JP3907358B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP3907358B2
JP3907358B2 JP31324099A JP31324099A JP3907358B2 JP 3907358 B2 JP3907358 B2 JP 3907358B2 JP 31324099 A JP31324099 A JP 31324099A JP 31324099 A JP31324099 A JP 31324099A JP 3907358 B2 JP3907358 B2 JP 3907358B2
Authority
JP
Japan
Prior art keywords
pulp
conductive polymer
polymer layer
capacitor element
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31324099A
Other languages
Japanese (ja)
Other versions
JP2001135549A (en
Inventor
和芳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP31324099A priority Critical patent/JP3907358B2/en
Publication of JP2001135549A publication Critical patent/JP2001135549A/en
Application granted granted Critical
Publication of JP3907358B2 publication Critical patent/JP3907358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
近年、低ESR化を目的として導電性高分子を固体電解質として用いる固体電解コンデンサが実用化されている。一般に、これら導電性高分子としては、ポリチオフェン,ポリピロール又はポリアニリン等があり、中でもポリチオフェンは、ポリピロール又はポリアニリンと比較して、導電率が高く熱安定性が特に優れていることから近年注目されており、ポリチオフェンを固体電解質として用いた固体電解コンデンサとして特開平2−15611号公報等に開示されているものがある。
【0003】
しかして、ポリチオフェンは、化学酸化重合及び電解重合によって製作できるが、電解重合手段を講じた場合、導電性高分子が電極上にフィルム状に形成されるため大量に製造することに困難性が伴う問題を抱えているのに対して、化学酸化重合手段の場合は、そのような問題はなく、電解重合と比較して大量の導電性高分子層を容易に得ることができることは当業者の中では良く知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、ポリチオフェンは、他のポリピロール又はポリアニリン等他の導電性高分子に比べて、化学酸化重合の際の重合速度が小さいため、所望の厚さの導電性高分子層を形成するためには、重合時間を長くしたり、重合回数を多くしなければならず、生産性が悪く、コスト高となる問題を抱え、また、溶媒に水を用いた場合は重合反応が著しく抑制される問題を有し、更に、トランスファーモールド法による樹脂外装構造では、モールド成型時の応力により導電性高分子層が損傷され漏れ電流増大や信頼性低下となる問題をも抱える結果となっていた。
【0005】
本発明は、上記問題を解決するためのもので、コンデンサ素子表面に均一な厚さで諸侯の厚みを有し、機械的強度に優れた導電性高分子層を形成した特性良好にして生産性に優れた固体電解コンデンサの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記従来技術の課題を解決すべく検討した結果、完成するに至ったものである。すなわち、固体電解質として導電性高分子層を用いた固体電解コンデンサにおいて、コンデンサ素子表面に形成するポリチオフェン又はその誘導体からなる導電性高分子層として、コンデンサ素子表面に付着した未叩解のパルプを主成分とするパルプを取り込んで形成した複合導電性高分子層とすることによって、機械的強度に優れた固体電解質の形成が可能となり、作業性良好にして特性劣化のないことが判明した。
【0007】
本発明は、陽極となるタンタル焼結体からなる素体表面に誘電体酸化皮膜を形成してなるコンデンサ素子と、前記誘電体酸化皮膜の表面に形成した導電性高分子層からなる固体電解コンデンサの製造方法において、誘電体酸化皮膜の表面にポリチオフェン又はその誘導体からなる導電性高分子層を形成する工程と、次に前記導電性高分子層を形成したコンデンサ素子の表面に未叩解のパルプを主成分とするパルプを付着させる工程と、次にモノマー溶液および酸化剤溶液に順次浸漬し、化学重合により前記未叩解のパルプを主成分とするパルプを取り込むようにポリチオフェン又はその誘導体からなる導電性高分子層を形成して、前記未叩解のパルプを主成分とするパルプを取り込んだ複合導電性高分子層を形成する工程を含む固体電解コンデンサの製造方法である。
【0008】
導電性高分子と未叩解のパルプを主成分とするパルプとの複合体を構成することにより、未叩解パルプにて厚さを稼ぎ、重合時間及び回数を低減して生産性を上げると共に、コンデンサ素子表面に均一で厚い導電性高分子層が形成でき、機械的強度が向上し、樹脂外装時の応力にも耐え、漏れ電流増大や信頼性低下のない良好な固体電解コンデンサを得ることができる。
【0009】
【発明の実施の形態】
本発明の請求項1記載の発明は、陽極となるタンタル焼結体からなる素体表面に誘電体酸化皮膜を形成してなるコンデンサ素子と、前記誘電体酸化皮膜の表面に形成した導電性高分子層からなる固体電解コンデンサの製造方法において、誘電体酸化皮膜の表面にポリチオフェン又はその誘導体からなる導電性高分子層を形成する工程と、次に前記導電性高分子層を形成したコンデンサ素子の表面に未叩解のパルプを主成分とするパルプを付着させる工程と、次にモノマー溶液および酸化剤溶液に順次浸漬し、化学重合により前記未叩解のパルプを主成分とするパルプを取り込むようにポリチオフェン又はその誘導体からなる導電性高分子層を形成して、前記未叩解のパルプを主成分とするパルプを取り込んだ複合導電性高分子層を形成する工程を含む固体電解コンデンサの製造方法である。
【0010】
なお、上記請求項1記載の発明において、コンデンサ素子構成としては、微粉末焼結体形を用い、また、誘電体酸化皮膜の形成手段としても特別なものに限定することなく、公知の手段にて行うものである。
【0011】
パルプの主成分となる未叩解のパルプは太く、長いパルプであり、コンデンサ素子表面に付着した未叩解のパルプの存在で効果的に所望の厚さのパルプ層を形成することができ、膜厚の厚い複合導電性高分子層を形成する際、重合回数及び重合時間を低減でき生産性向上に寄与することができる。また複合導電性高分子層は機械的強度が向上するため樹脂外装時の応力にも耐え、漏れ電流増大や信頼性低下のない良好な固体電解コンデンサが得られる。
【0012】
また、パルプがコンデンサ素子表面に付着しやすいように、長く太い未叩解のパルプを主成分に、十分に叩解が進んだパルプとを混合したりすることもできる。
【0013】
本発明は以上のように、電解質としての複合導電性高分子層を形成した後、必要に応じて乾燥を行い、公知の手段でその上にグラファイト層、銀塗料層を形成し、しかる後引出電極を設けて樹脂外装を施し完成品としてなるものである。
【0014】
【実施例】
以下、本発明の固体電解コンデンサの基本構造について図面を参照して説明する。図1において、1は陽極となる弁作用金属としてタンタル微粉末からなる焼結体表面に陽極酸化皮膜を形成してなるコンデンサ素子で、2はこのコンデンサ素子1の表面に付着した未叩解のパルプ3を取り込んで形成された複合導電性高分子層で、4はこの複合導電性高分子層2上に形成したカーボン層で、5はこのカーボン層4上に形成した陰極となる銀塗料層で、6は前記焼結体に埋設された陽極線で、7はこの陽極線6と接続した陽極引出端子で、8は前記銀塗料層5に接続した陰極引出端子で、9は樹脂外装層である。
【0015】
次に具体的な実施例について比較例と対比して詳細に説明する。すなわち、以下に示す実施例1〜5及び従来技術に係る比較例1〜3の容量、漏れ電流及びESR特性を測定した結果、表1に示す通りであった。
【0016】
(実施例1)陽極として大きさが3.9×3.3×1.6mm3のタンタル焼結体を用い、陽極線としてタンタル線を用いた重量が約100mgの陽極体を0.05wt%燐酸水溶液中で90℃、40Vで180分陽極酸化し、脱イオン水の流水により洗浄して、乾燥を行いコンデンサ素子とした。なお、この状態をコンデンサと見立て化成液中の容量を測定した結果104μFであった。
【0017】
次に、このコンデンサ素子をブチルアルコール50gと3,4−エチレンジオキシチオフェン50gとを混ぜ合わせてなるモノマー溶液に7分間浸漬し、次に遷移金属イオンを含む酸化剤としてパラトルエンスルホン酸第二鉄40gを60gのブタノールに溶解させて得た酸化剤溶液に15分間浸漬し、化学酸化重合を行い、コンデンサ素子を構成する陽極酸化皮膜上に導電性高分子層を形成し、ブタノールによる洗浄を5分間行った後、105℃で5分間乾燥した。導電性高分子層が所望の厚さになるまで、モノマー溶液への浸漬−乾燥までの重合回数を10回繰り返した。
【0018】
次に、このようにして導電性高分子層を形成したコンデンサ素子を、未叩解のパルプ2wt%,合成糊0.05wt%懸濁液に浸漬してコンデンサ素子表面にパルプを付着させる。この場合、懸濁液は撹拌され、パルプが流動している中に浸漬することで効果的にコンデンサ素子表面へのパルプの付着を行うことができ、特に機械的強度が求められるコンデンサ素子エッジ部により効果的に付着できる。しかして、このようにパルプを付着したコンデンサ素子を105℃で5分間乾燥した。なお、パルプ層が所望の厚さになるまで、懸濁液への浸漬から乾燥までの工程を2回繰り返した。
【0019】
次に、表面にパルプが付着されたコンデンサ素子を、再びモノマー溶液に7分間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合を行い、ブタノールによる洗浄を5分間行った後、105℃で5分間乾燥する工程を5回繰り返し、コンデンサ素子表面に所望の厚さのパルプを取り込んだ複合導電性高分子層を形成した。しかして、この複合導電性高分子層の上に、カーボン層、このカーボン層の上に陰極となる銀塗料層を形成し、この銀塗料層の上に陰極引出端子を、前記陽極体から引出した陽極線に陽極引出端子をそれぞれ取付け、トランスファーモールドにより樹脂外装を行い、前記陰極引出端子及び陽極引出端子を所定の位置に折曲げてチップ状の固体電解コンデンサを完成した。
【0020】
(実施例2)実施例1と同様の手段で内部に導電性高分子層を形成したコンデンサ素子を、実施例1と同様の手段でコンデンサ素子にパルプを付着させる。なお、パルプが所望の厚さになるまで、懸濁液への浸漬から乾燥までの工程を8回繰り返した。次に、表面にパルプが付着されたコンデンサ素子に複合導電性高分子層を形成し完成品としてなるものであるが、その手段は実施例1同様である。
【0021】
(実施例3)実施例1と同様の手段で形成したコンデンサ素子を、実施例1と同様の手段でコンデンサ素子表面にパルプを付着させる。なお、パルプが所望の厚さになるまで、懸濁液への浸漬から乾燥までの工程を2回繰り返した。
【0022】
次に、表面にパルプが付着されたコンデンサ素子を、実施例1と同様の手段で、モノマー溶液に7分間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合を行い、ブタノールによる洗浄を5分間行った後、105℃で5分間乾燥する工程を15回繰り返し、コンデンサ素子表面に所望の厚さのパルプを取り込んだ複合導電性高分子層を形成した。しかして、実施例1と同様の手段でチップ状の固体電解コンデンサを完成した。
【0023】
(実施例4)実施例3と同様の手段で形成したコンデンサ素子を、実施例1と同様の手段でコンデンサ素子表面にパルプを付着させる。なお、パルプが所望の厚さになるまで、懸濁液への浸漬から乾燥までの工程を8回繰り返した。
【0024】
次に、表面にパルプが付着されたコンデンサ素子を、実施例3と同様の手段で、複合導電性高分子層を形成した。また、複合導電性高分子層形成後、完成品としてなるまでの手段は実施例3と同様である。
【0025】
(比較例1)コンデンサ素子表面へパルプを付着する工程を除き、実施例1と同様の工程を経て完成品としてなるものであるが、コンデンサ素子表面へパルプが付着されていないため、コンデンサ素子表面の導電性高分子層構成は、パルプとの複合化はされておらず、単なる導電性高分子層であり、この場合の重合回数は61回である。
【0026】
(比較例2)重合回数を15回とする点を除き、比較例1と同様の工程を経て完成したものである。
【0027】
(比較例3)コンデンサ素子表面へパルプを付着する工程を除き、実施例5と同様の工程を経て完成品としてなるものであるが、コンデンサ素子表面へパルプが付着されていないため、コンデンサ素子表面の導電性高分子層構成は、パルプとの複合化はされておらず、単なる導電性高分子層であり、この場合の重合回数は8回である。
【0028】
【表1】

Figure 0003907358
【0029】
表1から明らかなように、実施例1,2,3,4のものは、いずれも漏れ電流及びESR特性に優れ信頼性の高い固体電解コンデンサを得ることができるのに対し、比較例1,2,3のものはESR特性は問題ないものの、重合回数を比較例1のように61回行っても漏れ電流特性が芳しくなく実用上好ましくないものであることが分かる。この差は実施例の場合、コンデンサ素子表面に形成される導電性高分子層が、パルプを取り込んだ複合導電性高分子層で構成されてその層厚を稼げるため、導電性高分子層の機械的強度を高めることになり、外装樹脂工程での応力によっても導電性高分子層を損傷することがないと言う結果に基づくものである。また、比較例の中で、漏れ電流特性が最もよい比較例1においても61回の重合回数を要し、生産性の観点からも好ましくないのに対し、実施例のものは、重合回数を減らしても漏れ電流特性が優れており、生産性向上に大きく貢献できるものであることが分かる。
【0030】
【発明の効果】
以上述べたように本発明によれば、弁作用金属からなるコンデンサ素子を構成する酸化皮膜の表面に導電性高分子層を形成してなる固体電解コンデンサにおいて、導電性高分子層をコンデンサ素子表面に付着した未叩解のパルプを主成分とするパルプを取り込んで形成した複合導電性高分子層とすることによって、導電性高分子層の層厚を稼ぎ、重合回数を低減して生産性向上を可能とした漏れ電流特性の良好な固体電解コンデンサを得ることができる。
【図面の簡単な説明】
【図1】 本発明の固体電解コンデンサの基本構造を示す断面図である。
【符号の説明】
1 コンデンサ素子
2 複合導電性高分子層
3 パルプ
4 カーボン層
5 銀塗料層
6 陽極線
7 陽極引出端子
8 陰極引出端子
9 外装樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor.
[0002]
[Prior art]
In recent years, solid electrolytic capacitors using a conductive polymer as a solid electrolyte have been put into practical use for the purpose of lowering ESR. In general, these conductive polymers include polythiophene, polypyrrole, or polyaniline. Among them, polythiophene has attracted attention in recent years because it has higher electrical conductivity and thermal stability than polypyrrole or polyaniline. JP-A-2-15611 discloses a solid electrolytic capacitor using polythiophene as a solid electrolyte.
[0003]
Polythiophene can be manufactured by chemical oxidative polymerization and electrolytic polymerization. However, when an electropolymerization means is used, a conductive polymer is formed in a film on the electrode, which makes it difficult to manufacture in large quantities. In the case of chemical oxidative polymerization means, there is no such problem, and it is among those skilled in the art that a large amount of conductive polymer layer can be easily obtained as compared with electrolytic polymerization. Well known.
[0004]
[Problems to be solved by the invention]
However, since polythiophene has a lower polymerization rate during chemical oxidative polymerization than other conductive polymers such as other polypyrrole or polyaniline, in order to form a conductive polymer layer having a desired thickness, The polymerization time must be lengthened and the number of polymerizations must be increased, resulting in poor productivity and high costs. In addition, when water is used as the solvent, the polymerization reaction is significantly suppressed. Furthermore, the resin exterior structure by the transfer molding method has a problem that the conductive polymer layer is damaged by the stress at the time of molding, resulting in an increase in leakage current and a decrease in reliability.
[0005]
The present invention is for solving the above-mentioned problems, and has a characteristic that a conductive polymer layer having a uniform thickness and various mechanical thicknesses on the capacitor element surface and excellent mechanical strength is formed and the productivity is improved. An object of the present invention is to provide a method for producing a solid electrolytic capacitor excellent in the above.
[0006]
[Means for Solving the Problems]
The present invention has been completed as a result of studies to solve the above-mentioned problems of the prior art. That is, in a solid electrolytic capacitor using a conductive polymer layer as a solid electrolyte, the main component is unbeaten pulp adhering to the capacitor element surface as a conductive polymer layer made of polythiophene or a derivative thereof formed on the capacitor element surface. It was found that by using a composite conductive polymer layer formed by taking in the pulp as described above, a solid electrolyte excellent in mechanical strength can be formed, workability is improved, and there is no characteristic deterioration.
[0007]
The present invention relates to a capacitor element in which a dielectric oxide film is formed on the surface of a tantalum sintered body serving as an anode, and a solid electrolytic capacitor comprising a conductive polymer layer formed on the surface of the dielectric oxide film. In the manufacturing method, a step of forming a conductive polymer layer made of polythiophene or a derivative thereof on the surface of the dielectric oxide film, and an unbeaten pulp next on the surface of the capacitor element on which the conductive polymer layer is formed. A step of adhering a pulp having a main component, and then a conductive material composed of polythiophene or a derivative thereof so that the pulp containing the unbeaten pulp as a main component is taken up by chemical polymerization and then sequentially immersed in a monomer solution and an oxidizing agent solution. A solid electrolytic capacitor comprising a step of forming a polymer layer and forming a composite conductive polymer layer incorporating a pulp composed mainly of the unbeaten pulp. It is a capacitors method of manufacturing.
[0008]
Constructing a composite of conductive polymer and unbeaten pulp as the main component, increasing the thickness of unbeaten pulp, increasing the productivity by reducing polymerization time and frequency, and capacitor A uniform and thick conductive polymer layer can be formed on the element surface, the mechanical strength is improved, the stress at the time of resin exterior can be withstood, and a good solid electrolytic capacitor without increasing leakage current or reducing reliability can be obtained. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention includes a capacitor element in which a dielectric oxide film is formed on the surface of a tantalum sintered body serving as an anode, and a conductive high electrode formed on the surface of the dielectric oxide film. In a method for producing a solid electrolytic capacitor comprising a molecular layer, a step of forming a conductive polymer layer comprising polythiophene or a derivative thereof on the surface of a dielectric oxide film, and then a capacitor element having the conductive polymer layer formed thereon A step of adhering a pulp mainly composed of unbeaten pulp to the surface; then, polythiophene soaked in a monomer solution and an oxidant solution in order, and taking in the pulp mainly composed of unbeaten pulp by chemical polymerization Or a conductive polymer layer made of a derivative thereof, and a composite conductive polymer layer incorporating a pulp mainly composed of the unbeaten pulp. It is a manufacturing method of a solid electrolytic capacitor comprising a.
[0010]
In the first aspect of the present invention, the capacitor element structure is a fine powder sintered body, and the dielectric oxide film forming means is not limited to any special means, and any known means may be used. Is what you do.
[0011]
The unbeaten pulp that is the main component of the pulp is thick and long, and the presence of the unbeaten pulp adhering to the capacitor element surface can effectively form a pulp layer with a desired thickness. When forming a thick composite conductive polymer layer, the number of polymerizations and the polymerization time can be reduced, which can contribute to an improvement in productivity. In addition, since the composite conductive polymer layer has improved mechanical strength, it can withstand the stress when the resin is packaged, and a good solid electrolytic capacitor without increasing leakage current or reducing reliability can be obtained.
[0012]
Further, in order to easily attach the pulp to the capacitor element surface, it is possible to mix a long and thick unbeaten pulp as a main component and a pulp that has been sufficiently beaten.
[0013]
In the present invention, as described above, after forming a composite conductive polymer layer as an electrolyte, it is dried as necessary, and a graphite layer and a silver paint layer are formed thereon by a known means, and then drawn out. An electrode is provided and a resin sheath is applied to obtain a finished product.
[0014]
【Example】
Hereinafter, the basic structure of the solid electrolytic capacitor of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a capacitor element formed by forming an anodized film on the surface of a sintered body made of tantalum fine powder as a valve action metal serving as an anode, and 2 is an unbeaten pulp adhering to the surface of the capacitor element 1 3 is a composite conductive polymer layer formed by incorporating 3, 4 is a carbon layer formed on the composite conductive polymer layer 2, and 5 is a silver paint layer serving as a cathode formed on the carbon layer 4. , 6 is an anode wire embedded in the sintered body, 7 is an anode lead terminal connected to the anode wire 6, 8 is a cathode lead terminal connected to the silver paint layer 5, and 9 is a resin outer layer. is there.
[0015]
Next, specific examples will be described in detail in comparison with comparative examples. That is, as a result of measuring the capacity | capacitance, leakage current, and ESR characteristic of Examples 1-5 shown below and Comparative Examples 1-3 concerning a prior art, it was as showing in Table 1.
[0016]
Example 1 A tantalum sintered body having a size of 3.9 × 3.3 × 1.6 mm 3 was used as the anode, and a tantalum wire was used as the anode wire. Anodized in an aqueous solution at 90 ° C. and 40 V for 180 minutes, washed with running deionized water and dried to obtain a capacitor element. The capacitance in the chemical conversion liquid was measured as 104 μF.
[0017]
Next, this capacitor element is immersed for 7 minutes in a monomer solution obtained by mixing 50 g of butyl alcohol and 50 g of 3,4-ethylenedioxythiophene, and then para-toluenesulfonic acid second as an oxidizing agent containing transition metal ions. It is immersed for 15 minutes in an oxidant solution obtained by dissolving 40 g of iron in 60 g of butanol, subjected to chemical oxidative polymerization, forms a conductive polymer layer on the anodized film constituting the capacitor element, and is washed with butanol. After 5 minutes, it was dried at 105 ° C. for 5 minutes. The number of polymerizations until dipping and drying in the monomer solution was repeated 10 times until the conductive polymer layer had a desired thickness.
[0018]
Next, the capacitor element in which the conductive polymer layer is formed in this manner is immersed in an unbeaten pulp 2 wt% suspension and a synthetic paste 0.05 wt% suspension so that the pulp adheres to the capacitor element surface. In this case, the suspension is stirred, and the pulp can be effectively adhered to the surface of the capacitor element by being immersed in the flowing pulp. Especially, the capacitor element edge portion where mechanical strength is required. Can adhere more effectively. Thus, the capacitor element to which the pulp was adhered in this manner was dried at 105 ° C. for 5 minutes. In addition, until the pulp layer became desired thickness, the process from immersion to suspension to drying was repeated twice.
[0019]
Next, the capacitor element with the pulp attached to the surface is again immersed in the monomer solution for 7 minutes, immersed in the oxidant solution for 15 minutes to perform chemical oxidative polymerization, washed with butanol for 5 minutes, and then subjected to 105 ° C. The process of drying for 5 minutes was repeated 5 times to form a composite conductive polymer layer in which pulp having a desired thickness was taken in on the capacitor element surface. Then, a carbon layer is formed on the composite conductive polymer layer, a silver paint layer serving as a cathode is formed on the carbon layer, and a cathode lead terminal is drawn from the anode body on the silver paint layer. An anode lead terminal was attached to each of the anode wires, a resin sheath was applied by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor.
[0020]
Example 2 A capacitor element having a conductive polymer layer formed therein by the same means as in Example 1 is made to adhere pulp to the capacitor element by the same means as in Example 1. In addition, the process from the immersion to a suspension to drying was repeated 8 times until the pulp became a desired thickness. Next, a composite conductive polymer layer is formed on a capacitor element having a pulp adhered to the surface to obtain a finished product. The means is the same as in Example 1.
[0021]
(Embodiment 3) A capacitor element formed by the same means as in Embodiment 1 is made to adhere pulp to the surface of the capacitor element by the same means as in Embodiment 1. In addition, the process from the immersion to a suspension to drying was repeated twice until the pulp became a desired thickness.
[0022]
Next, the capacitor element with the pulp attached to the surface is immersed in the monomer solution for 7 minutes and immersed in the oxidant solution for 15 minutes by the same means as in Example 1 to perform chemical oxidative polymerization, and then washed with butanol. After 5 minutes, the process of drying at 105 ° C. for 5 minutes was repeated 15 times to form a composite conductive polymer layer in which pulp having a desired thickness was taken in on the capacitor element surface. Thus, a chip-shaped solid electrolytic capacitor was completed by the same means as in Example 1.
[0023]
(Embodiment 4) A capacitor element formed by the same means as in Embodiment 3 is made to adhere pulp to the surface of the capacitor element by the same means as in Embodiment 1. In addition, the process from the immersion to a suspension to drying was repeated 8 times until the pulp became a desired thickness.
[0024]
Next, a composite conductive polymer layer was formed by the same means as in Example 3 on the capacitor element having the pulp adhered to the surface. The means from the formation of the composite conductive polymer layer to the completion of the finished product is the same as in Example 3.
[0025]
(Comparative example 1) Except for the step of attaching pulp to the surface of the capacitor element, the finished product is obtained through the same steps as in Example 1, but since the pulp is not attached to the surface of the capacitor element, the surface of the capacitor element This conductive polymer layer structure is not compounded with pulp and is merely a conductive polymer layer, and the number of polymerizations in this case is 61 times.
[0026]
(Comparative Example 2) This was completed through the same steps as in Comparative Example 1 except that the number of polymerizations was 15 times.
[0027]
(Comparative Example 3) Except for the step of attaching pulp to the surface of the capacitor element, the finished product is obtained through the same steps as in Example 5. However, since the pulp is not attached to the surface of the capacitor element, the surface of the capacitor element This conductive polymer layer structure is not compounded with pulp and is merely a conductive polymer layer. In this case, the number of polymerizations is eight.
[0028]
[Table 1]
Figure 0003907358
[0029]
As is clear from Table 1, all of Examples 1, 2, 3, and 4 can provide a solid electrolytic capacitor that is excellent in leakage current and ESR characteristics and highly reliable. Although the ESR characteristics are not problematic for the samples Nos. 2 and 3, the leakage current characteristics are not good even if the number of times of polymerization is 61 times as in Comparative Example 1, which is not practically preferable. In the case of the embodiment, this difference is because the conductive polymer layer formed on the surface of the capacitor element is composed of a composite conductive polymer layer in which pulp is taken in to increase the layer thickness. This is based on the result that the conductive polymer layer is not damaged by the stress in the exterior resin process. Among Comparative Examples, Comparative Example 1 with the best leakage current characteristics also requires 61 times of polymerization, which is not preferable from the viewpoint of productivity. However, it can be seen that the leakage current characteristics are excellent and can greatly contribute to productivity improvement.
[0030]
【The invention's effect】
As described above, according to the present invention, in a solid electrolytic capacitor in which a conductive polymer layer is formed on the surface of an oxide film constituting a capacitor element made of a valve action metal, the conductive polymer layer is formed on the surface of the capacitor element. By making a composite conductive polymer layer that is formed by incorporating pulp that is mainly composed of unbeaten pulp adhering to the surface, the layer thickness of the conductive polymer layer can be increased, and the number of polymerizations can be reduced to improve productivity. A solid electrolytic capacitor having a good leakage current characteristic that can be obtained can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the basic structure of a solid electrolytic capacitor of the present invention.
[Explanation of symbols]
1 Capacitor element 2 Composite conductive polymer layer 3 Pulp 4 Carbon layer 5 Silver paint layer 6 Anode wire 7 Anode lead terminal 8 Cathode lead terminal 9 Exterior resin layer

Claims (1)

陽極となるタンタル焼結体からなる素体表面に誘電体酸化皮膜を形成してなるコンデンサ素子と、前記誘電体酸化皮膜の表面に形成した導電性高分子層からなる固体電解コンデンサの製造方法において、
誘電体酸化皮膜の表面にポリチオフェン又はその誘導体からなる導電性高分子層を形成する工程と、
次に前記導電性高分子層を形成したコンデンサ素子の表面に未叩解のパルプを主成分とするパルプを付着させる工程と、
次にモノマー溶液および酸化剤溶液に順次浸漬し、化学重合により前記未叩解のパルプを主成分とするパルプを取り込むようにポリチオフェン又はその誘導体からなる導電性高分子層を形成して、前記未叩解のパルプを主成分とするパルプを取り込んだ複合導電性高分子層を形成する工程を含む固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor comprising a capacitor element formed by forming a dielectric oxide film on the surface of a tantalum sintered body serving as an anode, and a conductive polymer layer formed on the surface of the dielectric oxide film ,
Forming a conductive polymer layer made of polythiophene or a derivative thereof on the surface of the dielectric oxide film;
Next, attaching a pulp mainly composed of unbeaten pulp to the surface of the capacitor element on which the conductive polymer layer is formed;
Next, a conductive polymer layer made of polythiophene or a derivative thereof is formed by sequentially immersing in a monomer solution and an oxidizer solution, and taking in the pulp mainly composed of the unbeaten pulp by chemical polymerization, and the unbeaten The manufacturing method of a solid electrolytic capacitor including the process of forming the composite conductive polymer layer which took in the pulp which has as a main component the pulp of this.
JP31324099A 1999-11-04 1999-11-04 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3907358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31324099A JP3907358B2 (en) 1999-11-04 1999-11-04 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31324099A JP3907358B2 (en) 1999-11-04 1999-11-04 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001135549A JP2001135549A (en) 2001-05-18
JP3907358B2 true JP3907358B2 (en) 2007-04-18

Family

ID=18038815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31324099A Expired - Fee Related JP3907358B2 (en) 1999-11-04 1999-11-04 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3907358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors

Also Published As

Publication number Publication date
JP2001135549A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3454715B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3907358B2 (en) Manufacturing method of solid electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001250743A (en) Solid electrolytic capacitor and its manufacturing method
JP4345227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4915875B2 (en) Manufacturing method of solid electrolytic capacitor
JP3485848B2 (en) Solid electrolytic capacitors
JP3831752B2 (en) Manufacturing method of solid electrolytic capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007281268A (en) Solid electrolytic capacitor and its manufacturing method
JP2000331885A (en) Solid-state electrolytic capacitor and its manufacture
JP2000340461A (en) Solid electrolytic capacitor and its manufacture
JP4075421B2 (en) Method for producing conductive composition and capacitor
JP2003109850A (en) Method for manufacturing solid electrolytic capacitor
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003297687A (en) Method for producing solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10321474A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees