JP3906370B2 - Evaluation method of tire turning performance on ice - Google Patents

Evaluation method of tire turning performance on ice Download PDF

Info

Publication number
JP3906370B2
JP3906370B2 JP31541697A JP31541697A JP3906370B2 JP 3906370 B2 JP3906370 B2 JP 3906370B2 JP 31541697 A JP31541697 A JP 31541697A JP 31541697 A JP31541697 A JP 31541697A JP 3906370 B2 JP3906370 B2 JP 3906370B2
Authority
JP
Japan
Prior art keywords
yaw rate
index
turning
measured
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31541697A
Other languages
Japanese (ja)
Other versions
JPH11147409A (en
Inventor
和彦 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP31541697A priority Critical patent/JP3906370B2/en
Publication of JPH11147409A publication Critical patent/JPH11147409A/en
Application granted granted Critical
Publication of JP3906370B2 publication Critical patent/JP3906370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両が氷上を旋回しながら走行しているときのタイヤの氷上旋回性能を定量的に評価する方法に関するものである。
【0002】
【従来の技術と発明が解決しようとする課題】
従来、車両が氷上を旋回しながら走行しているときのタイヤの旋回性能の評価は、主としてドライバーの官能評価、あるいは8の字旋回におけるラップタイムの計測により行なっていた。
【0003】
そのうち、ドライバーの官能評価によるものでは、人間の感性が性能判定の基準となるために、結果にバラつきを含む場合が多々あり、タイヤの旋回性能について誤った判定を下す危険性があった。
【0004】
また、8の字旋回におけるラップタイム計測による評価では、判定基準がラップタイムのみであるために、その結果の具体的な内容、つまりどのように良いのか悪いのかが不明であり、タイヤ設計に結びつけ難いものであった。
【0005】
特に、氷上では、一般ドライバーでも容易に限界に遭遇するため、限界の高さと共に限界を越えてからの車両の挙動変化の評価指標が必要であると考えられるが、現在のところ、そのような評価方法は案出されていない。
【0006】
本発明は、上記に鑑みてなしたもので、車両が氷上を旋回しながら走行しているときの横加速度やヨーレートを計測、収録し、そのデータから評価指標となる三つの指数を求めることにより、氷上旋回性能を定量的に容易に評価することができ、しかも具体的な性能の内容も知ることができる評価方法を提供する。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決するタイヤの氷上旋回性能の評価方法であり、車両が車種やタイヤ等の条件に応じて設定された所定の車速、旋回半径で氷盤上を走行旋回しているときの横加速度とヨーレート(時間あたりの角速度)を計測して、一定区間のデータを収録し、収録された計測横加速度の計測区間平均値と理論上の横加速度とにより下記(a)式で求められる値をグリップ指数とし、また収録された計測ヨーレートの理論上のヨーレートに対する差分の計測区間平均値と理論上のヨーレートとにより下記(b)式で求められる値を挙動変化指数とし、これらのグリップ指数と挙動変化指数とを掛け合せた下記(c)式による値を旋回係数として、これらにより氷上での旋回性能を評価することを特徴とする。
【数2】

Figure 0003906370
At :理論上の横加速度(V2 /Rで算出。但しV:車速、R:旋回半径)
A1 :計測横加速度の計測区間平均値
Bt :理論上のヨーレート(V/Rで算出。但しV:車速、R:旋回半径)
ΔB:計測ヨーレートと理論上のヨーレートの差分の計測区間平均値 。
【0008】
上記のグリップ指数は、上記(a)式から、収録された計測横加速度の計測区間平均値(A1 )が理論上の横加速度(At )より大きくても小さくても、その指数値は1.0以下となり、前記計測横加速度の平均値(A1 )が理論上の横加速度(At )に近いものほど1.0に近くなる。すなわち、グリップ指数は、タイヤの持つグリップ力の目安となるもので、その値が大きいものほど良く、最大値は1.0である。
【0009】
上記の挙動変化指数は、上記(b)式から、その指数値は1.0以下となり、前記計測ヨーレートと理論上のヨーレート(Bt )との差分の計測区間平均値(ΔB)が理論上のヨーレート(Bt )に近いものほど1.0に近くなる。
【0010】
また前記ヨーレートの差分の平均値(ΔB)については、図1において、計測ヨーレート(B)と理論上のヨーレート(Bt )との差分のうち、理論上のヨーレート(Bt )より上の成分についての計測区間積算値〔Σ(Bo )〕を計測区間の計測サンプル数(n)で除した値をオーバーステア成分の平均値(ΔBo )とし、また同様に、理論上のヨーレート(Bt )より下の成分についての計測区間積算値〔Σ(Bu )〕を計測区間の計測サンプル数(n)で除した値をアンダーステア成分の平均値(ΔBu )とし、それぞれ絶対値で小さい値ほど良として評価することができる。さらにこれら両成分を合せたものが前記ヨーレートの差分の平均値(ΔB)であり、これにより挙動変化量として小さいほど良として評価することができる。これを式で表わすと次のとおりである。
【0011】
ΔBo =Σ(Bo )/n
ΔBu =Σ(Bu )/n
ΔB=ΔBo +ΔBu
すなわち、前記の挙動変化指数は、走行中のステア特性(アンダーステア特性、オーバーステア特性)およびその度合の目安となるもので、その値が大きいほどよく、最大値は1.0である。
【0012】
また上記(c)式による旋回指数は、総合的な旋回性能の目安となるもので、その値が大きいほどよく、最大値は1.0である。
【0013】
したがって、上記の本発明によれば、横加速度およびヨーレートの収録された計測データから、タイヤの氷上旋回性能において重要な要素を占めるグリップ力および挙動変化量やステア特性の内容を指数によって定量的に知ることができ、また氷上旋回におけるタイヤの弱点も明確になる。しかもこれらの指数をもとにした旋回指数により、旋回性能を定量的に評価することができる。
【0014】
特に、前記グリップ指数は4輪のタイヤから発生する横力の合力に相当し、トータル的なポテンシャルを示し、また前記挙動変化指数は、前輪タイヤと後輪タイヤの横力のバランスに深い関係がある。そのため、これらいずれの指数についても良い成績(高い値)が得られないと、最終的な旋回係数でも高い値が得られないことになる。すなわち、これらの指数の組合せにより、どのようによいのか悪いのかを具体的に知ることができ、その結果をタイヤ設計に結び付け易いものとなる。
【0015】
【発明の実施の形態】
本発明のタイヤの氷上旋回性能の評価方法を実施するにあたり、テストに用いる車両には、車速を計測するたの非接触速度計、横加速度およびヨーレートを計測するジャイロ計、およびこれらの計測データを収録するための記録計をそれぞれ積載しておく。
【0016】
旋回性能テストの車速、旋回半径については、車両、基準タイヤ、環境条件等に応じて適宜設定できるが、一応の目安としてはグリップの限界付近とし、例えば目標車速20km/h、目標旋回半径19mとする。
【0017】
テスト方法として、氷盤上にパイロンで設定したコースに目標車速で車両を侵入させ、一定区間の横加速度およびヨーレート等の計測データを収録する。
【0018】
そして、こうして収録した計測データから、次の以下の三つの評価指数を求める。
【0019】
▲1▼ グリッブ指数
収録された計測横加速度の計測区間平均値(A1 )と理論上の横加速度(At )とにより、上記(a)式でグリッブ指数の値を求める。
【0020】
▲2▼ 挙動変化指数
収録された計測ヨーレートが理論上のヨーレート(Bt ))に対する差分の計測区間平均値(ΔB)と、理論上のヨーレート(Bt )とにより上記(b)式で挙動変化指数の値を求める。この際、前記ヨーレートの差分(挙動変化量)の平均値(ΔB)については、上記した算出式によってオーバーステア成分の平均値(ΔBo )およびアンダーステア成分の平均値(ΔBu )をも求めて、算出しておく。
【0021】
▲3▼ 旋回係数
総合的な旋回性能の目安として、前記のグリップ指数と挙動変化指数とを掛け合せた値、つまり上記(c)式で表わされる値を求める。
【0022】
これらの指数および係数は、記録されたデータからマイクロコンピュータ等を利用することにより容易に算出できる。
【0023】
これらのグリップ指数、挙動変化指数および旋回係数は、いずれもその値が大きいものほど良と判断できるので、タイヤの氷上旋回性能において重要な要素を占めるグリップ力および挙動変化量やステア特性の内容を指数によって定量的に知ることができ、総合的な旋回性能についても定量的に評価できる。
【0024】
例えば、トレッドパターンの異なる3種類のタイヤ(タイヤ▲1▼〜▲3▼)をテスト車両に装着して、氷盤上の旋回性能テストを下記条件で行なったところ、各指数係数等は、下記表1のようになった。これをドライバーによる官能評価とを対比した。
【0025】
<試験タイヤとテスト条件>
タイヤサイズ:185/70R14
リム:14×5.5JJ
内圧:200/190kPa
車種:国産1800cc車
車速:20km/h
旋回半径:19m
【表1】
Figure 0003906370
。上記の表1から明らかなように、試験タイヤ▲3▼は、試験タイヤ▲1▼に比べて挙動変化指数はやや小さいが、グリップ指数が大きいために、総合的な旋回性能の目安となる旋回係数は試験タイヤ▲1▼よりも高くなっており、旋回係数は良と評価できる。またグリップ指数、挙動変化指数および旋回係数の値の低い試験タイヤ▲2▼は官能評価も悪く、またこれらの指数および係数が共に高く良と評価される試験タイヤ▲3▼は、官能評価でも良い評価を得ている。すなわち、本発明の指数による評価は、官能評価との順位と一致することが判明した。
【0026】
また本発明の指数による評価方法によれば、挙動変化量やステア特性の内訳も知ることができる。
【0027】
【発明の効果】
上記したように本発明の氷上旋回性能の評価方法によれば、氷上旋回性能を定量的に容易に評価することができ、しかもグリップ力や挙動変化量やステア特性等の具体的な内容も知ることができ、その結果をタイヤ設計に結び付け易いものとなる。
【図面の簡単な説明】
【図1】計測ヨーレートと理論上のヨーレートとの差分の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for quantitatively evaluating the turning performance of a tire on ice when the vehicle is traveling while turning on ice.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, the evaluation of the turning performance of a tire when the vehicle is running while turning on ice has been performed mainly by sensory evaluation of a driver or measurement of a lap time in an 8-shaped turn.
[0003]
Among them, in the sensory evaluation of the driver, the human sensitivity is the standard for determining the performance, so the result often includes variations, and there is a risk of erroneously determining the turning performance of the tire.
[0004]
Also, in the evaluation by measuring the lap time in the figure 8 turn, since the judgment criterion is only the lap time, the specific content of the result, that is, how good or bad is unclear, and it is difficult to link to tire design Met.
[0005]
Especially on ice, general drivers easily encounter the limit, so it is considered necessary to have an evaluation index for the change in vehicle behavior after exceeding the limit as well as the limit height. No evaluation method has been devised.
[0006]
The present invention has been made in view of the above, and by measuring and recording the lateral acceleration and yaw rate when the vehicle is traveling while turning on ice, it obtains three indices as evaluation indices from the data. An evaluation method capable of quantitatively evaluating the turning performance on ice and also knowing the specific contents of the performance is provided.
[0007]
[Means for Solving the Problems]
The present invention is an evaluation method for turning performance on ice of a tire that solves the above-mentioned problem, and a vehicle travels and turns on an ice plate at a predetermined vehicle speed and turning radius set according to conditions such as a vehicle type and a tire. The lateral acceleration and yaw rate (angular velocity per hour) are measured and data for a certain section is recorded, and the following formula (a) is calculated based on the measured section average of the recorded lateral acceleration and the theoretical lateral acceleration. The value obtained in (4) is defined as the grip index, and the value obtained by the following equation (b) based on the measured average value of the difference between the measured yaw rate of the recorded yaw rate and the theoretical yaw rate is defined as the behavior change index. The value of the following formula (c) obtained by multiplying the grip index and the behavior change index is used as a turning coefficient to evaluate the turning performance on ice.
[Expression 2]
Figure 0003906370
At: Theoretical lateral acceleration (calculated as V 2 / R, where V: vehicle speed, R: turning radius)
A1: Measured average value of lateral acceleration Bt: Theoretical yaw rate (calculated as V / R, where V: vehicle speed, R: turning radius)
ΔB: The average value of the measurement interval of the difference between the measured yaw rate and the theoretical yaw rate.
[0008]
The above-mentioned grip index can be calculated from the above formula (a), regardless of whether the measured average value (A1) of the recorded lateral acceleration is larger or smaller than the theoretical lateral acceleration (At). The average value (A1) of the measured lateral acceleration is closer to 1.0 as the average value (A1) of the measured lateral acceleration is closer to the theoretical lateral acceleration (At). That is, the grip index is a measure of the grip strength of the tire, and the larger the value, the better. The maximum value is 1.0.
[0009]
From the above equation (b), the behavior change index is 1.0 or less, and the average value (ΔB) of the difference between the measured yaw rate and the theoretical yaw rate (Bt) is theoretically The closer to the yaw rate (Bt), the closer to 1.0.
[0010]
Further, regarding the average value (ΔB) of the difference of the yaw rate, in FIG. 1, among the differences between the measured yaw rate (B) and the theoretical yaw rate (Bt), the component above the theoretical yaw rate (Bt) is shown. The value obtained by dividing the measurement interval integrated value [Σ (Bo)] by the number of measurement samples (n) in the measurement interval is the average value (ΔBo) of the oversteer component, and similarly below the theoretical yaw rate (Bt). The value obtained by dividing the measurement interval integrated value [Σ (Bu)] for the component by the number of measurement samples (n) in the measurement interval is the average value (ΔBu) of the understeer component, and the smaller the absolute value, the better the evaluation. Can do. Further, the sum of these two components is the average value (ΔB) of the difference between the yaw rates. With this, the smaller the behavior change amount, the better the evaluation. This can be expressed by the following formula.
[0011]
ΔBo = Σ (Bo) / n
ΔBu = Σ (Bu) / n
ΔB = ΔBo + ΔBu
That is, the behavior change index is a measure of the steer characteristic (under steer characteristic, over steer characteristic) and the degree of running during running. The larger the value, the better, and the maximum value is 1.0.
[0012]
Further, the turning index according to the above equation (c) is a measure of the overall turning performance, and the larger the value, the better. The maximum value is 1.0.
[0013]
Therefore, according to the present invention described above, from the recorded data of the lateral acceleration and the yaw rate, the grip force, the amount of change in behavior and the content of the steering characteristic, which are important factors in the turning performance of the tire on ice, can be quantitatively expressed by an index. It is possible to know, and the weak point of the tire when turning on ice is also clarified. Moreover, the turning performance can be quantitatively evaluated by the turning index based on these indices.
[0014]
In particular, the grip index corresponds to the resultant force of a lateral force generated from a four-wheel tire and shows total potential, and the behavior change index is closely related to the balance of the lateral force of the front and rear tires. is there. For this reason, if a good result (high value) is not obtained for any of these indexes, a high value cannot be obtained even in the final turning coefficient. That is, by combining these indices, it is possible to know in detail how good or bad it is, and it is easy to link the result to tire design.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the method for evaluating the turning performance on ice of the tire of the present invention, the vehicle used for the test includes a non-contact speedometer for measuring the vehicle speed, a gyrometer for measuring the lateral acceleration and the yaw rate, and measurement data thereof. Each recorder for recording is loaded.
[0016]
The vehicle speed and turning radius of the turning performance test can be set as appropriate according to the vehicle, the reference tire, the environmental conditions, etc., but as a rough guide, it is set near the limit of the grip, for example, a target vehicle speed of 20 km / h and a target turning radius of 19 m. To do.
[0017]
As a test method, the vehicle is entered at a target vehicle speed on a course set with a pylon on an ice plate, and measurement data such as lateral acceleration and yaw rate in a certain section are recorded.
[0018]
Then, the following three evaluation indexes are obtained from the measurement data thus recorded.
[0019]
{Circle around (1)} The Grib index value is obtained from the above equation (a) based on the average value (A1) of the measured lateral acceleration recorded in the Grib index and the theoretical lateral acceleration (At).
[0020]
(2) Behavior change index The measured change yaw rate is the difference between the measured yaw rate (Bt) and the measured section average (ΔB) and the theoretical yaw rate (Bt). Find the value of. At this time, the average value (ΔB) of the difference (behavior change amount) of the yaw rate is calculated by obtaining the average value (ΔBo) of the oversteer component and the average value (ΔBu) of the understeer component by the above-described calculation formula. Keep it.
[0021]
{Circle around (3)} Turning coefficient As a measure of overall turning performance, a value obtained by multiplying the grip index and the behavior change index, that is, a value represented by the above expression (c) is obtained.
[0022]
These indexes and coefficients can be easily calculated from recorded data by using a microcomputer or the like.
[0023]
These grip index, behavior change index, and turning coefficient can all be judged to be better as the value increases, so the grip force, behavior change amount, and steer characteristics that occupy important elements in the turning performance on ice of the tire can be determined. The index can be quantitatively known, and the total turning performance can also be quantitatively evaluated.
[0024]
For example, when three types of tires (tires (1) to (3)) with different tread patterns are mounted on a test vehicle and a turning performance test on an ice plate is performed under the following conditions, each index coefficient is as follows. It became like Table 1. This was compared with the sensory evaluation by the driver.
[0025]
<Test tires and test conditions>
Tire size: 185 / 70R14
Rims: 14x5.5JJ
Internal pressure: 200 / 190kPa
Car model: Domestic 1800cc car Vehicle speed: 20km / h
Turning radius: 19m
[Table 1]
Figure 0003906370
. As is clear from Table 1 above, the test tire (3) has a slightly smaller behavior change index than the test tire (1), but has a large grip index, so it can be used as a guide for overall turning performance. The coefficient is higher than that of the test tire (1), and the turning coefficient can be evaluated as good. In addition, the test tire (2) having a low grip index, behavior change index, and turning coefficient has a poor sensory evaluation, and the test tire (3), which has a high index and coefficient and is evaluated as good, may have a sensory evaluation. Has gained reputation. That is, it was found that the evaluation based on the index of the present invention coincides with the ranking of the sensory evaluation.
[0026]
Further, according to the evaluation method using the index of the present invention, it is possible to know the behavior change amount and the breakdown of the steer characteristic.
[0027]
【The invention's effect】
As described above, according to the method for evaluating the turning performance on ice according to the present invention, the turning performance on ice can be easily quantitatively evaluated, and the specific contents such as the grip force, the behavior change amount, and the steering characteristic are also known. And the results are easily linked to tire design.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a difference between a measured yaw rate and a theoretical yaw rate.

Claims (1)

車両が、車種やタイヤ等の条件に応じて設定された所定の車速、旋回半径で氷盤上を走行旋回しているときの横加速度とヨーレートを計測して、一定区間のデータを収録し、収録された計測横加速度の計測区間平均値と理論上の横加速度とにより下記(a)式で求められる値をグリップ指数とし、また収録された計測ヨーレートの理論上のヨーレートに対する差分の計測区間平均値と理論上のヨーレートとにより下記(b)式で求められる値を挙動変化指数とし、これらのグリップ指数と挙動変化指数とを掛け合せた下記(c)式による値を旋回係数として、これらによって旋回性能を評価することを特徴とするタイヤの氷上旋回性能の評価方法。
Figure 0003906370
At :理論上の横加速度
A1 :計測横加速度の計測区間平均値
Bt :理論上のヨーレート
ΔB:計測ヨーレートと理論上のヨーレートの差分の計測区間平均値
Measure the lateral acceleration and yaw rate when the vehicle is turning on the ice sheet with a predetermined vehicle speed and turning radius set according to the conditions such as vehicle type and tire, etc., and record the data of a certain section, The value obtained by the following equation (a) based on the measured average value of the measured lateral acceleration and the theoretical lateral acceleration as the grip index is used as the grip index, and the measured average of the difference between the recorded measured yaw rate and the theoretical yaw rate The value obtained by the following formula (b) based on the value and the theoretical yaw rate is used as the behavior change index, and the value obtained by the formula (c) obtained by multiplying the grip index and the behavior change index is used as the turning coefficient. An evaluation method for turning performance on ice of a tire, wherein the performance is evaluated.
Figure 0003906370
At: Theoretical lateral acceleration A1: Measurement section average value of measured lateral acceleration Bt: Theoretical yaw rate ΔB: Measurement section average value of difference between measured yaw rate and theoretical yaw rate
JP31541697A 1997-11-17 1997-11-17 Evaluation method of tire turning performance on ice Expired - Fee Related JP3906370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31541697A JP3906370B2 (en) 1997-11-17 1997-11-17 Evaluation method of tire turning performance on ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31541697A JP3906370B2 (en) 1997-11-17 1997-11-17 Evaluation method of tire turning performance on ice

Publications (2)

Publication Number Publication Date
JPH11147409A JPH11147409A (en) 1999-06-02
JP3906370B2 true JP3906370B2 (en) 2007-04-18

Family

ID=18065128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31541697A Expired - Fee Related JP3906370B2 (en) 1997-11-17 1997-11-17 Evaluation method of tire turning performance on ice

Country Status (1)

Country Link
JP (1) JP3906370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918749B1 (en) * 2007-07-12 2009-10-09 Michelin Soc Tech METHOD FOR EVALUATING THE TRANSVERSAL ADHESION OF A TIRE ON A SNORED SOIL
KR101389289B1 (en) * 2012-10-09 2014-04-25 한국타이어 주식회사 Quantitative evaluation method of grip and balance in vehicles

Also Published As

Publication number Publication date
JPH11147409A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US11845445B2 (en) Vehicle rollover prevention warning method, device, storage medium, and vehicle
EP0489562B1 (en) Method of detecting a deflated tyre on a vehicle
US5357798A (en) Process for determining a safety margin for a traveling motor vehicle
CN100549656C (en) Utilize the GPS velocity information to detect the low method of tire internal drop
EP2137010B1 (en) Tire pressure classification based tire pressure monitoring
DE60037097T2 (en) System and method for monitoring vehicle conditions affecting the tires
EP0712740B1 (en) Method and device for calculating turning radius of vehicle taking load movement thereof into consideration
EP1271098B1 (en) Apparatus and method for judging road surface gradients, and program for judging gradients
CN107677484A (en) Vehicle testing system, store the storage medium of its program, vehicle testing method and running resistance setting device
US6839615B2 (en) Method and apparatus for estimating mass of vehicle, and method and apparatus for estimating gradient employing the method
US20090177346A1 (en) Dynamic estimation of vehicle inertial parameters and tire forces from tire sensors
CN105793687B (en) The method of estimation and estimation equipment of abnormal tyre abrasion
Maclnnis et al. A comparison of moment of inertia estimation techniques for vehicle dynamics simulation
CN106198044A (en) Electric automobile endurance mileage testing method and device
EP1352765B1 (en) Method and apparatus for detecting decrease in tire-pressure and program for judging decompression of tire
JP3906370B2 (en) Evaluation method of tire turning performance on ice
CN102057267B (en) Method of estimating the transverse grip of a pair of tyres by comparative analysis
US6748798B2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
US7941255B2 (en) Process and apparatus for detecting damper damage
JPH0663933B2 (en) How to predict tire wear
Petrushov Coast down method in time-distance variables
DE60315379T2 (en) Method and apparatus for detecting a pressure drop in the tire and for assessing the pressure drop in the tire
CN111695197B (en) Highly-reliable dynamic estimation method for rollover threshold value of tank car
JP3391486B2 (en) Tire pressure detector
JP3762839B2 (en) Performance evaluation method for ice cornering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees