 5 and 7, no cog deformation was observed, and the thrust-tension conversion rate was a favorable value of 1.4 or less.
[0059]
As described above, there is an optimum range for the amount of glue rubber impregnated, but this range varies depending on the material and thickness of the raw fabric, and is difficult to specify.
[0060]
【The invention's effect】
As described above, according to the present invention, even when a high load is applied during belt running, deformation of the cog during running can be suppressed within a certain range, and stable and efficient even with high load transmission. Power can be transmitted well, and the block can be prevented from swinging, and the belt can be driven with low noise. Furthermore, no crack is generated in the tension band, and durability can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a high load transmission V-belt according to a first embodiment.
FIG. 2 is a side view showing the configuration of the high load transmission V-belt according to the first embodiment.
3 is a cross-sectional view taken along the line II in FIG. 2. FIG.
4A is a cross-sectional view of the heat resistance test apparatus as viewed from above, and FIG. 4B is a cross-sectional view of the heat resistance test apparatus as viewed from the front side.
[Explanation of symbols]
1 Tension belt 6 Canvas material 7 Block 15 Cog

Claims (1)

帆布にゴムを含浸させた帆布部材が本体ゴムの上下表面に接着される一方、上下両面に凹凸部が形成された張力帯と、
上記張力帯の長さ方向に複数配置され、上記張力帯に凹凸部と噛み合わせて固定されたブロックとにより構成された高負荷伝動用Vベルトにおいて、
上記張力帯の凸状のコグにおける平坦部の帆布部材の上からJIS−C硬度計を用いて測定される硬度が、75以上且つ83以下であり、
上記帆布部材は、その長さ方向の貯蔵弾性率が温度100℃、静荷重0.294MPa、動歪1%、周波数10 Hz 及び引張モードの測定条件で、60.2MPa以上且つ130MPa以下である
ことを特徴とする高負荷伝動用Vベルト。
While the canvas member in which the canvas is impregnated with rubber is bonded to the upper and lower surfaces of the main rubber, a tension band having uneven portions formed on both upper and lower surfaces,
In a high load transmission V-belt configured by a plurality of blocks arranged in the length direction of the tension band and fixed to the tension band by meshing with an uneven part,
Hardness measured by using a JIS-C hardness meter from the top of the canvas member of the flat portion of the convex cogs of the tension band state, and are 75 or more and 83 or less,
The canvas member has a storage modulus in the length direction of 60.2 MPa or more and 130 MPa or less under the measurement conditions of a temperature of 100 ° C., a static load of 0.294 MPa, a dynamic strain of 1%, a frequency of 10 Hz, and a tensile mode. A high load transmission V-belt characterized by the above.
JP2001364555A 2001-11-29 2001-11-29 V belt for high load transmission Expired - Fee Related JP3907456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364555A JP3907456B2 (en) 2001-11-29 2001-11-29 V belt for high load transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364555A JP3907456B2 (en) 2001-11-29 2001-11-29 V belt for high load transmission

Publications (2)

Publication Number Publication Date
JP2003166597A JP2003166597A (en) 2003-06-13
JP3907456B2 true JP3907456B2 (en) 2007-04-18

Family

ID=19174726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364555A Expired - Fee Related JP3907456B2 (en) 2001-11-29 2001-11-29 V belt for high load transmission

Country Status (1)

Country Link
JP (1) JP3907456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246289A (en) * 2012-03-19 2014-12-24 阪东化学株式会社 V-belt for transmitting high loads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246289A (en) * 2012-03-19 2014-12-24 阪东化学株式会社 V-belt for transmitting high loads

Also Published As

Publication number Publication date
JP2003166597A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US6942590B2 (en) Belt fabric, and power transmission belt and high load power transmission V-belt using such a belt fabric
KR101265821B1 (en) Friction belt for power transmission
US7927243B2 (en) Transmission belt
JP5704752B2 (en) Friction transmission belt
JP5580523B2 (en) Belt transmission device and transmission belt used therefor
US7258639B2 (en) Frictional forced power transmission belt and belt drive system with the same
JP2005155682A (en) Treatment liquid for transmission belt duck, duck for transmission belt, and transmission belt
WO2017033392A1 (en) Friction transmission belt
JP3751563B2 (en) Lateral reinforcement CVT belt
EP1929179A1 (en) Toothed belt drive for use in oil and toothed belt therreof
US6293886B1 (en) Heavy-duty power transmission V-belt
JP3907456B2 (en) V belt for high load transmission
JPH06249292A (en) Toothed belt
KR20220110095A (en) Friction transmission belt
JP6082853B1 (en) Friction transmission belt
JP2002195351A (en) Heavy load driving belt and block for the heavy load driving belt
JP4594497B2 (en) V belt for high load transmission
JP6598777B2 (en) Friction transmission belt, method for manufacturing the same, and belt transmission device
JP2004028200A (en) High-load transmission belt
JPS6224853Y2 (en)
JP2004239432A (en) V-belt for high load transmission and method of manufacturing the same
JP2008157440A (en) High load transmission belt
JP4252393B2 (en) Toothed belt drive
JP2004028118A (en) High load transmission belt
WO2010023824A1 (en) V belt for transmitting heavy load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees