JP3906113B2 - Isolation device for building structure - Google Patents

Isolation device for building structure Download PDF

Info

Publication number
JP3906113B2
JP3906113B2 JP2002168030A JP2002168030A JP3906113B2 JP 3906113 B2 JP3906113 B2 JP 3906113B2 JP 2002168030 A JP2002168030 A JP 2002168030A JP 2002168030 A JP2002168030 A JP 2002168030A JP 3906113 B2 JP3906113 B2 JP 3906113B2
Authority
JP
Japan
Prior art keywords
plate
spherical
fixed
shaped countersink
pendulum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002168030A
Other languages
Japanese (ja)
Other versions
JP2004011318A (en
Inventor
一郎 小林
寛 古田島
Original Assignee
湘南興産有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘南興産有限会社 filed Critical 湘南興産有限会社
Priority to JP2002168030A priority Critical patent/JP3906113B2/en
Publication of JP2004011318A publication Critical patent/JP2004011318A/en
Application granted granted Critical
Publication of JP3906113B2 publication Critical patent/JP3906113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Support Of The Bearing (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄骨・木造住宅等の建築構造物の出隅と入隅及び直線部分の中間部位における基礎と前記建築構造物の土台との間に装着される免振装置であって、更に詳しくは、地震時に建物に働く振動を減らすために、建物を地面から隔離して、その中間にクツション役として装着し、建物に働く強い水平加速度を四隅の支柱の中間の吊りシャフトによって吊られている振り子板の振動減衰機能の働きによって大幅に減衰させることができるとともに、上下の振動に対しては吊りシャフトの上下の皿バネ等の弾性部材によって吸収することができる建築構造物の免振装置に関するものである。
【0002】
【従来の技術】
平成14年4月23日の中央防災会議で、マグネチュウド8級の関東地震に備え、国の対策強化地域が、東は神奈川県から西は愛知三重県までの、96市町村が増えた。又、日本木造住宅耐震補強事業者協同組合が震度6弱以上の地震に対し、木造住宅のほぼ半数が倒壊する危険があるとの耐震診断結果が発表された。
【0003】
建築基準法の改正で81年から耐震基準が強化されたが、それ以後に建った住宅でも倒壊の危険が有る建物が63%で、80年以前に建った住宅では60%が倒壊の危険が有るとの結果が発表された。
【0004】
1970年代に入って、フランス、南アフリカ、ニュージランドで積層ゴムによる免振建物が建設されたが、日本では地震に対して安全な建物は、しっかりした基礎の上にがっしりと固定された建物が頑丈な建物とされていたが、その様な建物は内部の家具、什器等が転倒し、設備機器が機能を停止してしまう。
【0005】
アメリカや日本で大地震を経験して、それから開発に着手した。しかし国内で免振建築を建築するには、日本建築センターの性能評価審査委員会の審査を受け、又、免振建築の審査資料及び設計書を作成して建設大臣の認可を取得しなければならない。
そのため、6ケ月近くの日数がかかり、免振機能を十分発揮させるための維持管理が義務付けられ、この様に財団法人日本建築センターの評価に費用がかかり、建築工事にも費用がかかるため、個人住宅に適用するためには負担が大きく、免振建築が良いと解っていてもなかなか手が出ないのが実状である。
【0006】
通常の耐震補強は、壁や筋違の増設や柱の補強などによるものが多いが、これらは折角の外観が変わってしまったり、室内の使い勝手が非常に悪くなるという問題が出ている。
【0007】
そこで、現今実用に供されている免振装置としては、免振支承に積層ゴムを使う装置として、鉄筋コンクリート製の建物の様に重量建築物である、例えばマンション、病院、オフィスビル、公共建物等に好適な積層ゴム支承方式があるが、この方式では、上下振動に対する免振効果はない。
【0008】
又、平板の上に潤滑ローラーと積層ゴムを載せ、これをコンクリート基礎と建物の梁との間に挟み込み、平板の上をローラーが移動するようになし、上下振動を積層ゴムによって吸収する滑り支承方式や、浅いスリ鉢状の台に大きいボールを載せ、その上に小さなベアリングが転がるようにし、それに空気バネをショックアブソーバーで調整するようにした転がり支承方式、更にはコンクリート基礎の中に粘性の棒鋼を固定し、その基礎の上に出ている部分の反りを利用したダンパー支承方式が知られているが、これらいずれの方式にあっても、頻繁に点検をする必要があり、又、免振部材の差損や弾性疲労及び劣化による交換等が必要になる等の問題点があった。
【0009】
【発明が解決しようとする課題】
本発明は、このような従来の技術が有する問題点に鑑みなされたもので、その目的とするところは、従来のように積層ゴムやボールベアリングを使用することなく、地震時における強い水平加速速度と上下の振動を大幅に低減し得て、建物自体及び建物内の設備機器の被害や体感度を最小限に止め、安心感が得られる建築構造物の免振装置を提供することにある。
【0010】
【課題を解決するための手段】
この目的のため、請求項1に係る発明は、鉄骨・木造住宅等の建築構造物の出隅と入隅及び直線部分の中間部位における基礎と前記建築構造物の土台41との間に装着される免振装置であって、
前記基礎3上に固着される基板1と、
該基板1上の四隅に立設された4本の支柱4と、
中央部位に大径の開口孔8を有するとともに、四辺中央部位にはそれぞれ略ハ字形皿孔9を有し、前記4本の支柱4の上端部に水平に固着され固定板6と、
四隅部に、前記固定板6の略ハ字形皿孔9と対称形の略ハ字形皿孔29を有し、かつこれら4つの略ハ字形皿孔29と前記固定板6の4つの略ハ字形皿孔9をそれぞれ挿通した4本の吊りシャフト17により、前記固定板6の下方に揺動可能に吊り下げられた振り子板27と、
前記固定板6の各略ハ字形皿孔9及び前記振り子板27の各略ハ字形皿孔29と連通する球面台座部12と略ハ字形皿孔13を一体に有し、かつ前記固定板6における前記各略ハ字形皿孔9の上面と、前記振り子板27における前記各略ハ字形皿孔29の下面にそれぞれ前記吊りシャフト17を挿通して固着された固定台座11と、
前記固定板6の各略ハ字形皿孔9及び前記振り子板27の各略は字形皿孔29と連通する球面台座部16と略ハ字形皿孔15を一体に有し、かつ前記固定板6における前記各略ハ字形皿孔9の下面と、前記振り子板27における前記各略ハ字形皿孔29の上面にそれぞれ前記各吊りシャフト17を挿通して摺動可能に設けられた摺動台座14と、
前記固定板6上面の前記各固定台座11の前記各球面台座部12と、前記振り子板27下面の前記各固定台座11の前記各球面台座部12とそれぞれ球面接触して、前記振り子板27を揺動させるため、前記各吊りシャフト17の上下端部にそれぞれ対向状に挿着された上下の球面滑り軸受18と、
前記固定板6下面の前記各摺動台座14の前記各球面台座部16と、前記振り子板27上面の前記各摺動台座14の前記各球面台座部16とそれぞれ球面接触して、前記振り子板27を揺動させるため、前記各吊りシャフト17に、前記各球面滑り軸受18と対向状にして、かつ皿バネ等の各弾性部材25と共に上下対称の関係をもって挿着された上下の球面滑り軸受22と、
前記振り子板27上の中心部に、上端部を前記固定板6の開口孔8よりやや上方に突出させた状態で立設されたセンター支柱30と、
前記センター支柱30の上端に同軸状に連結の調整ボルト32を介して高さ調整可能に設けられた土台受け板37を備え、
前記基板が前記基礎上にアンカーボルト等で固着され、前記土台受け板37上にはH形鋼40を介して前記建築構造物の土台41が載置固定されてセットされ、
地震発生時において、前記建築構造物に働く強い水平加速度は、前記4本の振り子板吊りシャフト17により垂設された振り子構造の前記振り子板27の振動減衰機能により免振され、上下の振動に対しては前記弾性部材25により吸収される構成を特徴とする建築構造物の免振装置。
【0011】
請求項2に係る発明は、前記4本の支柱4は補強リブ5と、前記センター支柱30は補強リブ31とそれぞれ一体的に設けられていることを特徴とするものである。
【0012】
【0013】
【0014】
【0015】
【発明の実施の形態】
本発明の実施の形態について図面を参照し、その作用と共に説明する。
図1は本発明に係る建築構造物の免振装置の一例での一部を断面して示す正面図、図2は一部を省略し、かつ断面して示す動作状態の正面図で、これら図において、本装置は基板、固定板4本の振り子板吊りシャフト、振り子板、土台受け板等を備えている。
【0016】
基板1は、鋼板製の方形板状体であって、該基板1は全体のセット時においては、複数のアンカーボルト2をもって建築構造物の出隅等の基礎3上に載置固定されるものである。
【0017】
基板1の四隅には、4本の棒鋼の支柱4が立設されるとともに、4本の支柱4はそれぞれに溶接された複数の三角板の補強リブ5によって補強され、これら支柱4の上端には固定板6が水平状態をもってナット7により固着されている。
【0018】
固定板6は、鋼板製の方形板状体であって、中央部位に大径の開口孔8を有するとともに、四辺中央部位には、図4に示されているように、略ハ字形皿孔9がその孔の角度を好ましくは36度として穿設されている。
【0019】
図1及び図8に示されているように、固定板6における各略ハ字形皿孔9の上面には、それぞれ台座嵌め込み枠金具10が溶着され、これら枠金具10内には、図9に示されている球面台座12と略ハ字形皿孔13を有する固定台座11がそれぞれ嵌め込み固定されるとともに、固定板6における各略ハ字形皿孔9の下面には、図10に示されているように、略逆ハ字形皿孔15と該略ハ字形皿孔15と連なる略ハ字形皿孔16を一体に有する摺動台座14がそれぞれ摺動可能に設けられている。
【0020】
固定板6の略ハ字形皿孔9には、固定台座11の略ハ字形皿孔13と摺動台座14の略ハ字形皿孔15、16を通してそれぞれ振り子板吊りシャフト17が挿通され、固定台座11から突出したシャフト部分には球面台座部12と球面接触する球面滑り軸受18、ワッシャー19が螺着されて緩み止め付きのUナット20、21により二重に締着されている。
【0021】
各振り子板吊りシャフト17における固定板6の下面側のシャフト部分には、摺動台座14と球面接触する球面滑り軸受22が挿着取り付けされるとともに、該球面滑り軸受22のつば部23と球面滑り軸受22に一部が嵌め込まれて吊りシャフト17に挿着の皿バネガイド24との間に皿バネ等の弾性部材25が弾持され、これら皿バネガイド24、弾性部材25、球面滑り軸受22、摺動台座14は吊りシャフト17に締着されたナット26によって一連に取り付けられ、かつナット26の締付け力により皿バネガイド24を介して弾性部材25の弾力が任意に調整できるようになっている。
【0022】
なお、固定台座11と球面滑り軸受18及び摺動台座14と球面滑り軸受22のそれぞれの接触面には高周波焼き入れが施されて密着しているので、塵や埃が入ることや錆びることがない。
【0023】
固定板6に垂設の4本の振り子板吊りシャフト17の下端部には、振り子板27が水平に取り付けられている。
【0024】
振り子板27は鋼板製であって、図5及び図6に示されているように、四辺の中央部分に所定の半径での円弧状の切込み部28を有するとともに、四隅部には固定板6における略ハ字形皿孔9と対称形の略逆ハ字形皿孔29を有し、更に中心部には、後述するセンター支柱の立設孔を有している。
【0025】
振り子板27の下面における各略ハ字形皿孔29の部位には、上述した台座嵌め込み枠金具10と固定台座11及び摺動台座14と同じ台座嵌め込み枠金具10固定台座11及び摺動台座14固定板6における場合とそれぞれ対称の関係をもって設けられている。
【0026】
よって、これらの構成部材に、台座嵌め込み枠金具10と固定台座11及び摺動台座14とそれぞれ同一の数字を付すに止め、それらの構成説明は省略する。
【0027】
又、振り子板27を挟んで各振り子板吊りシャフト17の下端部と振り子板27の上面側には、上述した固定板6を挟んで各振り子板吊りシャフト17の上端部と固定板6の下面側に設けられた前記の球面滑り軸受18、ワッシャー19、緩み止め付きのUナット20、21と、球面滑り軸受22、該球面滑り軸受22のつば部23と皿バネガイド24との間に弾持された弾性部材25と同じ球面滑り軸受、ワッシャー、緩み止め付きのUナットと、球面滑り軸受、該球面滑り軸受のつば部と皿バネガイドとの間に弾装の皿バネ等の弾性部材、ナットが上部固定板6における場合とそれぞれ対称の関係をもって設けられている。
【0028】
よって、これらの構成部材に、球面滑り軸受18、ワッシャー19、緩み止め付きのUナット20、21、球面滑り軸受22、つば部23、皿バネガイド24、皿バネ等の弾性部材25、ナット26とそれぞれ同一の数字を付すに止め、それらの構成説明は省略する。
【0029】
振り子板27の中心部位には、1本のセンター支柱30が溶接された複数の三角板の補強リブ31により補強されて立設され、その上端部は固定板6の開口孔8を介してやや上方に突出し、その上端には調整ボルト32を介して建築構造物の土台受け板が設けられている。
【0030】
調整ボルト32は、図13に示されているように、上ネジ部33と下ネジ部34及び上下ネジ部33、34を挟んだ部分の両面を平坦面に切削加工して形成のスパナ掛け用部35を一体に有し、該調整ボルト32は、その下ネジ部34がナット36を介してセンター支柱30の上端ボルト孔に同軸状に螺着されるとともに、調整ボルト32の上ネジ部33には建築構造物の土台受け板37が取り付けられる。
【0031】
土台受け板37は、正方形の鋼板の四隅が隅切りされた八角形を呈し、中央部には凹陥部38とボルト孔を有し、該土台受け板37は、そのボルト孔を介して調整ボルト32の上ネジ部33に取り付けられるとともに、高さの調整済みの後、凹陥部38内においてナット39の締着によって固着される。
【0032】
土台受け板37には、H形鋼40が載置固定され、該H形鋼40上には建築構造物の土台41が載置固定される。
【0033】
又、固定板6の四隅上面には、固定板6上に出ている振り子板吊りシャフト17の頭部部分(台座嵌め込み枠金具10、固定台座11、球面滑り軸受18、ナット20、21を含む)を覆う防塵カバー42が設けられている。
【0034】
次に、本装置の動作について説明する。
本装置は、図1に例示されているように、鉄骨・木造住宅等の建築構造物の出隅と入隅及び直線部分の中間部位に、一定の間隔で設けられた基礎3上に載置されて、基板1と基礎3に対する複数のアンカーボルト2の打ち込みにより固定され、土台受け板37上にはH形鋼40が載置固定され、H形鋼40上には建築構造物の土台41が載置固定される。
【0035】
なお、本装置のセット時においては、強風により振り子板27が容易に横揺れしないようにするため、各振り子板吊りシャフト17の上下に設けられた各一対の皿バネ等弾性部材25の弾発力がナット26の締付けにより適度に調整されてセットされる。
【0036】
地震のない通常時においては、図1に示されているように、4本の振り子板吊りシャフト17とセンター支柱30は直立状態にあり、センター支柱30は固定板6の開口孔8の中心部位に位置している。
【0037】
地震発生時において、先ず図1の右方向に揺れた場合には、図2に示されているように、各振り子板吊りシャフト17の上下部は、その球面滑り軸受18、22が固定台座11、摺動台座14に球面接触しながら、かつ摺動台座14を上下互いに逆方向に摺動させながら略ハ字形皿孔9、29内を移動して、各振り子板吊りシャフト17は斜め平行状態となり、これと連動して振り子板27は想像線位置から実線位置に移動し、センター支柱30が固定板6の開口孔8内を移動して、土台受け板37上にH形鋼40を介して載置固定の土台41は想像線位置から実線位置(右方向)に水平移動する。
【0038】
揺れが右方向から左方向になった場合には、前記右方向の場合と逆の動きによって振り子板27、土台41は左方向に水平移動する。
【0039】
このようにして、建物に働く強い水平加速度(左右方向の揺れ)は、4本の振り子板吊りシャフト17により吊られている振り子板27の振動減衰機能によって大幅に減衰されるとともに、上下の振動は、各振り子板吊りシャフト17の上下部に設けられた皿バネ等の弾性部材25によって吸収される。
【0040】
因みに、振幅72度(左右30mm)以内の場合には、居住性体感はないが、建物の大きさや構造及び床荷重等によって振り子板吊りシャフト17等の構成部材の大きさ、長さを算定し、装置の大きさによっては振幅の寸法を変えることができる。
【0041】
【発明の効果】
しかして、本発明によれば、建築構造物の土台は、振り子構造を有する振り子板上のセンター支柱の土台受け板上に載置固定されているから、建築構造物に与える振動は常時一定に保たれて地震の揺れと同調しない。よって、建築構造物の地震荷重を大幅に低減し得て、建築構造物の地震時の安全性が向上する。
【0042】
このように建築構造物の地震時の安全性が向上するため、その派生的効果として、家具や什器等内容物の転倒や損傷が防止されて、二次被害が防止される。又、建物の耐震と安全性が高まる結果、外装や防水等の損傷が防止され、地震時の恐怖や怪我の防止に役立ち、人に安心感を与える。
【0043】
又、人命の保護のみならず、財産の保全と建築機能の確保が可能となり、地震の体感の低減による心理的不安及び不快感の除去と安全感、居住感の向上が得られる。
【0044】
又、建物に作用する地震力が軽減されるので、建築部材が小さくなり、又、耐震要素の数量も少なくなって、大きな空間を作ることが可能となる。
【0045】
又、本発明は、免振建物のみならず、既存建物の免振床として、又、美術館の展示ケース等の必要な部分のみを免振する装置として広く実施し得るものである。
【図面の簡単な説明】
【図1】 本発明に係る建築構造物の免振装置の一例での一部を断面して示す正面図である。
【図2】 一部を省略し、かつ断面して示す動作状態の正面図である。
【図3】 上部固定板の平面図である。
【図4】 図3の4−4線に沿った拡大断面図である。
【図5】 振り子板の平面図である。
【図6】 図5の6−6線に沿った拡大断面図である。
【図7】 図1における上部固定板と振り子板吊りシャフトとの取り付け構造を示す部分拡大断面図である。
【図8】 上部固定板に対する上部固定台座の取り付け構造を示す一部省略の拡大断面図である。
【図9】 上部固定台座の拡大断面図である。
【図10】 下部摺動台座の拡大断面図である。
【図11】 球面滑り軸受の拡大断面図である。
【図12】 図1における振り子板と振り子板吊りシャフトとの取り付け構造を示す部分拡大断面図である。
【図13】 調整ボルトの拡大正面図である。
【符号の説明】
1 基板
3 基礎
4 支柱
補強リブ
固定板
8 開口孔
略ハ字形皿孔
11 固定台座
12 球面台座部
13 略ハ字形皿孔
14 摺動台座
15、16 略ハ字形皿孔
17 振り子板吊りシャフト
18 球面滑り軸受
22 球面滑り軸受
25 弾性部材
27 振り子板
29 略ハ字形皿孔
30 センター支柱
31 補強リブ
32 調整ボルト
37 土台受け板
40 H形鋼
41 土台
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration isolator that is mounted between the foundation and the foundation of the building structure in the intermediate portion of the projecting and entering corners and the straight portion of the building structure such as a steel frame and a wooden house, and more particularly In order to reduce the vibration acting on the building during an earthquake, the building is isolated from the ground and installed as a cushion in the middle, and the strong horizontal acceleration acting on the building is suspended by the suspension shaft in the middle of the four corner columns The present invention relates to a vibration isolator for a building structure that can be significantly damped by the vibration damping function of a pendulum plate and can be absorbed by elastic members such as upper and lower disc springs of a suspension shaft against vertical vibration. Is.
[0002]
[Prior art]
At the Central Disaster Prevention Conference on April 23, 2002, 96 municipalities increased from Kanagawa Prefecture to Aichi Mie Prefecture in the east in Kanagawa Prefecture in preparation for the 8th grade of Magneto 8 Kanto Earthquake. In addition, an earthquake-proof diagnosis result was announced that the Japanese wooden house seismic reinforcement company cooperative had a risk of collapse of almost half of wooden houses in response to earthquakes with seismic intensity of 6 or less.
[0003]
With the revision of the Building Standards Act, earthquake resistance standards have been strengthened since 1981, but 63% of the houses built after that are at risk of collapse, and 60% of houses built before 80 are at risk of collapse. The result was announced.
[0004]
In the 1970s, rubber-isolated buildings with laminated rubber were constructed in France, South Africa, and New Zealand. In Japan, buildings that are safe against earthquakes are solidly fixed on a solid foundation. It was said to be a building, but in such a building, internal furniture, fixtures, etc. would fall, and the equipment would stop functioning.
[0005]
He experienced major earthquakes in the United States and Japan, and then started development. However, in order to build a base-isolated building in Japan, it must be examined by the Japan Building Center's Performance Evaluation Review Committee, and a review document and design document for the base-isolated building must be prepared and approved by the Minister of Construction. Don't be.
For this reason, it takes nearly six months and is required to maintain and manage the vibration isolation function sufficiently. In this way, the evaluation of the Japan Architecture Center is expensive, and the construction work is also expensive. The reality is that it takes a lot of money to apply to houses, and even if it is understood that the isolation structure is good, it is difficult to get out of hand.
[0006]
The usual seismic reinforcement is mostly due to the addition of walls and struts, reinforcement of pillars, etc., but these have problems such as the appearance of the corners changing and the usability of the room becoming very bad.
[0007]
Therefore, as a vibration isolator currently in practical use, as a device that uses laminated rubber for vibration isolation bearings, it is a heavy building such as a reinforced concrete building, such as a condominium, hospital, office building, public building, etc. Although there is a laminated rubber bearing system suitable for the above, there is no vibration isolation effect with respect to vertical vibration in this system.
[0008]
In addition, a lubrication roller and laminated rubber are placed on a flat plate, which is sandwiched between a concrete foundation and a building beam, so that the roller moves over the flat plate, and a sliding bearing that absorbs vertical vibrations with the laminated rubber. A rolling bearing system in which a large ball is placed on a shallow bowl-shaped base, a small bearing rolls on it, and an air spring is adjusted with a shock absorber, and a viscous foundation is placed in the concrete foundation. There is known a damper support system that uses a warp of the part that is fixed on the steel bar and that protrudes from the foundation. However, either of these systems requires frequent inspection and There were problems such as the need to replace the vibration member due to differential loss, elastic fatigue, and deterioration.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the conventional technology, and its object is to use a strong horizontal acceleration speed during an earthquake without using laminated rubber or ball bearings as in the prior art. An object of the present invention is to provide a vibration isolator for a building structure that can greatly reduce vertical vibrations, minimize damage and body sensitivity of the building itself and equipment in the building, and provide a sense of security.
[0010]
[Means for Solving the Problems]
For this purpose, the invention according to claim 1 is mounted between the foundation 3 and the foundation 41 of the building structure at the intermediate and intermediate corners of the projecting and entering corners and straight portions of the building structures such as steel frames and wooden houses. A vibration isolator,
A substrate 1 fixed on the foundation 3;
Four struts 4 erected at the four corners on the substrate 1, and
The center portion has a large-diameter opening hole 8 and the four side center portions each have a substantially C-shaped countersink 9, and are fixed horizontally to the upper end portions of the four columns 4 and the fixing plate 6;
At the four corners, there are a substantially C-shaped countersink 9 and a substantially C-shaped countersink 29 symmetrical to the fixing plate 6, and four substantially C-shaped countersinks of these four approximately C-shaped countersinks 29 and the fixing plate 6. A pendulum plate 27 that is swingably suspended below the fixed plate 6 by four suspension shafts 17 respectively inserted through the countersinks 9;
Each of the fixed plate 6 and the substantially plate-shaped countersunk hole 9 of the fixed plate 6 and the substantially circular plate-shaped countersink 29 of the pendulum plate 27 communicate with the spherical base 12 and the substantially flat plate-shaped countersink 13. A fixed base 11 that is fixedly inserted through the suspension shaft 17 into the upper surface of each of the approximately C-shaped countersink holes 9 and the lower surface of each of the approximately C-shaped countersink holes 29 of the pendulum plate 27;
The substantially plate-shaped countersink 9 and the pendulum plate 27 of the fixing plate 6 and the pendulum plate 27 are integrally formed with a spherical pedestal portion 16 communicating with the plate-shaped countersink 29 and a substantially C-shaped countersink 15. The slide base 14 is provided so as to be slidable through the suspension shafts 17 inserted into the lower surface of each of the approximately C-shaped countersink holes 9 and the upper surface of each of the approximately C-shaped countersink holes 29 of the pendulum plate 27. When,
The pendulum plate 27 is brought into spherical contact with the spherical pedestal portions 12 of the fixed pedestals 11 on the upper surface of the fixed plate 6 and the spherical pedestal portions 12 of the fixed pedestals 11 on the lower surface of the pendulum plate 27, respectively. Upper and lower spherical plain bearings 18 inserted into the upper and lower ends of the suspension shafts 17 so as to face each other,
The spherical base portions 16 of the sliding bases 14 on the lower surface of the fixed plate 6 and the spherical base portions 16 of the sliding bases 14 on the upper surface of the pendulum plate 27 are in spherical contact with the pendulum plates. 27, the upper and lower spherical plain bearings are mounted on the respective suspension shafts 17 so as to face the respective spherical plain bearings 18 and in a vertically symmetrical relationship with the respective elastic members 25 such as disc springs. 22,
A center column 30 erected at the center of the pendulum plate 27 with its upper end protruding slightly above the opening 8 of the fixed plate 6;
A base support plate 37 provided on the upper end of the center column 30 via a coaxially connected adjustment bolt 32 so as to be adjustable in height;
The substrate 1 is fixed on the foundation 3 with anchor bolts or the like, and a base 41 of the building structure is placed and fixed on the base receiving plate 37 via an H-shaped steel 40, and set.
In the event of an earthquake, strong horizontal acceleration acting on the building structure is isolated by the vibration damping function of the pendulum plate 27 of the pendulum structure suspended by the four pendulum plate suspension shafts 17, resulting in vertical vibrations. On the other hand, a building structure vibration isolator characterized in that the elastic member 25 absorbs the structure.
[0011]
The invention according to claim 2 is characterized in that the four struts 4 are integrally provided with the reinforcing rib 5 and the center strut 30 is integrally provided with the reinforcing rib 31, respectively.
[0012]
[0013]
[0014]
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described together with its operation with reference to the drawings.
FIG. 1 is a front view showing a part of an example of a vibration isolator for a building structure according to the present invention, and FIG. 2 is a front view showing an operation state with a part omitted and shown. In the figure, the apparatus includes a substrate, a fixed plate , four pendulum plate suspension shafts, a pendulum plate, a base receiving plate, and the like.
[0016]
The substrate 1 is a rectangular plate-shaped body made of a steel plate, and the substrate 1 is placed and fixed on a foundation 3 such as a corner of a building structure with a plurality of anchor bolts 2 when the whole is set. It is.
[0017]
At the four corners of the substrate 1, four steel bar columns 4 are erected, and the four columns 4 are reinforced by reinforcing ribs 5 of a plurality of triangular plates welded to the four columns 4. The fixing plate 6 is fixed by a nut 7 in a horizontal state.
[0018]
The fixing plate 6 is a rectangular plate-shaped body made of a steel plate, and has a large-diameter opening hole 8 at the central portion, and has a substantially C-shaped countersink at the central portion of the four sides as shown in FIG. 9 is drilled with the hole angle preferably 36 degrees.
[0019]
As shown in FIGS. 1 and 8, pedestal fitting frame fittings 10 are welded to the upper surfaces of the substantially C-shaped countersink holes 9 in the fixing plate 6, respectively. with a fixed base 11 having a spherical seat 12 and upward toward the inner edge 26b thereof shaped countersink 13 which is shown is fitted and fixed respectively on the lower surface of each upward toward the inner edge 26b thereof shaped countersink 9 in the fixed plate 6, shown in Figure 10 as such, the sliding base 14 are respectively slidably with upward toward the inner edge 26b thereof shaped countersink 16 continuous with the reverse c-shaped countersink 15 and the upward toward the inner edge 26b thereof shaped countersink 15 substantially integrally.
[0020]
The upward toward the inner edge 26b thereof shaped countersink 9 of the fixed plate 6, the pendulum plate suspending shaft 17 respectively is inserted through the upward toward the inner edge 26b thereof shaped countersink 13 and upward toward the inner edge 26b thereof shaped countersink 15 and 16 of the sliding base 14 of the fixing base 11, fixed base A spherical sliding bearing 18 and a washer 19 that are in spherical contact with the spherical pedestal portion 12 are screwed onto the shaft portion protruding from 11 and are double-fastened by U-nuts 20 and 21 with locking prevention.
[0021]
A spherical plain bearing 22 that is in spherical contact with the slide base 14 is attached to and attached to the shaft portion on the lower surface side of the fixed plate 6 in each pendulum plate suspension shaft 17, and the flange portion 23 and the spherical surface of the spherical plain bearing 22 are attached. An elastic member 25 such as a disc spring is held between the slide bearing 22 and a disc spring guide 24 inserted into the suspension shaft 17 and attached to the suspension shaft 17. The disc spring guide 24, the elastic member 25, the spherical plain bearing 22, The slide base 14 is attached in series by a nut 26 fastened to the suspension shaft 17, and the elastic force of the elastic member 25 can be arbitrarily adjusted via the disc spring guide 24 by the tightening force of the nut 26.
[0022]
The contact surfaces of the fixed pedestal 11 and the spherical plain bearing 18 and the sliding pedestal 14 and the spherical plain bearing 22 are subjected to high-frequency quenching and are in close contact with each other, so that dust or dust may enter or rust. Absent.
[0023]
A pendulum plate 27 is horizontally attached to the lower ends of the four pendulum plate suspension shafts 17 that are suspended from the fixed plate 6.
[0024]
The pendulum plate 27 is made of a steel plate. As shown in FIGS. 5 and 6, the pendulum plate 27 has an arc-shaped cut portion 28 with a predetermined radius at the center of the four sides, and the fixed plate 6 at the four corners. And a substantially inverted C-shaped countersink 29 which is symmetrical with the substantially C-shaped countersink 9 in FIG.
[0025]
The site of each upward toward the inner edge 26b thereof shaped countersink 29 in the bottom surface of the pendulum plate 27, fixed to the same pedestal fitting frame fitting 10 and the pedestal fitting frame fitting 10 described above with the fixing base 11 and the slide base 14 pedestal 11 and the sliding base 14 Are provided in a symmetrical relationship with the case of the fixed plate 6.
[0026]
Therefore, these constituent members are given the same numerals as the base fitting frame metal fitting 10, the fixed base 11, and the sliding base 14, and the description of the configuration thereof is omitted.
[0027]
Further, on the upper surface of the lower part and the pendulum plate 27 of each pendulum plate suspending shaft 17 across the pendulum plate 27 across the fixed plate 6 described above an upper end of the pendulum plate suspending shaft 17 lower surface of the fixed plate 6 The spherical plain bearing 18 provided on the side, the washer 19, U-nuts 20 and 21 with loosening prevention, the spherical plain bearing 22, and the flange part 23 of the spherical plain bearing 22 and the disc spring guide 24 are elastically supported. The same spherical plain bearing as the elastic member 25, washer, U-nut with locking prevention, spherical plain bearing, elastic member such as a disc spring provided between the flange of the spherical plain bearing and the disc spring guide, and nut Are provided in a symmetrical relationship with the case of the upper fixing plate 6.
[0028]
Therefore, the spherical sliding bearing 18, washer 19, U nuts 20 and 21 with locking, spherical sliding bearing 22, collar portion 23, disc spring guide 24, elastic member 25 such as a disc spring, nut 26, etc. Only the same numerals are given, and the description of the configuration is omitted.
[0029]
A central portion of the pendulum plate 27 is reinforced by a plurality of triangular rib reinforcing ribs 31 to which a single center column 30 is welded, and an upper end thereof is slightly above the opening hole 8 of the fixed plate 6. A base plate for the building structure is provided on the upper end thereof via an adjustment bolt 32.
[0030]
As shown in FIG. 13, the adjustment bolt 32 is used to hang a wrench formed by cutting both surfaces of a portion sandwiching the upper screw portion 33, the lower screw portion 34, and the upper and lower screw portions 33, 34 into a flat surface. The adjustment bolt 32 has a lower screw portion 34 that is coaxially screwed into the upper end bolt hole of the center column 30 via a nut 36 and an upper screw portion 33 of the adjustment bolt 32. A base plate 37 of the building structure is attached to the.
[0031]
The base receiving plate 37 has an octagonal shape in which four corners of a square steel plate are cut off, and has a recessed portion 38 and a bolt hole at the center, and the base receiving plate 37 has an adjustment bolt through the bolt hole. It is attached to the upper threaded portion 33 of 32, and is fixed by fastening the nut 39 in the recessed portion 38 after the height has been adjusted.
[0032]
An H-section steel 40 is placed and fixed on the base support plate 37, and a foundation 41 of a building structure is placed and fixed on the H-section steel 40.
[0033]
Further, at the four corners the upper surface of the fixed plate 6, the head portion (pedestal fitting frame fitting 10 of the fixed plate 6 hanging pendulum plate coming out on shaft 17, the fixing base 11, a spherical plain bearing 18 includes a nut 20, 21 ) Is provided.
[0034]
Next, the operation of this apparatus will be described.
As shown in FIG. 1, this apparatus is placed on a foundation 3 provided at regular intervals in the intermediate and intermediate corners of a building structure such as a steel frame or a wooden house. Then, it is fixed by driving a plurality of anchor bolts 2 to the base plate 1 and the foundation 3, and an H-section steel 40 is placed and fixed on the base support plate 37. A base 41 of the building structure is mounted on the H-section steel 40. Is fixed.
[0035]
When the device is set, in order to prevent the pendulum plate 27 from easily rolling due to strong winds, the elastic members 25 such as a pair of disc springs provided above and below the pendulum plate suspension shafts 17 The force is appropriately adjusted and set by tightening the nut 26.
[0036]
In a normal time without an earthquake, as shown in FIG. 1, the four pendulum plate suspension shafts 17 and the center column 30 are in an upright state, and the center column 30 is a central part of the opening hole 8 of the fixed plate 6. Is located.
[0037]
In the event of an earthquake, first, when swinging in the right direction in FIG. 1, as shown in FIG. 2, the spherical sliding bearings 18 and 22 are fixed to the upper and lower portions of each pendulum plate suspension shaft 17. while spherical contact with the sliding seat 14, and moves within the upward toward the inner edge 26b thereof shaped countersink 9 and 29 while sliding the slide base 14 in the vertical opposite directions, the shaft 17 hanging each pendulum plate obliquely parallel state In conjunction with this, the pendulum plate 27 moves from the imaginary line position to the solid line position, the center column 30 moves in the opening hole 8 of the fixed plate 6, and the H-shaped steel 40 is placed on the base receiving plate 37. The mounting base 41 moves horizontally from the imaginary line position to the solid line position (right direction).
[0038]
When the swing changes from the right direction to the left direction, the pendulum plate 27 and the base 41 move horizontally in the left direction by the reverse movement of the right direction.
[0039]
In this way, the strong horizontal acceleration (swaying in the left-right direction) acting on the building is greatly attenuated by the vibration damping function of the pendulum plate 27 suspended by the four pendulum plate suspension shafts 17 and the vertical vibrations. Is absorbed by an elastic member 25 such as a disc spring provided at the upper and lower portions of each pendulum plate suspension shaft 17.
[0040]
By the way, when the amplitude is within 72 degrees (30 mm on the left and right), there is no sense of comfort, but the size and length of the components such as the pendulum plate suspension shaft 17 are calculated according to the size and structure of the building and the floor load. Depending on the size of the device, the amplitude can be changed.
[0041]
【The invention's effect】
Thus, according to the present invention, since the foundation of the building structure is placed and fixed on the foundation support plate of the center column on the pendulum plate having the pendulum structure, the vibration applied to the building structure is always constant. It is kept and does not synchronize with the shaking of the earthquake. Therefore, the earthquake load of the building structure can be greatly reduced, and the safety of the building structure during an earthquake is improved.
[0042]
As described above, the safety of the building structure at the time of the earthquake is improved, and as a derivative effect, the fall of the contents such as furniture and furniture is prevented, and secondary damage is prevented. In addition, as a result of increasing the earthquake resistance and safety of the building, damage to the exterior and waterproofing is prevented, which helps to prevent fear and injury during an earthquake and gives people a sense of security.
[0043]
In addition to protecting human life, it is possible to preserve property and secure building functions, and it is possible to eliminate psychological anxiety and discomfort by reducing the sensation of earthquakes and to improve safety and living feeling.
[0044]
Further, since the seismic force acting on the building is reduced, the building members are reduced, and the number of seismic elements is reduced, thereby making it possible to create a large space.
[0045]
Further, the present invention can be widely implemented not only as a vibration-isolated building but also as a vibration-isolating floor for an existing building and as a device for isolating only necessary parts such as a display case of a museum.
[Brief description of the drawings]
FIG. 1 is a front view showing a cross section of a part of an example of a vibration isolator for a building structure according to the present invention.
FIG. 2 is a front view of an operation state in which a part is omitted and shown in cross section.
FIG. 3 is a plan view of an upper fixing plate.
4 is an enlarged cross-sectional view taken along line 4-4 of FIG.
FIG. 5 is a plan view of a pendulum plate.
6 is an enlarged cross-sectional view taken along line 6-6 of FIG.
7 is a partially enlarged cross-sectional view showing a mounting structure between an upper fixing plate and a pendulum plate suspension shaft in FIG. 1. FIG.
FIG. 8 is a partially omitted enlarged cross-sectional view showing a mounting structure of the upper fixing base with respect to the upper fixing plate.
FIG. 9 is an enlarged sectional view of the upper fixed base.
FIG. 10 is an enlarged sectional view of a lower slide base.
FIG. 11 is an enlarged cross-sectional view of a spherical plain bearing.
12 is a partially enlarged cross-sectional view showing a mounting structure between the pendulum plate and the pendulum plate suspension shaft in FIG. 1; FIG.
FIG. 13 is an enlarged front view of an adjustment bolt.
[Explanation of symbols]
1 board 3 foundation 4 support
5 Reinforcement rib 6 Fixing plate 8 Opening hole 9 Substantially C-shaped countersink 11 Fixing base
12 spherical pedestal part 13 substantially C-shaped countersink 14 sliding pedestal
15, 16 substantially C-shaped countersink 17 pendulum plate suspension shaft 18 spherical plain bearing 22 spherical plain bearing 25 elastic member 27 pendulum plate
29 C-shaped countersink 30 Center support
31 Reinforcing rib 32 Adjustment bolt 37 Base plate 40 H-section steel 41 Base

Claims (2)

鉄骨・木造住宅等の建築構造物の出隅と入隅及び直線部分の中間部位における基礎(3)と前記建築構造物の土台(41)との間に装着される免振装置であって、
前記基礎(3)上に固着される基板(1)と、
該基板(1)上の四隅に立設された4本の支柱(4)と、
中央部位に大径の開口孔(8)を有するとともに、四辺中央部位にはそれぞれ略ハ字形皿孔(9)を有し、前記4本の支柱(4)の上端部に水平に固着され固定板(6)と、
四隅部に、前記固定板(6)の略ハ字形皿孔(9)と対称形の略ハ字形皿孔(29)を有し、かつこれら4つの略ハ字形皿孔(29)と前記固定板(6)の4つの略ハ字形皿孔(9)をそれぞれ挿通した4本の吊りシャフト(17)により、前記固定板(6)の下方に揺動可能に吊り下げられた振り子板(27)と、
前記固定板(6)の各略ハ字形皿孔(9)及び前記振り子板(27)の各略ハ字形皿孔(29)と連通する球面台座部(12)と略ハ字形皿孔(13)を一体に有し、かつ前記固定板(6)における前記各略ハ字形皿孔(9)の上面と、前記振り子板(27)における前記各略ハ字形皿孔(29)の下面にそれぞれ前記吊りシャフト(17)を挿通して固着された固定台座(11)と、
前記固定板(6)の各略ハ字形皿孔(9)及び前記振り子板(27)の各略ハ字形皿孔(29)と連通する球面台座部(16)と略ハ字形皿孔(15)を一体に有し、かつ前記固定板(6)における前記各略ハ字形皿孔(9)の下面と、前記振り子板(27)における前記各略ハ字形皿孔(29)の上面にそれぞれ前記各吊りシャフト(17)を挿通して摺動可能に設けられた摺動台座(14)と、
前記固定板(6)上面の前記各固定台座(11)の前記各球面台座部(12)と、前記振り子板(27)下面の前記各固定台座(11)の前記各球面台座部(12)とそれぞれ球面接触して、前記振り子板(27)を揺動させるため、前記各吊りシャフト(17)の上下端部にそれぞれ対向状に挿着された上下の球面滑り軸受(18)と、
前記固定板(6)下面の前記各摺動台座(14)の前記各球面台座部(16)と、前記振り子板(27)上面の前記各摺動台座(14)の前記各球面台座部(16)とそれぞれ球面接触して、前記振り子板(27)を揺動させるため、前記各吊りシャフト(17)に、前記各球面滑り軸受(18)と対向状にして、かつ皿バネ等の各弾性部材(25)と共に上下対称の関係をもって挿着された上下の球面滑り軸受(22)と、
前記振り子板(27)上の中心部に、上端部を前記固定板(6)の開口孔(8)よりやや上方に突出させた状態で立設されたセンター支柱(30)と、
前記センター支柱(30)の上端に同軸状に連結の調整ボルト(32)を介して高さ調整可能に設けられた土台受け板(37)を備え、
前記基板(1)が前記基礎(3)上にアンカーボルト等で固着され、前記土台受け板(37)上にはH形鋼(40)を介して前記建築構造物の土台(41)が載置固定されてセットされ、
地震発生時において、前記建築構造物に働く強い水平加速度は、前記4本の振り子板吊りシャフト(17)により垂設された振り子構造の前記振り子板(27)の振動減衰機能により免振され、上下の振動に対しては前記弾性部材(25)により吸収される構成を特徴とする建築構造物の免振装置。
A vibration isolator that is mounted between the foundation (3) and the foundation (41) of the building structure in the intermediate part of the corner of the building structure such as a steel frame and a wooden house, and the corner of the corner.
A substrate (1) secured on said foundation (3);
Four struts (4) erected at the four corners on the substrate (1);
The central part has a large-diameter opening hole (8), and the central part of each of the four sides has a substantially C-shaped countersink hole (9), which is horizontally fixed and fixed to the upper ends of the four columns (4). A plate (6);
At the four corners, there are a substantially C-shaped countersink (9) of the fixing plate (6) and a symmetric substantially C-shaped countersink (29), and the four substantially C-shaped countersinks (29) and the fixing are provided. A pendulum plate (27) suspended swingably below the fixed plate (6) by four suspension shafts (17) respectively inserted through four substantially C-shaped countersink holes (9) of the plate (6). )When,
A spherical base portion (12) communicating with each substantially C-shaped countersink (9) of the fixing plate (6) and each substantially C-shaped countersink (29) of the pendulum plate (27) and a substantially C-shaped countersink (13 ) And the upper surface of each of the approximately C-shaped countersink holes (9) in the fixing plate (6) and the lower surface of each of the approximately C-shaped countersink holes (29) in the pendulum plate (27), respectively. A fixed base (11) fixedly inserted through the suspension shaft (17);
A spherical base portion (16) communicating with each substantially C-shaped countersink (9) of the fixing plate (6) and each substantially C-shaped countersink (29) of the pendulum plate (27) and a substantially C-shaped countersink (15 ) And the lower surface of each of the substantially C-shaped countersink holes (9) in the fixed plate (6) and the upper surface of each of the approximately C-shaped countersink holes (29) in the pendulum plate (27), respectively. A sliding base (14) provided so as to be slidable through the suspension shafts (17);
The spherical pedestals (12) of the fixed pedestals (11) on the upper surface of the fixed plate (6) and the spherical pedestals (12) of the fixed pedestals (11) on the lower surface of the pendulum plate (27). And upper and lower spherical plain bearings (18) respectively inserted into the upper and lower ends of the suspension shafts (17) so as to swing the pendulum plate (27) in spherical contact with each other,
Each spherical pedestal portion (16) of each sliding pedestal (14) on the lower surface of the fixed plate (6) and each spherical pedestal portion (14) on each sliding pedestal (14) on the upper surface of the pendulum plate (27). 16) in contact with each spherical surface to swing the pendulum plate (27), each suspension shaft (17) is opposed to each spherical sliding bearing (18), and each disk spring, etc. Upper and lower spherical plain bearings (22) inserted in a vertically symmetrical relationship with the elastic member (25);
A center column (30) erected at a central portion on the pendulum plate (27) with an upper end projecting slightly above the opening hole (8) of the fixed plate (6);
A base support plate (37) provided on the upper end of the center column (30) so as to be adjustable in height via an adjustment bolt (32) connected coaxially;
The substrate (1) is fixed on the foundation (3) with anchor bolts or the like, and the foundation (41) of the building structure is mounted on the foundation receiving plate (37) via an H-shaped steel (40). Set in place,
When an earthquake occurs, strong horizontal acceleration acting on the building structure is isolated by the vibration damping function of the pendulum plate (27) of the pendulum structure suspended by the four pendulum plate suspension shafts (17) , A vibration isolator for a building structure, characterized in that the elastic member (25) absorbs up and down vibrations.
前記4本の支柱(4)は補強リブ(5)と、前記センター支柱(30)は補強リブ(31)とそれぞれ一体的に設けられていることを特徴とする請求項1の建築構造物の免振装置。The four struts (4) are provided integrally with reinforcing ribs (5), and the center strut (30) is provided integrally with reinforcing ribs (31), respectively. Isolation device.
JP2002168030A 2002-06-10 2002-06-10 Isolation device for building structure Expired - Fee Related JP3906113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168030A JP3906113B2 (en) 2002-06-10 2002-06-10 Isolation device for building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168030A JP3906113B2 (en) 2002-06-10 2002-06-10 Isolation device for building structure

Publications (2)

Publication Number Publication Date
JP2004011318A JP2004011318A (en) 2004-01-15
JP3906113B2 true JP3906113B2 (en) 2007-04-18

Family

ID=30435049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168030A Expired - Fee Related JP3906113B2 (en) 2002-06-10 2002-06-10 Isolation device for building structure

Country Status (1)

Country Link
JP (1) JP3906113B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229932B2 (en) * 2006-12-28 2013-07-03 稔 紙屋 Mechanical seismic isolation device
JP5958223B2 (en) * 2012-09-18 2016-07-27 トヨタ自動車株式会社 Power converter
CN103470684B (en) * 2013-09-18 2016-03-02 陈先伟 Suspension type low frequency composite multi-layer vibration isolation base
CN106968499B (en) * 2017-03-09 2019-06-25 上海大学 A kind of horizontal direction negative stiffness device of subsidiary vertical shock-absorbing function

Also Published As

Publication number Publication date
JP2004011318A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
EP1390587B1 (en) Frictional damper for damping movement of structures
US20030099413A1 (en) Seismic isolation bearing
JP2001521079A (en) Method and apparatus for controlling structural displacement, acceleration and seismic force
KR101497144B1 (en) Aseismic constructing method and aseismic device of computation equipment on the access floor
CN109898705B (en) Damping grounding type assembled steel plate combined frequency modulation damping wall
JP3316134B2 (en) Supporting device for building outer wall and method of seismic isolation of building outer wall
US10024074B1 (en) Seismic damping systems and methods
KR20180114678A (en) earth-quake-resistant construction between the slabs and Wall in Buildings
JP5316850B2 (en) Seismic isolation structure
CN107217739A (en) The frame structure and its installation method of a kind of superstructure vibration isolation
JP3906113B2 (en) Isolation device for building structure
CN208793915U (en) Compound vibro-damping mount
US5537790A (en) Seismic bridge
JP5178246B2 (en) Curtain wall structure
JP2006022484A (en) Vibration isolation device of building structure
JP2006322298A (en) Anchor bolt integrated with vibration control spring having metal fitting preventing pulling-out of column
JPH03122376A (en) Dynamic vibration reducer utilizing curtain wall
JP2002070358A (en) Base isolation device
JP2001115594A (en) Earthquake resistant vibration-proofing device
US6202365B1 (en) Suspended deck structure
KR102032122B1 (en) Base system of water tank based on height-adjustable
US9316012B2 (en) Systems and methods for retrofitting a building for increased earthquake resistance
JPH0660538B2 (en) Dynamic vibration control method and apparatus using weight of building body
JP6201089B1 (en) Seismic isolation structure that can adjust the inclination of the building
JP4030447B2 (en) Unit type building with seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees