JP3907090B2 - Electromagnetic coil, manufacturing method thereof, and electromagnet - Google Patents

Electromagnetic coil, manufacturing method thereof, and electromagnet Download PDF

Info

Publication number
JP3907090B2
JP3907090B2 JP05294398A JP5294398A JP3907090B2 JP 3907090 B2 JP3907090 B2 JP 3907090B2 JP 05294398 A JP05294398 A JP 05294398A JP 5294398 A JP5294398 A JP 5294398A JP 3907090 B2 JP3907090 B2 JP 3907090B2
Authority
JP
Japan
Prior art keywords
electromagnetic coil
inorganic
electromagnet
insulating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05294398A
Other languages
Japanese (ja)
Other versions
JPH11233340A (en
Inventor
教之 松本
一夫 嘉藤
一久 八幡
喜之 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP05294398A priority Critical patent/JP3907090B2/en
Publication of JPH11233340A publication Critical patent/JPH11233340A/en
Application granted granted Critical
Publication of JP3907090B2 publication Critical patent/JP3907090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐放射線電磁石に関係し、特に、無機物絶縁金属被覆ケーブル(Mineral Insulated Cables)からなる耐放射線寿命の長い電磁石用電磁コイルとその製造方法に関する。
【0002】
【従来の技術】
従来、放射線に曝される電磁石は、粒子線加速器や、その関連の計測装置に多く使用されている。この電磁石に使用される電磁コイルは、放射線に曝されると、絶縁特性などが劣化し、使用できなくなる。電磁石の寿命は、電磁コイルの放射線の被曝量で左右され、特に、そこで使用される絶縁体材料に左右される。粒子線加速装置等に用いられる電磁コイルでは、放射線吸収量が106GY(グレイ)ないし109GYで使用され、放射線吸収量による電磁コイルの絶縁性の劣化を防ぐため、吸収線量のレベルで、108GY以下では有機物の絶縁体を用い、108GY以上では無機物の絶縁体を利用したものが多く用いられている。この中でも、特に、放射線吸収量が108GY以上が見込まれる電磁コイルでは、導電体間を絶縁する絶縁体が高純度の無機物で構成されることが重要である。
【0003】
【発明が解決しようとする課題】
従来、電気的に絶縁性があり、比較的入手し易い無機物としてセラミックスや無機セメントが用いられている。この無機物系の絶縁体材料を電磁コイルの絶縁体として使用する場合、導電体に被覆するか、または隣接する導体間の間隙に絶縁体を注入していた。
【0004】
この絶縁方法では、絶縁体が大気中の湿気を吸収し、絶縁体の性能が劣化し、電気的絶縁性が低下するので、これを防ぐため、電磁コイル全体をケーシングにより、大気と遮断する必要があった。従って、大型で、複雑な構造となり、繁雑な製造工程も必要となり、電気的絶縁特性の信頼性も低く、技術的にも経済的にも問題が多かった。
【0005】
本発明の課題は、これらの問題点を除去した、108GY以上の放射線吸収量にも耐えられる、安価で、加工性の良い無機物で絶縁され、その構造も製作も簡単で、信頼性の高い電磁コイルと、耐放射線吸収特性の高い電磁石を提供することである。
【0006】
【課題を解決するための手段】
本発明は、無機物絶縁金属被覆ケーブルで形成された耐放射線電磁石用の電磁コイルにおいて、無酸素銅からなる導電体と外皮と、95%以上の高純度酸化マグネシウムで絶縁した無機物絶縁金属被覆ケーブルを巻線し、この無機物絶縁金属被覆ケーブルの末端に絶縁気密治具がロー付けされ、組立後に容易に脱気乾燥のできる電磁コイルと、これを用いた耐放射線用電磁石である。
【0007】
即ち、本発明は、棒状、又は中空状の金属製導電体からなる内部導電体を、パイプ状の金属からなる外皮で、無機物の絶縁体を介して電気的に絶縁した状態で気密に覆う無機物絶縁金属被覆ケーブルを巻回して構成する耐放射線電磁石用電磁コイルの製造方法において、前記無機物絶縁金属被覆ケーブルの内部導電体及び外皮に無酸素銅を用い、前記無機物の絶縁体に95%以上の高純度酸化マグネシウムを用いた無機物絶縁金属被覆ケーブルで電磁コイルを形成し、この電磁コイルの終端部において内部導電体と外皮に気密に接続され、かつ内部導電体と外皮とを電気的に絶縁でき、組立後、内部導電体と外皮間の絶縁体層の真空乾燥をするための脱気孔が形成された絶縁気密治具をロー付け方法により気密に接続し、前記絶縁気密治具の脱気孔より所定の電気抵抗になるまで脱気乾燥を行い、前記脱気孔を封止する工程からなる電磁コイルの製造方法である。
【0009】
更に、本発明は、上記の電磁コイルの製造方法により作られた電磁コイルを用いた電磁石である。
【0010】
【発明の実施の形態】
本発明の電磁コイルとその製造方法、及びこれを用いた電磁石について、図面を参照しながら説明する。
【0011】
図1は、本発明の実施の形態の電磁コイルの無機物絶縁金属被覆ケーブルの終端部における絶縁気密治具が取り付けられた状態を示す正面図である。図2は、本発明の実施の形態の電磁コイルを示す外観斜視図である。
【0012】
無酸素銅からなる内部電導体4とケーブルの外皮5の間に高純度の酸化マグネシウムからなる絶縁体が詰め込まれた無機物絶縁金属被覆ケーブル1を、図2に示すように、所定の形のコイル状に巻線し、コイル部分をステンレスバンド8などで固定し、無機物絶縁金属被覆ケーブル1の終端部に、絶縁気密治具2を取り付け、ケーブルの終端部からケーブル内部に、湿気などの絶縁体を劣化させるガスが侵入しないように気密に終端する。
【0013】
この絶縁気密治具2は、図1に示すように、中央部の絶縁気密リング10は、アルミナセラミックスなどのような気密セラミックスのリングで構成され、その両端に無酸素銅等の高純度金属からなる接続パイプ9が気密に接合されている。この接続パイプ9には、無機物絶縁金属被覆ケーブルを終端した後、このケーブル内を真空に排気するための脱気孔6が設けられている。
【0014】
図1及び図2に示すように、無機物絶縁金属被覆ケーブル1の終端部のケーブルの外皮5を一部除去して、内部導電体4を露出させ、この内部導電体4を絶縁気密治具2に貫通させる。絶縁気密治具2の内側の接続パイプ9にケーブルの外皮5を気密に接合し、反対側の接続パイプ9に内部導電体4を気密に接合する。その先の内部導電体4に電極端子3を接続する。それぞれの気密な接合は、必要により中間材料などを介して、ロー付けなどにより行われる。
【0015】
組立の完了した電磁コイル7は、図示していない電磁石のヨーク部分に固定された後、無機物絶縁金属被覆ケーブル1の内部を真空にするため、絶縁気密治具2の接続パイプ9に設けられた脱気孔6から排気した後、脱気孔6が封止されて、電磁石は完成する。
【0016】
【実施例】
以下、本発明を、実施例により説明する。
【0017】
図1及び図2に示すように、まず、無機物絶縁金属被覆ケーブル1を重ね合わせてコイル状に成形する。所定の直線形状又は曲線形状になるよう巻線型等を用いて機械的に力を加えて成形を行う。
【0018】
更に、重ねられたケーブル1の直線部、曲線部の隣り合わせた部分の間をロー付けで固着し、更に、ステンレスバンド8にて重ね合わせて、ケーブル1を束状に締め込んで固定を行い、電磁コイル7を成形する。
【0019】
次に、ケーブル1の末端に絶縁気密治具2のロー付けを行う。その後、絶縁気密治具2の脱気孔6を通して、電磁コイル7の内部を除湿し、絶縁体である酸化マグネシウム絶縁体の絶縁抵抗を2000MΩ(DC1000V)以上に確保し、その状態でケーブル1を気密に封止して、電磁コイル7を製作する。
【0020】
この電磁コイル7は、電磁石として電磁コイルを組み込むまでの各工程毎に絶縁抵抗試験を行う。各工程で、絶縁抵抗値が2000MΩ( DC1000V)以上を得られた。本発明の電磁コイルでは、電磁コイルの組立、及び電磁石の組立において、組立は容易で、しかも高い特性を維持した状態で作製できることが分かった。
【0021】
最終的には、通電試験により評価する必要があるが、通電試験は、通電電流を直流2000A、入水圧13kg/cm2、出水圧3kg/cm2で行い、電磁コイルの発熱に対して冷却効果も良好で、通電試験後の絶縁抵抗試験においても、2000MΩ(DC100V)以上が得られ、劣化がないことを確認した。
【0022】
また、耐放射線特性においても、95%の純度を持つ高純度酸化マグネシウムの絶縁体を用いた結果、109GY程度の放射線吸収量では、長時間使用しても殆ど特性の劣化は見られず、実用的の十分な電磁石が得られた。
【0023】
【発明の効果】
以上、説明の通り、本発明によれば、耐放射線用電磁石、及びこれに用いる電磁コイルを絶縁抵抗値が2000MΩ(DC1000V)以上を維持しながら容易に成形、組立ができ、耐放射線特性が優れ、信頼性が高く、寿命の長い電磁石コイルと、これを用いた耐放射線特性の良い電磁石を提供することができた。
【図面の簡単な説明】
【図1】本発明の実施の形態の電磁コイルの無機物絶縁金属被覆ケーブルの終端部の絶縁気密治具を示す正面図。
【図2】本発明の実施の形態の電磁コイルの外観斜視図。
【符号の説明】
1 (無機物絶縁金属被覆)ケーブル
2 絶縁気密治具
3 電気端子
4 内部導電体
5 外皮
6 脱気孔
7 電磁コイル
8 ステンレスバンド
9 接続パイプ
10 絶縁気密リング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation-resistant electromagnet, and more particularly, to an electromagnetic coil for an electromagnet having a long radiation-resistant life and made of inorganic insulating metal-coated cables (Mineral Insulated Cables).
[0002]
[Prior art]
Conventionally, electromagnets exposed to radiation are often used in particle beam accelerators and related measuring devices. When the electromagnetic coil used for this electromagnet is exposed to radiation, the insulation characteristics and the like deteriorate and it cannot be used. The life of an electromagnet depends on the radiation exposure of the electromagnetic coil, and in particular on the insulator material used there. In electromagnetic coils used in particle beam accelerators, etc., the radiation absorption amount is 10 6 GY (gray) to 10 9 GY. In order to prevent deterioration of the insulation properties of the electromagnetic coil due to the radiation absorption amount, , in the following 10 8 GY using the insulator of the organic material, is 10 8 GY more widely used is that using the insulator inorganic. Among these, in particular, in an electromagnetic coil in which a radiation absorption amount of 10 8 GY or more is expected, it is important that an insulator that insulates between conductors is made of a high-purity inorganic substance.
[0003]
[Problems to be solved by the invention]
Conventionally, ceramics and inorganic cements are used as inorganic materials that are electrically insulating and relatively easily available. When this inorganic insulator material is used as an insulator of an electromagnetic coil, the insulator is coated on the conductor or injected into a gap between adjacent conductors.
[0004]
In this insulation method, the insulator absorbs moisture in the atmosphere, the performance of the insulator deteriorates, and the electrical insulation is reduced. To prevent this, the entire electromagnetic coil must be shielded from the atmosphere by the casing. was there. Therefore, it has a large and complicated structure, requires a complicated manufacturing process, has low reliability of electrical insulation characteristics, and has many problems both technically and economically.
[0005]
The object of the present invention is to eliminate these problems and to withstand a radiation absorption amount of 10 8 GY or more, to be insulated with an inorganic material that is inexpensive and has good workability, and whose structure and manufacture are simple and reliable. It is to provide a high electromagnetic coil and an electromagnet with high radiation absorption characteristics.
[0006]
[Means for Solving the Problems]
The present invention relates to an electromagnetic coil for a radiation-resistant electromagnet formed of an inorganic insulated metal-coated cable, comprising: a conductor made of oxygen-free copper; an outer sheath; and an inorganic insulated metal-coated cable insulated with high-purity magnesium oxide of 95% or more. An electromagnetic coil which is wound and brazed with an insulating hermetic jig at the end of the inorganic insulated metal-coated cable and can be easily deaerated and dried after assembly, and a radiation-resistant electromagnet using the electromagnetic coil.
[0007]
That is, the present invention relates to an inorganic material in which a rod-shaped or hollow metal conductor is hermetically covered with a pipe-shaped metal sheath electrically insulated via an inorganic insulator. In the method for manufacturing an electromagnetic coil for a radiation-resistant electromagnet configured by winding an insulated metal-coated cable, oxygen-free copper is used for an inner conductor and an outer skin of the inorganic-insulated metal-coated cable, and 95% or more of the inorganic insulator is used. An electromagnetic coil is formed of an inorganic insulating metal-coated cable using high-purity magnesium oxide, and the inner conductor and the outer skin are hermetically connected at the terminal end of the electromagnetic coil, and the inner conductor and the outer skin can be electrically insulated. , after assembly, connected to the airtight insulating airtight jig deaerating hole is formed for the vacuum drying of the insulating layer between the inner conductor and the outer skin by brazing method, the insulating airtight jig Deaerated dried to a predetermined electrical resistance than the pores, a method of manufacturing an electromagnetic coil comprising a step of sealing the deaeration holes.
[0009]
Furthermore, the present invention is an electromagnet with a solenoid coil made by the method of manufacturing a conductive magnetic coil.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An electromagnetic coil, a manufacturing method thereof, and an electromagnet using the electromagnetic coil according to the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a front view showing a state in which an insulating hermetic jig is attached to an end portion of an inorganic insulating metal-coated cable of an electromagnetic coil according to an embodiment of the present invention. FIG. 2 is an external perspective view showing the electromagnetic coil according to the embodiment of the present invention.
[0012]
As shown in FIG. 2, an inorganic insulating metal-coated cable 1 in which an insulator made of high-purity magnesium oxide is packed between an inner conductor 4 made of oxygen-free copper and a cable sheath 5 is formed into a coil having a predetermined shape. The coil part is fixed with a stainless steel band 8 or the like, and an insulating and airtight jig 2 is attached to the terminal part of the inorganic insulating metal-coated cable 1, and an insulator such as moisture is provided from the cable terminal part to the inside of the cable. Terminate hermetically to prevent gas from deteriorating.
[0013]
As shown in FIG. 1, the insulating hermetic jig 2 includes a central insulating hermetic ring 10 made of a ring made of airtight ceramics such as alumina ceramics, and both ends thereof made of high-purity metal such as oxygen-free copper. The connecting pipe 9 is joined in an airtight manner. The connection pipe 9 is provided with a deaeration hole 6 for terminating the inorganic insulating metal-coated cable and then exhausting the inside of the cable to a vacuum.
[0014]
As shown in FIGS. 1 and 2, a part of the cable sheath 5 at the terminal end of the inorganic insulating metal-coated cable 1 is partially removed to expose the internal conductor 4, and the internal conductor 4 is connected to the insulating airtight jig 2. To penetrate. The cable sheath 5 is airtightly joined to the connection pipe 9 inside the insulating airtight jig 2, and the internal conductor 4 is airtightly joined to the connection pipe 9 on the opposite side. The electrode terminal 3 is connected to the internal conductor 4 beyond that. Each airtight joining is performed by brazing or the like through an intermediate material or the like as necessary.
[0015]
The assembled electromagnetic coil 7 is fixed to an electromagnet yoke portion (not shown), and then provided to the connection pipe 9 of the insulating hermetic jig 2 to evacuate the inside of the inorganic insulating metal-coated cable 1. After exhausting from the deaeration hole 6, the deaeration hole 6 is sealed, and the electromagnet is completed.
[0016]
【Example】
Hereinafter, the present invention will be described by way of examples.
[0017]
As shown in FIGS. 1 and 2, first, the inorganic insulating metal-coated cables 1 are overlapped and formed into a coil shape. Molding is performed by mechanically applying a force using a winding die or the like so as to have a predetermined linear shape or curved shape.
[0018]
Furthermore, the straight portions of the overlapped cables 1 and the adjacent portions of the curved portions are fixed by brazing, and further overlapped by the stainless steel band 8, and the cables 1 are fastened in a bundle to be fixed. The electromagnetic coil 7 is formed.
[0019]
Next, the insulation hermetic jig 2 is brazed to the end of the cable 1. Thereafter, the inside of the electromagnetic coil 7 is dehumidified through the deaeration hole 6 of the insulating hermetic jig 2, and the insulation resistance of the magnesium oxide insulator as an insulator is secured to 2000 MΩ (DC 1000 V) or more, and the cable 1 is hermetically sealed in this state. The electromagnetic coil 7 is manufactured.
[0020]
The electromagnetic coil 7 performs an insulation resistance test for each process until the electromagnetic coil is incorporated as an electromagnet. In each step, an insulation resistance value of 2000 MΩ (DC 1000 V) or more was obtained. It has been found that the electromagnetic coil of the present invention can be easily assembled and maintained with high characteristics in the assembly of the electromagnetic coil and the electromagnet.
[0021]
Ultimately, it is necessary to evaluate by an energization test. In the energization test, the energization current is 2000 A DC, the incoming water pressure is 13 kg / cm 2 , and the outgoing water pressure is 3 kg / cm 2. In the insulation resistance test after the energization test, 2000 MΩ (DC 100 V) or more was obtained, and it was confirmed that there was no deterioration.
[0022]
In addition, in terms of radiation resistance, as a result of using a high-purity magnesium oxide insulator having a purity of 95%, the radiation absorption amount of about 10 9 GY shows almost no deterioration even after long-term use. A practical and sufficient electromagnet was obtained.
[0023]
【The invention's effect】
As described above, according to the present invention, the radiation-resistant electromagnet and the electromagnetic coil used therefor can be easily molded and assembled while maintaining an insulation resistance value of 2000 MΩ (DC 1000 V) or more, and has excellent radiation resistance characteristics. It was possible to provide an electromagnet coil having high reliability and a long life, and an electromagnet having good radiation resistance using the coil.
[Brief description of the drawings]
FIG. 1 is a front view showing an insulating hermetic jig at an end portion of an inorganic insulating metal-coated cable of an electromagnetic coil according to an embodiment of the present invention.
FIG. 2 is an external perspective view of an electromagnetic coil according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 (Inorganic substance insulation metal coating) Cable 2 Insulation airtight jig 3 Electrical terminal 4 Internal conductor 5 Outer skin 6 Deaeration hole 7 Electromagnetic coil 8 Stainless steel band 9 Connection pipe 10 Insulation airtight ring

Claims (2)

棒状、又は中空状の金属製導電体からなる内部導電体を、パイプ状の金属からなる外皮で、無機物の絶縁体を介して電気的に絶縁した状態で気密に覆う無機物絶縁金属被覆ケーブルを巻回して構成する耐放射線電磁石用電磁コイルの製造方法において、前記無機物絶縁金属被覆ケーブルの内部導電体及び外皮に無酸素銅を用い、前記無機物の絶縁体に95%以上の高純度酸化マグネシウムを用いた無機物絶縁金属被覆ケーブルで電磁コイルを形成し、この電磁コイルの終端部において内部導電体と外皮に気密に接続され、かつ内部導電体と外皮とを電気的に絶縁でき、組立後、内部導電体と外皮間の絶縁体層の真空乾燥をするための脱気孔が形成された絶縁気密治具をロー付け方法により気密に接続し、前記絶縁気密治具の脱気孔より所定の電気抵抗になるまで脱気乾燥を行い、前記脱気孔を封止する工程からなることを特徴とする電磁コイルの製造方法。 Winding an inorganic insulated metal-coated cable that covers a rod-shaped or hollow metallic conductor with a pipe-shaped metal sheath and is electrically insulated through an inorganic insulator. In the manufacturing method of the electromagnetic coil for a radiation-resistant electromagnet configured by rotating, oxygen-free copper is used for the inner conductor and outer skin of the inorganic insulating metal-coated cable, and 95% or more of high-purity magnesium oxide is used for the inorganic insulator. An electromagnetic coil is formed with an inorganic insulating metal-coated cable, and the electromagnetic conductor is hermetically connected to the inner conductor and the outer shell at the end of the electromagnetic coil, and the inner conductor and the outer shell can be electrically insulated. an insulating airtight jig deaerating hole is formed for the vacuum drying of the insulating layer between the body and the outer skin is connected hermetically by brazing method, the insulating airtight jig predetermined from the deaeration holes Deaerated dried to air resistance, the production method of the electromagnetic coil, characterized by comprising the step of sealing the deaeration holes. 請求項1記載の電磁コイルの製造方法により作られた電磁コイルを用いたことを特徴とする電磁石。Electromagnet characterized by using an electromagnetic coil made by the method of claim 1 wherein the conductive magnetic coil.
JP05294398A 1998-02-17 1998-02-17 Electromagnetic coil, manufacturing method thereof, and electromagnet Expired - Lifetime JP3907090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05294398A JP3907090B2 (en) 1998-02-17 1998-02-17 Electromagnetic coil, manufacturing method thereof, and electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05294398A JP3907090B2 (en) 1998-02-17 1998-02-17 Electromagnetic coil, manufacturing method thereof, and electromagnet

Publications (2)

Publication Number Publication Date
JPH11233340A JPH11233340A (en) 1999-08-27
JP3907090B2 true JP3907090B2 (en) 2007-04-18

Family

ID=12928962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05294398A Expired - Lifetime JP3907090B2 (en) 1998-02-17 1998-02-17 Electromagnetic coil, manufacturing method thereof, and electromagnet

Country Status (1)

Country Link
JP (1) JP3907090B2 (en)

Also Published As

Publication number Publication date
JPH11233340A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
US9576719B2 (en) High temperature electromagnetic coil assemblies including brazed braided lead wires
US8754735B2 (en) High temperature electromagnetic coil assemblies including braided lead wires and methods for the fabrication thereof
CN109074948B (en) HV device and method of manufacturing such a device
US20150213929A1 (en) Electromagnetic coil assemblies having braided lead wires and/or braided sleeves
US8860541B2 (en) Electromagnetic coil assemblies having braided lead wires and methods for the manufacture thereof
CA2276144A1 (en) Bead inductor and method of manufacturing same
JP3907090B2 (en) Electromagnetic coil, manufacturing method thereof, and electromagnet
JPS60173883A (en) Superconductive magnet
HU200029B (en) High-voltage transformer
CN108369855A (en) Dry type with flexible connection terminal casts transformer
CN113488321B (en) Dry-type transformer and winding method thereof
JPS6041815B2 (en) proximity switch
JPH11233339A (en) Insulating airtight jig for mineral-insulated airtightly metal-covered cable, its manufacture, and electromagnet using the jig
JP2530944Y2 (en) Mercury contact relay
JP3446149B2 (en) Accelerator coil device and method of manufacturing the same
JP2002095147A (en) Tube type stiffening insulator and connection structure of power cables
JPS6357926B2 (en)
JPH0642417B2 (en) Radiation resistant electromagnetic coil device
JPS5936109Y2 (en) Air termination of power cable
KR20180135225A (en) Coil component and method for manufacturing the same
JPS62237615A (en) Structure of connection between electric equipment and wire
JPH10125548A (en) Transformer for grounded type instrument
JP2001357761A (en) Molded vacuum valve and its manufacturing method
JP2003174718A (en) Tape-wound joint of plastic insulated power cable
JPH0638341A (en) Wire penetrating part module structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term