JP3906869B2 - FM-CW radar equipment - Google Patents

FM-CW radar equipment Download PDF

Info

Publication number
JP3906869B2
JP3906869B2 JP2005367589A JP2005367589A JP3906869B2 JP 3906869 B2 JP3906869 B2 JP 3906869B2 JP 2005367589 A JP2005367589 A JP 2005367589A JP 2005367589 A JP2005367589 A JP 2005367589A JP 3906869 B2 JP3906869 B2 JP 3906869B2
Authority
JP
Japan
Prior art keywords
threshold value
target
noise
vehicle
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005367589A
Other languages
Japanese (ja)
Other versions
JP2006091027A (en
Inventor
茂穂 稲常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005367589A priority Critical patent/JP3906869B2/en
Publication of JP2006091027A publication Critical patent/JP2006091027A/en
Application granted granted Critical
Publication of JP3906869B2 publication Critical patent/JP3906869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は雨、霧、雪等の悪天候時の視界が悪い場合や運転者の不注意により発生する乗用車、バス、トラック等の走行中の衝突事故を未然に防ぐために前方の車両や人、障害物等を検知して相対距離、相対速度を求め、運転者に危険を知らせ車両の安全走行に応用するFM−CWレーダ装置に関するものである。   In order to prevent collision accidents during traveling of passenger cars, buses, trucks, etc. that occur due to poor visibility in bad weather such as rain, fog, snow, etc. The present invention relates to an FM-CW radar apparatus that detects an object or the like, obtains a relative distance and a relative speed, notifies the driver of the danger, and applies it to safe driving of the vehicle.

図12は従来より知られているFM−CWレーダ装置を概略的に示し、図13は従来のFM−CWレーダ装置の構成図である。   FIG. 12 schematically shows a conventionally known FM-CW radar apparatus, and FIG. 13 is a configuration diagram of the conventional FM-CW radar apparatus.

図12の1はFM−CWレーダ装置を搭載した自車両、2は前方方向に走る前方の車両、3は対向車線を走る対向車両を示す。   In FIG. 12, reference numeral 1 denotes a host vehicle equipped with an FM-CW radar device, 2 denotes a front vehicle running in the forward direction, and 3 denotes an oncoming vehicle running in the oncoming lane.

自車両1の前方付近に取り付けたFM−CWレーダ装置より送信された送信波は、例えば前方の車両2が存在する場合には反射され、FM−CWレーダ装置へ受信波(反射波)として戻ってくる。FM−CWレーダ装置は送信した電波と受信した電波の周波数差を求め、自車両1と前方の車両2の相対距離、相対速度を算出する。また、前方の車両2以外の対向車線の対向車両3や障害物(図示せず)についても送信波を指向させれば同様の検知が行える。   The transmission wave transmitted from the FM-CW radar device attached near the front of the host vehicle 1 is reflected, for example, when the vehicle 2 ahead exists, and returns to the FM-CW radar device as a reception wave (reflected wave). Come. The FM-CW radar device calculates the frequency difference between the transmitted radio wave and the received radio wave, and calculates the relative distance and relative speed between the host vehicle 1 and the vehicle 2 ahead. The same detection can be performed for the oncoming vehicle 3 and obstacles (not shown) in the oncoming lane other than the vehicle 2 ahead by directing the transmission wave.

図13の4は変調手段、5は発振器、6は方向性結合器、7は送信アンテナ、8は受信アンテナ、9はミキサ、10は増幅器、11はA/D(Analogto Digital)変換器、12は周波数分析手段、13は目標検出手段、14は距離速度算出手段、15は変調手段4と発振器5と方向性結合器6とミキサ9と増幅器10から構成される送受信機を示す。   13, 4 is a modulation means, 5 is an oscillator, 6 is a directional coupler, 7 is a transmission antenna, 8 is a reception antenna, 9 is a mixer, 10 is an amplifier, 11 is an A / D (Analog to Digital) converter, 12 Is a frequency analyzing means, 13 is a target detecting means, 14 is a distance speed calculating means, 15 is a transceiver comprising a modulating means 4, an oscillator 5, a directional coupler 6, a mixer 9 and an amplifier 10.

まず変調手段4は周波数変調(FM)信号を発生し、発振器5へ送る。発振器5はFM信号で変調された高周波信号を発生し、方向性結合器を介して送信アンテナ7とミキサ9に送る。送信アンテナ7は送られてきた高周波信号を前方の車両等の目標物に送信波として発射する。もし目標物が存在するなら時間遅れを生じた受信波(反射波)が受信アンテナ8によって受信され、ミキサ9へ送られる。ミキサ9は反射波と方向性結合器6によって分配された送信波の周波数差の信号(以後、ビート信号という。)を発生し、増幅器
10へ送る。増幅器10はビート信号を増幅してA/D変換器11におくる。A/D変換器11はビート信号をアナログの信号形式からディジタルの信号形式に変換して周波数分析手段12へ送る。周波数分析手段12はディジタル化されたビート信号を取り込みFFT(高速フーリエ変換)等の処理により周波数分布を求める。目標検出手段13は周波数分布と閾値とを比較して、閾値を越えたものの中で極大となるものを目標物とする。距離速度算出手段14は目標検出手段13でピックアップされた周波数により目標物の相対距離及び相対速度を算出する。
First, the modulation means 4 generates a frequency modulation (FM) signal and sends it to the oscillator 5. The oscillator 5 generates a high-frequency signal modulated by the FM signal, and sends it to the transmission antenna 7 and the mixer 9 via a directional coupler. The transmission antenna 7 emits the transmitted high-frequency signal to a target such as a vehicle ahead as a transmission wave. If the target exists, the received wave (reflected wave) with a time delay is received by the receiving antenna 8 and sent to the mixer 9. The mixer 9 generates a frequency difference signal between the reflected wave and the transmission wave distributed by the directional coupler 6 (hereinafter referred to as a beat signal) and sends it to the amplifier 10. The amplifier 10 amplifies the beat signal and comes to the A / D converter 11. The A / D converter 11 converts the beat signal from an analog signal format to a digital signal format and sends the beat signal to the frequency analysis means 12. The frequency analysis means 12 takes a digitized beat signal and obtains a frequency distribution by processing such as FFT (Fast Fourier Transform). The target detection means 13 compares the frequency distribution with the threshold value, and determines the target that is the maximum among those exceeding the threshold value. The distance / velocity calculation means 14 calculates the relative distance and relative speed of the target based on the frequency picked up by the target detection means 13.

図14及び図15は目標物の相対距離及び相対速度の算出方法について説明する図であり、図14が周波数の変化、図15が周波数分布を示している。基本原理はS.A.Hovanessian氏の著書“Radar System Design & Analysis”(Artech House 出版)のP.78〜P.81に掲載されているものである。図14の16はFM−CWレーダ装置の送信周波数、17は受信周波数を示す。   14 and 15 are diagrams for explaining a method of calculating the relative distance and the relative speed of the target. FIG. 14 shows a change in frequency, and FIG. 15 shows a frequency distribution. The basic principle is S.I. A. Hovanesian's book “Radar System Design & Analysis” (published by Artech House). 78-P. 81. In FIG. 14, 16 indicates the transmission frequency of the FM-CW radar apparatus, and 17 indicates the reception frequency.

まず送信周波数16をa区間では一定、b区間では上昇、c区間では下降と変化させ、電波を送信する。図12の前方の車両2が相対速度v、相対距離Rで存在していた場合、光速C[m/s]、送信波長λ[m]、周波数の傾きK1[Hz/s]とすると、a区間のビート周波数fdは数1、b区間のビート周波数fr1は数2、c区間のビート周波数fr2は数3で示される。   First, the radio frequency is transmitted by changing the transmission frequency 16 to be constant in the a section, rising in the b section, and falling in the c section. When the vehicle 2 in front of FIG. 12 exists at a relative speed v and a relative distance R, a light speed C [m / s], a transmission wavelength λ [m], and a frequency gradient K1 [Hz / s] The beat frequency fd of the section is expressed by the formula 1, the beat frequency fr1 of the b section is expressed by the formula 2, and the beat frequency fr2 of the c section is expressed by the formula 3.

Figure 0003906869
Figure 0003906869

Figure 0003906869
Figure 0003906869

Figure 0003906869
Figure 0003906869

よって周波数解析からfd,fr1,fr2を求め、数1、数2、数3を満たす相対速度V、相対距離Rの組合せを解くことにより目標の相対速度、相対距離を求めることができる。   Therefore, fd, fr1, fr2 are obtained from the frequency analysis, and the target relative speed and relative distance can be obtained by solving the combination of the relative speed V and the relative distance R satisfying the expressions 1, 2, and 3.

fd,fr1,fr2はa区間、b区間、c区間のビート信号をそれぞれFET(高速フーリエ変換)等の周波数解析により求めることができる。図15は目標物が1つだけの場合のビート信号を周波数解析した場合を示す。(a)はa区間、(b)はb区間、(c)はc区間のFET結果であり、それぞれのピーク周波数がfd,fr1,fr2に相当する。前方の車両等の電波を反射する目標物が2つ以上になった場合、周波数解析を行うと周波数軸上のスペクトル波形も合成され、複数のピーク周波数が存在するが、数1、数
2、数3を満足する周波数の組合せを探すことによりそれぞれの目標物の相対速度、相対距離を求めることができる。
For fd, fr1, and fr2, beat signals in the a section, the b section, and the c section can be obtained by frequency analysis such as FET (Fast Fourier Transform), respectively. FIG. 15 shows a case where the beat signal in the case where there is only one target is subjected to frequency analysis. (A) is the a section, (b) is the b section, and (c) is the c section FET results, and the respective peak frequencies correspond to fd, fr1, and fr2. When there are two or more targets that reflect radio waves, such as the vehicle ahead, the spectrum waveform on the frequency axis is also synthesized when frequency analysis is performed, and there are a plurality of peak frequencies. By searching for a combination of frequencies that satisfies Equation 3, the relative speed and relative distance of each target can be obtained.

従来のFM−CWレーダ装置はビート信号に目標物からの信号だけがある場合には周波数解析後、容易に閾値を決定でき、目標物の周波数を求めることができるが、実際には送受信機14の出力には熱雑音(受信機ノイズ)も増幅されて混入し、図16(a)で示すごとく周波数分布は複雑になる。閾値19のように閾値を高く設定しすぎると第1目標物20は検出できても第2目標物21は検出できない。また閾値22のように閾値を低く設定しすぎると受信機ノイズ23まで検出してしまう。また図16(b)と図(c)は注目する周波数と周辺の平均値を比較して周辺の平均値より上回っていたら目標物とする検出方法を示す図であり、24は周辺の平均値、25は平均値24に誤警報確率から決まる係数を乗じた閾値、26は平均値を選択する範囲を示す。図16(b)の閾値25は第2目標物21を注目した場合の閾値であり、第2目標物21の振幅は閾値25を越えているため、目標物として検出される。ところが、図16(c)のように第1目標物20が第2目
標物21に隣接しているケースでは平均値が上昇してしまい、第2目標物21を検出できなくなってしまう。
The conventional FM-CW radar apparatus can easily determine the threshold value after the frequency analysis when the beat signal includes only the signal from the target, and can determine the frequency of the target. Thermal noise (receiver noise) is also amplified and mixed in the output of, and the frequency distribution becomes complicated as shown in FIG. If the threshold is set too high, such as the threshold 19, the first target 20 can be detected, but the second target 21 cannot be detected. If the threshold is set too low, such as the threshold 22, the receiver noise 23 is detected. FIGS. 16B and 16C are diagrams illustrating a detection method in which the target frequency is compared with the average value of the surroundings and the target value is detected when the frequency exceeds the average value of the surroundings. , 25 is a threshold value obtained by multiplying the average value 24 by a coefficient determined from the false alarm probability, and 26 indicates a range for selecting the average value. The threshold value 25 in FIG. 16B is a threshold value when attention is paid to the second target object 21, and the amplitude of the second target object 21 exceeds the threshold value 25, so that it is detected as a target object. However, in the case where the first target 20 is adjacent to the second target 21 as shown in FIG. 16C, the average value increases and the second target 21 cannot be detected.

この発明に係わるFM−CWレーダ装置は上記のような問題を解決するためになされたもので、目標検出の閾値を容易に設定し、さらに目標物が複数個隣接していてもお互いの干渉を抑えてそれぞれ検出できるようにするものである。   The FM-CW radar apparatus according to the present invention is made to solve the above-described problems. The target detection threshold is easily set, and even if a plurality of targets are adjacent to each other, they interfere with each other. It suppresses each so that it can detect each.

この発明によるFM−CWレーダ装置は、車両に搭載し、車両前方にFM−CW波を送信して、前方の車両あるいは障害物からの反射波を受信し、送信波と受信波のビート信号に基いて前方の車両あるいは障害物までの距離、速度をもとめるFM−CWレーダ装置において、上記ビート信号を増幅する増幅器の利得を制御する利得制御手段と、目標物がない状況で受信した前記ビート信号について上記利得に応じて上記FM−CWレーダ装置の送受信機が発生する周波数軸上のノイズ成分の平均値を予め記憶しておくノイズ平均値記憶手段と、車両走行面に対する車体の傾斜角を検出する車体傾斜検出手段と、上記利得に応じた上記ノイズ成分の平均値と上記傾斜角の情報に応じた指数係数とを乗じて、上記ビート信号の目標判定の閾値を決定する閾値算出手段と、上記ビート信号の出力波形と上記閾値を比較する比較手段と、上記周波数分析結果の極大値を検出する極大値検出手段と、を備えたものである。   The FM-CW radar apparatus according to the present invention is mounted on a vehicle, transmits FM-CW waves in front of the vehicle, receives reflected waves from the vehicle ahead or obstacles, and generates beat signals of the transmitted waves and received waves. In an FM-CW radar apparatus for determining the distance and speed to the vehicle or obstacle ahead, the gain control means for controlling the gain of the amplifier that amplifies the beat signal, and the beat signal received in the absence of the target Noise average value storage means for storing in advance an average value of noise components on the frequency axis generated by the transceiver of the FM-CW radar apparatus according to the gain, and detecting the inclination angle of the vehicle body with respect to the vehicle running surface A threshold value for determining the target of the beat signal by multiplying the vehicle body inclination detection means by the average value of the noise component corresponding to the gain and an exponential coefficient corresponding to the information of the inclination angle. A threshold value calculating means for, those having comparison means for comparing the output waveform and the threshold value of the beat signal, and the maximum value detecting means for detecting a maximum value of the frequency analysis result.

また、この発明によるFM−CWレーダ装置は、予め送受信機の利得と受信機ノイズの平均値の関係及び車体の傾斜と受信機ノイズのスペクトルの関係を測定しておき、利得と車体の傾斜状況に合わせて目標検出の閾値を設定するようにしたものである。   The FM-CW radar apparatus according to the present invention measures the relationship between the gain of the transceiver and the average value of the receiver noise and the relationship between the inclination of the vehicle body and the spectrum of the receiver noise in advance, and the gain and the inclination state of the vehicle body. The threshold value for target detection is set according to the above.

また、この発明によるFM−CWレーダ装置は、予め送受信機の利得と受信機ノイズの平均値の関係及び降雨と受信機ノイズのスペクトルの関係を測定しておき、利得と降雨の状態に合わせて目標検出の閾値を設定するようにしたものである。   Further, the FM-CW radar apparatus according to the present invention measures the relationship between the gain of the transceiver and the average value of the receiver noise and the relationship between the spectrum of the rainfall and the receiver noise in advance, and matches the gain and the state of the rain. A threshold value for target detection is set.

また、この発明によるFM−CWレーダ装置は、予め送受信機の利得と受信機ノイズの平均値の関係及び送受信機の温度と受信機ノイズの関係を測定しておき、利得と送受信機の温度に合わせて目標検出の閾値を設定するようにしたものである。   Further, the FM-CW radar apparatus according to the present invention measures the relationship between the gain of the transceiver and the average value of the receiver noise and the relationship between the temperature of the transceiver and the receiver noise in advance, and determines the gain and the temperature of the transceiver. In addition, a threshold value for target detection is set.

さらにまた、この発明によるFM−CWレーダ装置は、車両に搭載し、車両前方にFM−CW波を送信して、前方の車両あるいは障害物からの反射波を受信し、送信波と受信波のビート信号に基いて前方の車両あるいは障害物までの距離、速度をもとめるFM−CWレーダ装置において、車両走行面に対する車体の傾斜角を検出する車体傾斜検出手段と、 上記傾斜角情報に応じた指数係数に基づいて上記ビート信号の目標判定の閾値を決定する閾値算出手段と、上記ビート信号の出力波形と上記閾値を比較する比較手段と、上記周波数分析結果の極大値を検出する極大値検出手段と、を備えたものである。   Furthermore, the FM-CW radar apparatus according to the present invention is mounted on a vehicle, transmits FM-CW waves in front of the vehicle, receives reflected waves from the vehicle in front of the vehicle or obstacles, and transmits transmitted waves and received waves. In an FM-CW radar apparatus that obtains the distance and speed to the vehicle or obstacle ahead based on the beat signal, vehicle body inclination detection means for detecting the inclination angle of the vehicle body with respect to the vehicle running surface, and an index corresponding to the inclination angle information Threshold calculation means for determining a target judgment threshold for the beat signal based on a coefficient, comparison means for comparing the output waveform of the beat signal with the threshold, and a maximum value detection means for detecting the maximum value of the frequency analysis result And.

この発明によれば、送受信機の利得とノイズ成分の振幅値の関係を予め測定しておき、目標検出の閾値を利得に連動させて設定することで閾値設定を容易にし、且つ複数の目標信号間の干渉を抑えて目標検出ができる効果がある。   According to the present invention, the relationship between the gain of the transceiver and the amplitude value of the noise component is measured in advance, and the threshold setting is facilitated by setting the threshold value of the target detection in conjunction with the gain. There is an effect that target detection can be performed while suppressing interference between the two.

また、この発明によれば、利得に対するノイズ成分の周波数分布をパターンとして予め測定しておき、目標検出の閾値を利得に連動させて設定することで閾値設定を正確に行い、且つ複数の目標信号間の干渉を抑えて目標検出ができる効果がある。   Further, according to the present invention, the frequency distribution of the noise component with respect to the gain is measured in advance as a pattern, the threshold value is accurately set by setting the threshold value of the target detection in conjunction with the gain, and a plurality of target signals There is an effect that target detection can be performed while suppressing interference between the two.

また、この発明によれば、アンテナの向きと地面からの電波の反射レベルの関係を予め測定しておき、目標検出の閾値を車両の向きと送受信機の利得に連動させて設定することで閾値設定を正確に行い、且つ複数の目標信号間の干渉を抑えて目標検出ができる効果がある。   According to the present invention, the relationship between the antenna direction and the reflection level of the radio wave from the ground is measured in advance, and the target detection threshold is set in conjunction with the vehicle direction and the gain of the transceiver. There is an effect that the setting can be performed accurately and target detection can be performed while suppressing interference between a plurality of target signals.

また、この発明によれば、降雨と地面からの電波の反射レベルの関係を予め測定しておき、降雨情報と送受信機の利得に連動させて設定することで閾値設定を正確に行い、且つ複数の目標信号間の干渉を抑えて目標検出ができる効果がある。   Further, according to the present invention, the relationship between the rainfall and the reflection level of the radio wave from the ground is measured in advance, and the threshold value is accurately set by setting it in conjunction with the rainfall information and the gain of the transceiver, and a plurality of There is an effect that target detection can be performed while suppressing interference between target signals.

また、この発明によれば、送受信機の温度とノイズ振幅値の関係を予め測定しておき、送受信機の温度と利得に連動させて設定することで閾値設定を正確に行い、且つ複数の目標信号間の干渉を抑えて目標検出ができる効果がある。   In addition, according to the present invention, the relationship between the temperature of the transceiver and the noise amplitude value is measured in advance, and the threshold value is accurately set by setting in conjunction with the temperature and gain of the transceiver, and a plurality of targets There is an effect that target detection can be performed while suppressing interference between signals.

実施の形態1.
図1はこの発明の実施の形態1を示すFM−CWレーダ装置の構成図である。図において4、5、6、7、8、9、10、11、12、13、14、15は図13と同様のものである。27は利得制御手段、28はノイズ平均値記憶手段、29は閾値算出手段、30は比較手段、31は極大値検出手段である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an FM-CW radar apparatus showing Embodiment 1 of the present invention. In the figure, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are the same as those in FIG. 27 is a gain control means, 28 is a noise average value storage means, 29 is a threshold value calculation means, 30 is a comparison means, and 31 is a maximum value detection means.

A/D変換器11においてディジタルの信号形式に変換されたビート信号は周波数分析手段12と利得制御手段27に送られる。利得制御手段27はビート信号の大きさをみて、A/D変換器11が飽和しないレベルかあるいは入力が小さすぎないか確認し、ビート信号が最適なレベルになるように増幅器10の利得を調整する。また、利得制御手段27は増幅器10に設定した値に対応する引数を閾値算出手段29に送る。閾値算出手段29は利得制御手段27から渡された引数によりノイズ平均値記憶手段28から利得に応じた
設定値(ノイズ成分の平均値)を取り込む。ノイズ成分の平均値とは予め目標物がない状況でビート信号を受信し、周波数分析した後、周波数軸方向に平均値を算出したものであり、送受信機15から発生するノイズ成分を評価した値である。図6は利得が変化したときのノイズ成分の周波数分布とその平均値の関係を示す図である。36a、36b、36c、36dはノイズ成分の周波数分布を示す。37a、37b、37c、37dはノイズ成分の平均値を示す。通常、ノイズ成分は利得が上がればそれに比例、或いは単調増加の関係で上昇する。図7は利得とノイズ成分の平均値の関係を示す図である。38はノイズ
成分の変化を表す特性曲線であり、ノイズ平均値記憶手段28に記憶されているデータである。閾値算出手段29はノイズ平均値記憶手段28から利得に対応したノイズ平均値を取り込み、ノイズと目標物を区別する閾値を数4で求め、比較手段30に与える。数4は閾値a、係数k、ノイズ平均値bとし、係数kは誤検出が発生する確率が十分低くなるように設定する。
The beat signal converted into the digital signal format in the A / D converter 11 is sent to the frequency analysis means 12 and the gain control means 27. The gain control means 27 checks the magnitude of the beat signal, checks whether the A / D converter 11 is not saturated or the input is too small, and adjusts the gain of the amplifier 10 so that the beat signal becomes an optimum level. To do. Further, the gain control means 27 sends an argument corresponding to the value set in the amplifier 10 to the threshold value calculation means 29. The threshold calculation means 29 takes in a set value (average value of noise components) corresponding to the gain from the noise average value storage means 28 using the argument passed from the gain control means 27. The average value of the noise component is a value obtained by receiving a beat signal in the absence of a target in advance and performing frequency analysis, and then calculating the average value in the frequency axis direction and evaluating the noise component generated from the transceiver 15 It is. FIG. 6 is a diagram showing the relationship between the frequency distribution of noise components and the average value when the gain changes. Reference numerals 36a, 36b, 36c, and 36d denote frequency distributions of noise components. Reference numerals 37a, 37b, 37c, and 37d denote average values of noise components. Normally, the noise component rises proportionally or monotonically as the gain increases. FIG. 7 is a diagram showing the relationship between the gain and the average value of the noise components. Reference numeral 38 denotes a characteristic curve representing a change in the noise component, which is data stored in the noise average value storage means 28. The threshold value calculation means 29 takes in the noise average value corresponding to the gain from the noise average value storage means 28, obtains the threshold value for distinguishing the noise from the target by Equation 4, and gives it to the comparison means 30. Equation 4 is a threshold value a, a coefficient k, and an average noise value b, and the coefficient k is set so that the probability of occurrence of erroneous detection is sufficiently low.

Figure 0003906869
Figure 0003906869

次に比較手段30は周波数分析手段12の出力が閾値aを越えていれば目標物であると判断する。図8は閾値a(閾値25)により受信機ノイズ23は選択されず、第1目標物20と第2目標物21のみが選択された例を示す。比較手段30で選択された目標物の振幅値は極大値検出手段31に送る。極大値検出手段31は振幅値が周波数軸上で連続していれば、その極大点を検出し、極大点の周波数の値を距離速度算出手段14に送る。距離速度算出手段14では従来と同様に目標物の相対速度、相対距離を求めることができる。   Next, the comparison means 30 determines that the target is the target if the output of the frequency analysis means 12 exceeds the threshold value a. FIG. 8 shows an example in which the receiver noise 23 is not selected by the threshold a (threshold 25), and only the first target 20 and the second target 21 are selected. The amplitude value of the target selected by the comparison means 30 is sent to the maximum value detection means 31. If the amplitude value is continuous on the frequency axis, the maximum value detecting unit 31 detects the maximum point and sends the frequency value of the maximum point to the distance speed calculating unit 14. The distance speed calculation means 14 can obtain the relative speed and relative distance of the target as in the conventional case.

実施の形態2.
図2はこの発明の実施の形態2を示すFM−CWレーダ装置の構成図である。図において4、5、6、7、8、9、10、11、12、13、14、15は図13と同様のものである。27は利得制御手段、29は閾値算出手段、30は比較手段、31は極大値検出手段、32はノイズパターン記憶手段である。
Embodiment 2. FIG.
FIG. 2 is a block diagram of an FM-CW radar apparatus showing Embodiment 2 of the present invention. In the figure, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are the same as those in FIG. 27 is a gain control means, 29 is a threshold value calculation means, 30 is a comparison means, 31 is a maximum value detection means, and 32 is a noise pattern storage means.

A/D変換器11においてディジタルの信号形式に変換されたビート信号は周波数分析手段12と利得制御手段27に送られる。利得制御手段27はビート信号の大きさをみて、A/D変換器11が飽和しないレベルかあるいは入力が小さすぎないか確認し、ビート信号が最適なレベルになるように増幅器10の利得を調整する。また、利得制御手段27は増幅器10に設定した値に対応する引数を閾値算出手段29に送る。閾値算出手段29は利得制御手段27から渡された引数によりノイズパターン記憶手段32から利得に応じ
たノイズパターンを取り込む。ノイズパターンとは予め目標物がない状況でビート信号を受信し、周波数分析したスペクトル即ちノイズスペクトルを複数回に渡り平均化処理したものである。図9(a)は利得が変化したときのノイズスペクトルと平均化処理を行ったノイズパターンの関係を示す図である。39a、39b、39cはノイズスペクトルを示す。40a、40b、40cはノイズパターンを示す。通常、ノイズ成分の振幅は利得にほぼ比例して上昇する。また、送受信機15のビート信号出力までの間の低域通過特性等により、図9(a)で示すように周波数が上がるほど振幅値が下がる傾向を示す。閾値
算出手段29はノイズパターン記憶手段32から利得に対応したノイズパターンを取り込み、ノイズと目標物を区別する閾値を数5で求め、比較手段30に与える。数5は閾値a、係数k、送受信機の利得G、周波数軸上でn番目のノイズレベルN(n)とし、係数kは誤検出が発生する確率が十分低くなるように設定する。
The beat signal converted into the digital signal format in the A / D converter 11 is sent to the frequency analysis means 12 and the gain control means 27. The gain control means 27 checks the magnitude of the beat signal, checks whether the A / D converter 11 is not saturated or the input is too small, and adjusts the gain of the amplifier 10 so that the beat signal becomes an optimum level. To do. Further, the gain control means 27 sends an argument corresponding to the value set in the amplifier 10 to the threshold value calculation means 29. The threshold value calculation unit 29 takes in a noise pattern corresponding to the gain from the noise pattern storage unit 32 by the argument passed from the gain control unit 27. The noise pattern is obtained by receiving a beat signal in the absence of a target in advance and averaging the frequency-analyzed spectrum, that is, the noise spectrum, a plurality of times. FIG. 9A is a diagram showing the relationship between the noise spectrum when the gain changes and the noise pattern subjected to the averaging process. Reference numerals 39a, 39b, and 39c denote noise spectra. Reference numerals 40a, 40b, and 40c denote noise patterns. Usually, the amplitude of the noise component increases almost in proportion to the gain. In addition, due to the low-pass characteristics until the beat signal is output from the transceiver 15, the amplitude value tends to decrease as the frequency increases, as shown in FIG. 9A. The threshold value calculation means 29 takes in a noise pattern corresponding to the gain from the noise pattern storage means 32, obtains a threshold value for distinguishing the noise from the target by Equation 5, and gives it to the comparison means 30. Equation 5 is a threshold value a, a coefficient k, a gain G of the transceiver, and an nth noise level N (n) on the frequency axis, and the coefficient k is set so that the probability of erroneous detection is sufficiently low.

Figure 0003906869
Figure 0003906869

比較手段30は周波数分析手段12の出力が閾値aを越えていれば目標物であると判断する。図8は閾値a(閾値34)により受信機ノイズ32は選択されず、第1目標物29と第2目標物30のみが選択された例を示す。比較手段30で選択された目標物の振幅値は極大値検出手段31に送る。極大値検出手段31は振幅値が周波数軸上で連続していれは、その極大点を検出し、極大点の周波数の値を距離速度算出手段11に送る。距離速度算出手段14では従来と同様に目標物の相対速度、相対距離を求めることができる。   The comparison unit 30 determines that the target is the target if the output of the frequency analysis unit 12 exceeds the threshold value a. FIG. 8 shows an example in which the receiver noise 32 is not selected by the threshold value a (threshold value 34), and only the first target 29 and the second target 30 are selected. The amplitude value of the target selected by the comparison means 30 is sent to the maximum value detection means 31. If the amplitude value is continuous on the frequency axis, the maximum value detecting unit 31 detects the maximum point and sends the frequency value of the maximum point to the distance speed calculating unit 11. The distance speed calculation means 14 can obtain the relative speed and relative distance of the target as in the conventional case.

実施の形態3.
図3はこの発明の実施の形態3を示すFM−CWレーダ装置の構成図である。図において4、5、6、7、8、9、10、11、12、13、14、15は図13と同様のものである。27は利得制御手段、28はノイズ平均値記憶手段、29は閾値算出手段、30は比較手段、31は極大値検出手段、33は車体傾斜検出手段である。
Embodiment 3 FIG.
FIG. 3 is a block diagram of an FM-CW radar apparatus showing Embodiment 3 of the present invention. In the figure, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are the same as those in FIG. Reference numeral 27 denotes gain control means, 28 denotes noise average value storage means, 29 denotes threshold value calculation means, 30 denotes comparison means, 31 denotes maximum value detection means, and 33 denotes vehicle body inclination detection means.

A/D変換器11においてディジタルの信号形式に変換されたビート信号は周波数分析手段12と利得制御手段27に送られる。利得制御手段27はビート信号の大きさをみて、A/D変換器11が飽和しないレベルかあるいは入力が小さすぎないか確認し、ビート信号が最適なレベルになるように増幅器10の利得を調整する。また、利得制御手段27は増幅器10に設定した値に対応する引数を閾値算出手段29に送る。閾値算出手段29は利得制御手段27から渡された引数によりノイズ平均値記憶手段28から利得に応じた
ノイズ平均値を取り込む。閾値算出手段29はまた、車体傾斜検出手段33から車体が水平方向よりどれだけ上下に傾いているか、角度を取り込む。車体傾斜検出手段33は車輪を支えるサスペンションの伸び縮みの検出等により、地面に対する車体の位置関係の変化から算出する。閾値算出手段29は上記ノイズ平均値と車体の傾斜角度から目標物を区別する閾値を求める。
The beat signal converted into the digital signal format in the A / D converter 11 is sent to the frequency analysis means 12 and the gain control means 27. The gain control means 27 checks the magnitude of the beat signal, checks whether the A / D converter 11 is not saturated or the input is too small, and adjusts the gain of the amplifier 10 so that the beat signal becomes an optimum level. To do. Further, the gain control means 27 sends an argument corresponding to the value set in the amplifier 10 to the threshold value calculation means 29. The threshold value calculation means 29 takes in the noise average value corresponding to the gain from the noise average value storage means 28 by the argument passed from the gain control means 27. The threshold value calculation means 29 also fetches an angle indicating how much the vehicle body is inclined from the horizontal direction from the vehicle body inclination detection means 33. The vehicle body inclination detection means 33 calculates the change in the positional relationship of the vehicle body with respect to the ground by detecting the expansion and contraction of the suspension supporting the wheels. The threshold value calculation means 29 obtains a threshold value for distinguishing the target from the average noise value and the vehicle body inclination angle.

図10は車両と送信電波の関係を示す図である。41は本装置を搭載した車両41であり、42はアンテナの指向性を示す送受信ビームである。(a)は車両41が水平よりも上を向いている場合、(b)は車両41が地面に対して水平の場合で、(c)は車両41が水平よりも下を向いている場合である。電波は一般に地面からも反射してくるため、車両41が地面を向いているほど地面からの反射が大きい。図11は目標物がなく、送受信機15の利得が一定の状況で車両41のピッチ角を変えた場合のノイズ成分の周波数分
布とその平均化処理を行ったノイズパターンの関係を示す図である。43a,43b,43cはノイズ成分の周波数分布を示す。44a,44b,44cはノイズパターンを示す。図10(a)のように送受信ビーム42aが上向きの場合はノイズ成分はノイズパターン44a、図10(b)のように送受信ビーム42bが水平の場合はノイズ成分はノイズパターン44b、図10(c)のように送受信ビーム42cが水平の場合はノイズ成分はノイズパターン44cとそれぞれ異なってくる。目標物を区別する閾値は例えば数6のような近似式で求め、比較手段30に与える。数6は閾値a、係数k、ノイズ平均値b、周
波数f、傾きΔθ軸上でn番目のノイズレベルN(n)とし、係数kは誤検出が発生する確率が十分低くなるように設定する。
FIG. 10 is a diagram illustrating the relationship between the vehicle and the transmission radio wave. Reference numeral 41 denotes a vehicle 41 equipped with this apparatus, and reference numeral 42 denotes a transmission / reception beam indicating the directivity of the antenna. (A) is a case where the vehicle 41 faces upward from the horizontal, (b) is a case where the vehicle 41 is horizontal to the ground, and (c) is a case where the vehicle 41 faces downward from the horizontal. is there. Since radio waves are generally reflected from the ground, the more the vehicle 41 faces the ground, the greater the reflection from the ground. FIG. 11 is a diagram showing the relationship between the noise component frequency distribution and the noise pattern subjected to the averaging process when the pitch angle of the vehicle 41 is changed in a situation where there is no target and the gain of the transceiver 15 is constant. . Reference numerals 43a, 43b, and 43c denote frequency distributions of noise components. Reference numerals 44a, 44b, and 44c denote noise patterns. When the transmission / reception beam 42a is upward as shown in FIG. 10 (a), the noise component is the noise pattern 44a. When the transmission / reception beam 42b is horizontal as shown in FIG. 10 (b), the noise component is the noise pattern 44b. ), When the transmission / reception beam 42c is horizontal, the noise component is different from the noise pattern 44c. The threshold for distinguishing the target is obtained by an approximate expression such as Equation 6 and given to the comparison means 30. Equation 6 is a threshold value a, a coefficient k, an average noise value b, a frequency f, and an nth noise level N (n) on the slope Δθ axis, and the coefficient k is set so that the probability of occurrence of erroneous detection is sufficiently low. .

Figure 0003906869
Figure 0003906869

比較手段30は周波数分析手段12の出力が閾値aを越えていれば目標物であると判断する。図11(b)は第1目標物20の振幅が閾値a(閾値25)を越えて目標物として選択された例であり、振幅値は極大値検出手段31に送られる。極大値検出手段31は振幅値が周波数軸上で連続していれは、その極大点を検出し、極大点の周波数の値を距離速度算出手段14に送る。距離速度算出手段14では従来と同様に目標物の相対速度、相対距離を求めることができる。   The comparison unit 30 determines that the target is the target if the output of the frequency analysis unit 12 exceeds the threshold value a. FIG. 11B shows an example in which the amplitude of the first target 20 exceeds the threshold value a (threshold value 25) and is selected as the target, and the amplitude value is sent to the maximum value detecting means 31. If the amplitude value is continuous on the frequency axis, the maximum value detecting unit 31 detects the maximum point and sends the frequency value of the maximum point to the distance speed calculating unit 14. The distance speed calculation means 14 can obtain the relative speed and relative distance of the target as in the conventional case.

実施の形態4.
図4はこの発明の実施の形態4を示すFM−CWレーダ装置の構成図である。図において4、5、6、7、8、9、10、11、12、13、14、15は図13と同様のものである。27は利得制御手段、28はノイズ平均値記憶手段、29は閾値算出手段、30は比較手段、31は極大値検出手段、34は降雨検出手段である。
Embodiment 4 FIG.
FIG. 4 is a block diagram of an FM-CW radar apparatus showing Embodiment 4 of the present invention. In the figure, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are the same as those in FIG. 27 is a gain control means, 28 is a noise average value storage means, 29 is a threshold value calculation means, 30 is a comparison means, 31 is a maximum value detection means, and 34 is a rain detection means.

A/D変換器11においてディジタルの信号形式に変換されたビート信号は周波数分析手段12と利得制御手段27に送られる。利得制御手段27はビート信号の大きさをみて、A/D変換器11が飽和しないレベルかあるいは入力が小さすぎないか確認し、ビート信号が最適なレベルになるように増幅器10の利得を調整する。また、利得制御手段27は増幅器10に設定した値に対応する引数を閾値算出手段29に送る。閾値算出手段29は利得制御手段27から渡された引数によりノイズ平均値記憶手段28から利得に応じた
ノイズ平均値を取り込む。閾値算出手段29はまた、降雨検出手段34から降雨情報を取り込む。降雨検出手段34は例えば車両のボンネットや雨水用の溝等に水分を検出するセンサーをつけることで情報を得る。閾値算出手段29は上記ノイズ平均値と降雨情報から目標物を区別する閾値を求め、比較手段30に送る、通常、降雨があると地面からの電波の反射が強くなるため、ノイズ成分の振幅が上昇した状態と同様の傾向を示す。従って予め降雨時のノイズ平均値と制限時のノイズ平均値を測定しておき、差を補正値として持つことにより閾値をより正確に算出することができる。比較手段30は周波数分析手段12
の出力が閾値を越えていれば目標物であると判断し、振幅値を極大値検出手段31に送る。極大値検出手段31は振幅値が周波数軸上で連続していれば、その極大点を検出し、極大点の周波数の値を距離速度算出手段14に送る。距離速度算出手段14では従来と同様に目標物の相対速度、相対距離を求めることができる。
The beat signal converted into the digital signal format in the A / D converter 11 is sent to the frequency analysis means 12 and the gain control means 27. The gain control means 27 checks the magnitude of the beat signal, checks whether the A / D converter 11 is not saturated or the input is too small, and adjusts the gain of the amplifier 10 so that the beat signal becomes an optimum level. To do. Further, the gain control means 27 sends an argument corresponding to the value set in the amplifier 10 to the threshold value calculation means 29. The threshold value calculation means 29 takes in the noise average value corresponding to the gain from the noise average value storage means 28 by the argument passed from the gain control means 27. The threshold calculation means 29 also fetches rainfall information from the rain detection means 34. The rain detection means 34 obtains information by attaching a sensor for detecting moisture to, for example, a hood of a vehicle or a groove for rain water. The threshold value calculation means 29 obtains a threshold value for distinguishing the target from the average noise value and the rainfall information, and sends it to the comparison means 30. Usually, when there is rain, the reflection of radio waves from the ground becomes strong, so the amplitude of the noise component is increased. It shows the same tendency as the elevated state. Therefore, the threshold value can be calculated more accurately by measuring the average noise value at the time of rainfall and the average noise value at the time of restriction in advance and having the difference as a correction value. The comparison means 30 is the frequency analysis means 12.
If the output exceeds the threshold value, it is determined that the target is the target, and the amplitude value is sent to the maximum value detecting means 31. If the amplitude value is continuous on the frequency axis, the maximum value detecting unit 31 detects the maximum point and sends the frequency value of the maximum point to the distance speed calculating unit 14. The distance speed calculation means 14 can obtain the relative speed and relative distance of the target as in the conventional case.

実施の形態5.
図5はこの発明の実施の形態5を示すFM−CWレーダ装置の構成図である。図において4、5、6、7、8、9、10、11、12、13、14、15は図13と同様のものである。27は利得制御手段、28はノイズ平均値記憶手段、29は閾値算出手段、30は比較手段、31は極大値検出手段、35は温度検出手段である。
Embodiment 5 FIG.
FIG. 5 is a block diagram of an FM-CW radar apparatus showing Embodiment 5 of the present invention. In the figure, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are the same as those in FIG. Reference numeral 27 denotes a gain control means, 28 denotes a noise average value storage means, 29 denotes a threshold value calculation means, 30 denotes a comparison means, 31 denotes a maximum value detection means, and 35 denotes a temperature detection means.

A/D変換器11においてディジタルの信号形式に変換されたビート信号は周波数分析手段12と利得制御手段27に送られる。利得制御手段27はビート信号の大きさをみて、A/D変換器11が飽和しないレベルかあるいは入力が小さすぎないか確認し、ビート信号が最適なレベルになるように増幅器10の利得を調整する。また、利得制御手段27は増幅器10に設定した値に対応する引数を閾値算出手段29に送る。閾値算出手段29は利得制御手段27から渡された引数によりノイズ平均値記憶手段28から利得に応じた
ノイズ平均値を取り込む。閾値算出手段29はまた、温度検出手段35から送受信機15の温度情報を取り込む。温度検出手段35は例えば送受信機15にサーミスタ等の温度センサーをつけることで情報を得る。閾値算出手段29は上記ノイズ平均値と温度情報から目標物を区別する閾値を求め、比較手段30に送る、通常、送受信機15は温度によって送信出力や利得が変化しノイズ成分の振幅が変動する。従って予め利得制御手段27の出力を固定した状態で各温度のノイズ平均値を測定しておき、各温度間でのノイズ成分の差を補正値として持つことにより閾値をより正確に算出することができる。比較手段30は
周波数分析手段12の出力が閾値を越えていれば目標物であると判断し、振幅値を極大値検出手段31に送る。極大値検出手段31は振幅値が周波数軸上で連続していれば、その極大点を検出し、極大点の周波数の値を距離速度算出手段14に送る。距離速度算出手段14では従来と同様に目標物の相対速度、相対距離を求めることができる。
The beat signal converted into the digital signal format in the A / D converter 11 is sent to the frequency analysis means 12 and the gain control means 27. The gain control means 27 checks the magnitude of the beat signal, checks whether the A / D converter 11 is not saturated or the input is too small, and adjusts the gain of the amplifier 10 so that the beat signal becomes an optimum level. To do. Further, the gain control means 27 sends an argument corresponding to the value set in the amplifier 10 to the threshold value calculation means 29. The threshold calculation means 29 takes in the noise average value corresponding to the gain from the noise average value storage means 28 by the argument passed from the gain control means 27. The threshold calculation means 29 also fetches temperature information of the transceiver 15 from the temperature detection means 35. The temperature detection means 35 obtains information by attaching a temperature sensor such as a thermistor to the transceiver 15, for example. The threshold value calculation means 29 obtains a threshold value for distinguishing the target from the noise average value and the temperature information and sends it to the comparison means 30. Usually, the transmitter / receiver 15 changes the transmission output and gain depending on the temperature, and the amplitude of the noise component changes. . Therefore, the noise average value at each temperature is measured in a state where the output of the gain control means 27 is fixed in advance, and the threshold value can be calculated more accurately by having the noise component difference between the temperatures as a correction value. it can. If the output of the frequency analysis unit 12 exceeds the threshold value, the comparison unit 30 determines that the target is a target, and sends the amplitude value to the maximum value detection unit 31. If the amplitude value is continuous on the frequency axis, the maximum value detecting unit 31 detects the maximum point and sends the frequency value of the maximum point to the distance speed calculating unit 14. The distance speed calculation means 14 can obtain the relative speed and relative distance of the target as in the conventional case.

この発明の実施の形態1を説明するための図である。It is a figure for demonstrating Embodiment 1 of this invention. この発明の実施の形態2を説明するための図である。It is a figure for demonstrating Embodiment 2 of this invention. この発明の実施の形態3を説明するための図である。It is a figure for demonstrating Embodiment 3 of this invention. この発明の実施の形態4を説明するための図である。It is a figure for demonstrating Embodiment 4 of this invention. この発明の実施の形態5を説明するための図である。It is a figure for demonstrating Embodiment 5 of this invention. この発明の実施の形態1を説明するための図である。It is a figure for demonstrating Embodiment 1 of this invention. この発明の実施の形態1を説明するための図である。It is a figure for demonstrating Embodiment 1 of this invention. この発明の実施の形態1を説明するための図である。It is a figure for demonstrating Embodiment 1 of this invention. この発明の実施の形態2を説明するための図である。It is a figure for demonstrating Embodiment 2 of this invention. この発明の実施の形態3を説明するための図である。It is a figure for demonstrating Embodiment 3 of this invention. この発明の実施の形態3を説明するための図である。It is a figure for demonstrating Embodiment 3 of this invention. FM−CWレーダ装置の概要を説明するための図である。It is a figure for demonstrating the outline | summary of an FM-CW radar apparatus. 従来のFM−CWレーダ装置の構成を説明するための図である。It is a figure for demonstrating the structure of the conventional FM-CW radar apparatus. 従来のFM−CWレーダ装置の原理を説明するための図である。It is a figure for demonstrating the principle of the conventional FM-CW radar apparatus. 従来のFM−CWレーダ装置の原理を説明するための図である。It is a figure for demonstrating the principle of the conventional FM-CW radar apparatus. 従来のFM−CWレーダ装置の課題を説明するための図である。It is a figure for demonstrating the subject of the conventional FM-CW radar apparatus.

符号の説明Explanation of symbols

1 自車両、2 前方の車両、3 対向車両、4 変調手段、5 発振器、6 方向性結合器、7 送信アンテナ、8 受信アンテナ、9 ミキサ、10 増幅器、11 A/D変換器、12 周波数分析手段、13 目標検出手段、14距離速度算出手段、15 送受信機、16 送信周波数、17 受信周波数、18a,18b,18c 目標物の周波数スペクトル、19 閾値、20 第1目標物、21 第2目標物、22 閾値、23 受信機ノイズ、24 ノイズ平均値、25 閾値、26 平均値計算の対象範囲、27 利得制御手段、28ノイズ平均値記憶手段、29 閾値算出手段、30 比較手段、31 極大値検出手段、32 ノイズパターン記憶手段、33 車体傾斜検出手段、34 降雨検出手段、35 温度検出手段、36 ノイズ成分の周波数分布、37 ノイズ成分の平均値、38 利得に対するノイズ平均値、39 ノイズ成分の周波数分布、40 ノイズパターン、41 車両、42 送受信ビーム、43 ノイズ成分の周波数分布、44 ノイズパターン。   DESCRIPTION OF SYMBOLS 1 Own vehicle, 2 vehicle ahead, 3 oncoming vehicle, 4 modulation means, 5 oscillator, 6 directional coupler, 7 transmitting antenna, 8 receiving antenna, 9 mixer, 10 amplifier, 11 A / D converter, 12 frequency analysis Means, 13 target detection means, 14 distance speed calculation means, 15 transceiver, 16 transmission frequency, 17 reception frequency, 18a, 18b, 18c frequency spectrum of the target, 19 threshold, 20 first target, 21 second target , 22 threshold value, 23 receiver noise, 24 noise average value, 25 threshold value, 26 target range of average value calculation, 27 gain control means, 28 noise average value storage means, 29 threshold value calculation means, 30 comparison means, 31 maximum value detection Means 32 noise pattern storage means 33 vehicle body tilt detection means 34 rain detection means 35 temperature detection means 36 noise components Frequency distribution, the average value of the 37 noise component, the noise mean for the 38 gain, the frequency distribution of the 39 noise component, 40 noise pattern, 41 a vehicle, 42 transmitting and receiving beams, the frequency distribution of the 43 noise component, 44 noise pattern.

Claims (3)

車両に搭載し、車両前方にFM−CW波を送信して、前方の車両あるいは障害物からの反射波を受信し、送信波と受信波のビート信号に基いて前方の車両あるいは障害物までの距離、速度をもとめるFM−CWレーダ装置において、
上記ビート信号を増幅する増幅器の利得を制御する利得制御手段と、
目標物がない状況で受信した前記ビート信号について上記利得に応じて上記FM−CWレーダ装置の送受信機が発生する周波数軸上のノイズ成分の平均値を予め記憶しておくノイズ平均値記憶手段と、
車両走行面に対する車体の傾斜角を検出する車体傾斜検出手段と、
上記利得に応じた上記ノイズ成分の平均値と上記傾斜角の情報に応じた指数係数とを乗じて、上記ビート信号の目標判定の閾値を決定する閾値算出手段と、
上記ビート信号の周波数分布と上記閾値を比較する比較手段と、
上記比較手段の出力に基づいて周波数分布の極大点を検出する極大値検出手段と、
を備えたことを特徴とするFM−CWレーダ装置。
Installed in the vehicle, transmits FM-CW wave in front of the vehicle, receives the reflected wave from the vehicle or obstacle ahead, and reaches the vehicle or obstacle ahead based on the beat signal of the transmission wave and reception wave In FM-CW radar equipment that calculates distance and speed,
Gain control means for controlling the gain of an amplifier for amplifying the beat signal;
Noise average value storage means for storing in advance an average value of noise components on the frequency axis generated by the transceiver of the FM-CW radar device according to the gain for the beat signal received in the absence of a target; ,
Vehicle body inclination detection means for detecting the inclination angle of the vehicle body relative to the vehicle running surface;
A threshold value calculation means for determining a threshold value for target determination of the beat signal by multiplying an average value of the noise component according to the gain and an exponential coefficient according to the information of the inclination angle;
Comparison means for comparing the frequency distribution of the beat signal with the threshold value;
Local maximum detection means for detecting the local maximum of the frequency distribution based on the output of the comparison means;
An FM-CW radar apparatus comprising:
さらに、降雨状態を検出する降雨検出手段とを備え、上記閾値算出手段は、少なくともこの降雨状態情報を用いて目標判定の閾値を決定するものである請求項1に記載のFM−CWレーダ装置。   The FM-CW radar apparatus according to claim 1, further comprising a rain detection unit that detects a rain state, wherein the threshold value calculation unit determines a threshold value for target determination using at least the rain state information. さらに、上記送受信機の温度を検出する温度検出手段とを備え、上記閾値算出手段は、少なくともこの検出される温度情報を用いて目標判定の閾値を決定するものである請求項1または2に記載のFM−CWレーダ装置。   The temperature detection means for detecting the temperature of the transceiver is further provided, and the threshold value calculation means determines a threshold value for target determination using at least the detected temperature information. FM-CW radar equipment.
JP2005367589A 2005-12-21 2005-12-21 FM-CW radar equipment Expired - Lifetime JP3906869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367589A JP3906869B2 (en) 2005-12-21 2005-12-21 FM-CW radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367589A JP3906869B2 (en) 2005-12-21 2005-12-21 FM-CW radar equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27863997A Division JP3829436B2 (en) 1997-10-13 1997-10-13 FM-CW radar equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006325629A Division JP4765915B2 (en) 2006-12-01 2006-12-01 FM-CW radar equipment

Publications (2)

Publication Number Publication Date
JP2006091027A JP2006091027A (en) 2006-04-06
JP3906869B2 true JP3906869B2 (en) 2007-04-18

Family

ID=36232133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367589A Expired - Lifetime JP3906869B2 (en) 2005-12-21 2005-12-21 FM-CW radar equipment

Country Status (1)

Country Link
JP (1) JP3906869B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765915B2 (en) * 2006-12-01 2011-09-07 三菱電機株式会社 FM-CW radar equipment
JP5061623B2 (en) * 2007-01-30 2012-10-31 株式会社デンソー Radar equipment
JP4351266B2 (en) * 2007-05-10 2009-10-28 三菱電機株式会社 Frequency modulation radar equipment
US10151826B2 (en) * 2016-02-16 2018-12-11 Infineon Technologies Ag Radar employing preacquisition ramps
JP6994371B2 (en) * 2017-12-06 2022-01-14 国立大学法人茨城大学 Radar device
JP7014041B2 (en) * 2018-05-11 2022-02-01 株式会社デンソー Radar device

Also Published As

Publication number Publication date
JP2006091027A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4765915B2 (en) FM-CW radar equipment
JP3829436B2 (en) FM-CW radar equipment
JP5003674B2 (en) Radar device and moving body
JP3562408B2 (en) Radar device characteristic detecting device and recording medium
JP4564611B2 (en) Radar equipment
JP3371854B2 (en) Ambient situation detection device and recording medium
US9116241B2 (en) Radar sensor and method for detecting precipitation using a radar sensor
JP4678945B2 (en) Scanning radar stationary object detection method
US6121916A (en) Method and apparatus for recognizing stationary objects with a moving side-looking radar
JP4045043B2 (en) Radar equipment
JP3906869B2 (en) FM-CW radar equipment
US20100238066A1 (en) Method and system for generating a target alert
US9285467B2 (en) Radar apparatus, vehicle control system, and signal processing method
US10429494B2 (en) Method and apparatus for detecting target object
JP3635228B2 (en) Scanning radar signal processing method
JPH10253750A (en) Fm-cw radar device
JP3518363B2 (en) FMCW radar device, recording medium, and vehicle control device
JP2885528B2 (en) Warning distance control device
JP2019007926A (en) Detector
JP2000206234A (en) Fm-cw radar system
US11391833B2 (en) System for enhanced object tracking
JP4001611B2 (en) Ranging radar equipment
JP3784327B2 (en) Ranging radar equipment
US11650305B2 (en) System for enhanced object tracking
KR101794620B1 (en) Antenna beam center alignment method of radar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term