JP3906047B2 - Crystal device - Google Patents

Crystal device Download PDF

Info

Publication number
JP3906047B2
JP3906047B2 JP2001306383A JP2001306383A JP3906047B2 JP 3906047 B2 JP3906047 B2 JP 3906047B2 JP 2001306383 A JP2001306383 A JP 2001306383A JP 2001306383 A JP2001306383 A JP 2001306383A JP 3906047 B2 JP3906047 B2 JP 3906047B2
Authority
JP
Japan
Prior art keywords
wiring layer
weight
less
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001306383A
Other languages
Japanese (ja)
Other versions
JP2003110395A (en
Inventor
卓也 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001306383A priority Critical patent/JP3906047B2/en
Publication of JP2003110395A publication Critical patent/JP2003110395A/en
Application granted granted Critical
Publication of JP3906047B2 publication Critical patent/JP3906047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータ等の情報処理装置や携帯電話等の電子装置において、時間および周波数の基準源として使用される水晶デバイスに関するものである。
【0002】
【従来の技術】
コンピュータ等の情報処理装置や携帯電話等の電子装置において時間および周波数の基準源として使用される水晶デバイスは、一般に、四角板状の水晶基板に電圧印加用の電極を形成して成る水晶振動子を、水晶振動子収納用パッケージ内に気密に収容することによって形成されている。
【0003】
前記水晶振動子収納用パッケージは、一般に、酸化アルミニウム質焼結体等の電気絶縁材料から成り、上面中央部に水晶振動子を収容する空所を形成するための凹部、および凹部表面から外表面にかけて導出されたタングステン、モリブデン等の高融点金属等の金属材料から成る配線層を有する基体と、鉄−ニッケル−コバルト合金、鉄−ニッケル合金等の金属材料、または酸化アルミニウム質焼結体等のセラミックス材料から成る蓋体とから構成されている。
【0004】
そして、水晶振動子の電極を基体の凹部内表面に露出する配線層及びその周辺の基体表面に固定材を介して取着することにより、水晶振動子が凹部内に接着固定されるとともに配線層に電気的に接続され、しかる後、基体の上面に蓋体を接着材による接着やシーム溶接等の接合手段により取着し、基体と蓋体とから成る容器内部に水晶振動子を気密に収容することによって製品としての水晶デバイスが完成する。
【0005】
なお、水晶振動子を取着するための固定材としては、一般に、エポキシ樹脂等の有機樹脂と、銀粉末等の導電性粉末とを主材として混合して成る導電性接着材が使用されている。
【0006】
また、蓋体を基体にシーム溶接で取着する場合、通常、予め基体の凹部周囲に枠状のロウ付け用メタライズ層を形成しておくとともにこのメタライズ層に金属枠体をロウ付けし、金属枠体に蓋体をシーム溶接する方法が用いられる。
【0007】
更に前記水晶デバイスの外部電気回路基板への実装は、基体の外表面に導出された配線層を外部電気回路基板の配線導体に半田等の導電性接続材を介して接続することによって行われ、水晶振動子は配線層を介し外部電気回路に電気的に接続されるとともに外部電気回路から印加される電圧に応じて所定の周波数で振動し、基準信号を外部電気回路に供給する。
【0008】
【発明が解決しようとする課題】
しかしながら、従来の水晶デバイスは基体に形成されている配線層がタングステンやモリブデン、マンガン等の高融点金属材料により形成されており、該タングステン等はその比電気抵抗が5.4μΩ・cm(20℃)以上と高いことから配線層に基準信号を伝搬させた場合、基準信号に大きな減衰が生じ、基準信号を外部電気回路に正確、かつ確実に伝搬させることができないという欠点を有していた。
【0009】
本発明は上記欠点に鑑み案出されたもので、その目的は、水晶振動子の基準信号を外部電気回路に高速かつ正確、確実に供給することができる水晶デバイスを提供することにある。
【0010】
【課題を解決するための手段】
本発明は、水晶振動子が搭載される搭載部を有し、該搭載部から外表面にかけて導出される配線層を有する基体と、前記搭載部の前記配線層導電性の固定材を介して固定され、電極が前記配線層に電気的に接続されている水晶振動子とから成る水晶デバイスであって、前記基体はSi成分がSiOに換算して25〜80重量%、Ba成分がBaOに換算して15〜70重量%、B成分がBに換算して1.5〜5重量%、Al成分がAlに換算して1〜30重量%、Ca成分がCaOに換算して0重量%を超え30重量%以下含まれる焼結体で、前記配線層が2.5μΩ・cm以下の比電気抵抗を有する金属材で形成されており、かつ前記固定材は、ゴム粒子および導電性粉末を添加したエポキシ樹脂から成り、弾性率が2.8GPa以下であることを特徴とするものである。
【0012】
本発明の水晶デバイスによれば、基体を、Si成分がSiO2に換算して25〜80重量%、Ba成分がBaOに換算して15〜70重量%、B成分がB23に換算して1.5〜5重量%、Al成分がAl23に換算して1〜30重量%、Ca成分がCaOに換算して0重量%を超え30重量%以下含まれる焼結体で形成し、かかる焼結体の焼成温度が800〜1000℃と低いことから、基体と同時焼成により形成される配線層を比電気抵抗が2.5μΩ・cm(20℃)以下と低い銅や銀、金で形成することができ、その結果、配線層に水晶振動子の基準信号を伝搬させた場合、基準信号に大きな減衰が生じることはなく、基準信号を外部電気回路に正確、かつ確実に伝搬させることが可能となる。
【0013】
また本発明の水晶デバイスによれば、基体に水晶振動子を固定する固定材として、例えば、ゴム粒子を添加したエポキシ樹脂等から成る弾性率が2.8GPa以下のものを使用したことから外部環境の変化に伴い基体と水晶振動子に熱が繰り返し作用し、基体と水晶振動子との間に両者の熱膨張係数差に起因する熱応力が繰り返し発生したとしても、その熱応力は固定材を適度に変形させることによって吸収され、固定材に機械的な破壊が招来することはなく、その結果、基体に水晶振動子を長期間にわたり確実、強固に固定することが可能となり、水晶デバイスの長期信頼性を高いものとなすことができる。
【0014】
【発明の実施の形態】
次に本発明の水晶デバイスについて添付の図面を基にして詳細に説明する。
図1は本発明の水晶デバイスの一実施例を示す断面図であり、図1において、1は基体、2は配線層、3は蓋体である。この基体1と蓋体3とにより形成される容器4内に水晶振動子5を気密に収容することにより水晶デバイス6が形成される。
【0015】
前記基体1は、Si成分がSiO2に換算して25〜80重量%、Ba成分がBaOに換算して15〜70重量%、B成分がB23に換算して1.5〜5重量%、Al成分がAl23に換算して1〜30重量%、Ca成分がCaOに換算して0重量%を超え30重量%以下含まれる焼結体で形成されており、その上面に水晶振動子5を収容するための空所となる凹部1aが設けてあり、該凹部1a内に水晶振動子5が収容される。
【0016】
また前記基体1は、凹部1aの表面から外表面にかけて配線層2が導出されており、配線層2の凹部1a表面に露出する部位に水晶振動子5の電極が導電性接着材等の固定材7を介して接着固定され、外表面に導出された部位は外部電気回路基板の配線導体に半田等のロウ材を介して接続される。
【0017】
前記焼結体から成る基体1は、例えば、SiO2、BaO、B23、Al23、CaO等の原料粉末にアクリル樹脂を主成分とするバインダー及び分散剤、可塑剤、有機溶媒を加えて泥漿物を作るとともに該泥漿物をドクターブレード法やカレンダーロール法を採用することによってグリーンシート(生シート)となし、しかる後、前記グリーンシートに適当な打ち抜き加工を施すとともにこれを複数枚積層し、約800℃〜1000℃の温度で焼成することによって製作される。
【0018】
前記基体1はその焼成温度が約800℃〜1000℃と低いことから、基体1と同時焼成により形成される配線層2を比電気抵抗が2.5μΩ・cm(20℃)以下と低い銅や銀、金で形成することができ、その結果、配線層2に水晶振動子5の基準信号を伝搬させた場合、基準信号に大きな減衰が生じることはなく、基準信号を外部電気回路に正確、かつ確実に伝搬させることが可能となる。
【0019】
なお、前記基体1を構成する焼結体は、SiO2が25重量%未満であると誘電損失が大きくなって配線層2を伝搬する水晶振動子の基準信号に減衰や遅延を招来してしまい、また80重量%を超えると基体1の機械的強度が大きく低下してしまうと同時に焼成温度が高いものとなって銅等の金属材から成る配線層2と同時焼成するのが困難となる。従って、SiO2の量は25〜80重量%の範囲に特定される。
【0020】
また前記基体1を構成する焼結体は、BaOが15重量%未満であると焼成温度が高いものとなって銅等の金属材からなる配線層2と同時焼成するのが困難となり、また70重量%を超えると誘電損失が大きくなって配線層2を伝搬する水晶振動子の基準信号に減衰や遅延を招来してしまう。従って、BaOの量は15〜70重量%の範囲に特定される。
【0021】
更に前記基体1を構成する焼結体は、B23が1.5重量%未満となると焼成温度が高いものとなって銅等の金属材から成る配線層2と同時焼成するのが困難となり、また5重量%を超えると基体1の機械的強度が大きく低下してしまう。従って、B23の量は1.5〜5重量%の範囲に特定される。
【0022】
また更に前記基体1を構成する焼結体は、Al23が1重量%未満となると焼成温度が高いものとなって銅等の金属材からなる配線層2と同時焼成するのが困難となり、また30重量%を超えると誘電損失が大きくなって配線層2を伝搬する水晶振動子の基準信号に減衰や遅延を招来してしまう。従って、Al23の量は1〜30重量%の範囲に特定される。
【0023】
更にまた前記基体1を構成する焼結体は、CaOが含有されない時には焼結性が低下して機械的強度が低下してしまい、また30重量%を超えると焼成温度が高いものとなって銅等の金属材から成る配線層2と同時焼成するのが困難となる。従って、CaOの量は0重量%を超えて30重量%以下の範囲に特定される。
【0024】
更に前記基体1に形成されている配線層2は、凹部1a内に収容される水晶振動子5と外部電気回路基板の配線導体とを電気的に接続する作用をなし、例えば、金、銀、銅等の比電気抵抗が2.5μΩ・cm(20℃)以下の金属材により形成されており、銅から成る場合であれば、銅粉末に適当な有機溶剤、有機バインダー等を添加混合して得た金属ペーストを、基体1となるグリーンシートの表面にスクリーン印刷法等で所定パターンに印刷塗布しておくことによって形成される。
【0025】
前記配線層2は、その露出する表面をニッケル、金等の耐食性およびロウ材との濡れ性が良好な金属から成るめっき層(不図示)で被覆しておくと、配線層2の酸化腐食を良好に防止することができるとともに、配線層2に対する半田等のロウ材の濡れ性を良好とすることができ、外部電気回路基板の配線導体に対する配線層2の接続をより一層容易、かつ確実なものとすることができる。従って、前記配線層2は、その露出する表面をニッケル、金等のめっき層、例えば、順次被着された厚み1μm〜10μmのニッケルまたはニッケル合金めっき層、厚み0.1〜3μmの金めっき層で被覆しておくことが好ましい。
【0026】
また前記配線層2の表面をニッケル、金等のめっき層で被覆する場合、その最表面の算術平均粗さ(Ra)を1.5μm以下、自乗平均平方根粗さ(Rms)を1.8μm以下としておくと最表面の光の反射率が40%以上となって水晶振動子5を配線層2に固定材7を介して固定する際、その位置決め等の作業が容易となる。従って、前記配線層2の表面をニッケル、金等のめっき層で被覆する場合、その最表面の算術平均粗さ(Ra)を1.5μm以下、自乗平均平方根粗さ(Rms)を1.8μm以下としておくことが好ましい。
【0027】
更に前記配線層2の表面を被覆するニッケル、金等からなるめっき層の最表面の算術平均粗さ(Ra)を1.5μm以下、自乗平均平方根粗さ(Rms)を1.8μm以下とするには配線層2を従来周知のワット浴にイオウ化合物等の光沢剤を添加した電解ニッケルめっき液に浸漬して配線層2の表面にニッケルめっき層を被着させ、しかる後、シアン系の電解金めっき液中に浸漬し、ニッケルめっき層表面に金めっき層を被着させることによって行なわれる。
【0028】
前記配線層2はまたその一部(凹部1aの内表面に露出している領域)に水晶振動子5が固定材7を介して固定されており、該固定材7は、ゴム粒子および導電性粉末を添加したエポキシ樹脂であって、弾性率が2.8GPa以下のもので形成されている。
【0029】
前記固定材7はその弾性率が2.8GPa以下であり、変形し易いことから、外部環境の変化に伴い基体1と水晶振動子5に熱が繰り返し作用し、基体1と水晶振動子5との間に両者の熱膨張係数差に起因する熱応力が繰り返し発生したとしても、その熱応力は固定材7を適度に変形させることによって吸収され、固定材7に機械的な破壊が招来することはなく、その結果、基体1に水晶振動子5を長期間にわたり確実、強固に固定することが可能となり、水晶デバイス6の長期信頼性を高いものとなすことができる。
【0030】
前記固定材7はその弾性率が2.8GPaを超えると外部環境の変化に伴って基体1と水晶振動子5の両者に繰り返し熱が作用すると基体1と水晶振動子5との両者の熱膨張係数差に起因する熱応力が固定材7に繰り返し作用し、固定材7に機械的な破壊を招来して水晶振動子5の固定材7を介しての固定が破れ、水晶デバイス6の信頼性が大きく低下してしまう。従って、前記固定材7はその弾性率が2.8GPa以下のものに特定され、2GPa以下のものであることがより一層好ましい。
【0031】
前記弾性率が2.8GPa以下の固定材7は、例えば、アクリルゴム、イソプレンゴム等のゴム粒子を添加したエポキシ樹脂に対して、銀粉末等の導電性粉末を15乃至60重量%の割合で添加したものが好適に使用される。
【0032】
また前記エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ゴム変性型、ウレタン変性型等のエポキシ樹脂、特に未硬化時に粘液状(室温)のものが好適に使用される。
【0033】
この場合、エポキシ樹脂へのゴム粒子の添加量を増加させることにより固定材7の弾性率を低下させることができ、エポキシ樹脂の状態(構造、架橋度、重合度、硬化剤の種類等)に応じて適宜ゴム粒子の添加量を制御することにより固定材7の弾性率を2.8GPa以下とすることができる。なお、エポキシ樹脂へのゴム粒子の添加量が50重量%を超えると、未硬化の樹脂組成物の流動性が大きく低下し、水晶振動子5の電極と配線層2との間に固定材7を均一に介在させることが困難となり、水晶振動子5を基体1に強固に固定することが困難となる傾向にある。従って、エポキシ樹脂中にゴム粒子を添加する場合、その添加量は、固定材7の弾性率を2.8GPa以下とする範囲で、50重量%以下としておくことが好ましい。
【0034】
前記固定材7は、その弾性率が0.1GPa未満になると、変形し易くなりすぎるため水晶振動子5を基体1の凹部1a内の所定位置に確実に接着固定しておくことが困難となる傾向がある。従って、前記固定材7はその弾性率を、2.8GPa以下の範囲で、0.1GPa以上としておくことが好ましい。
【0035】
なお、前記弾性率が2.8GPa以下の固定材7は、上述のエポキシ樹脂組成物に限らず、シリコーン樹脂等の低弾性率の熱硬化性樹脂、またはシリコーン樹脂等にシリカ等のフィラー成分を添加した樹脂組成物に導電性粉末を添加することにより形成してもよい。
【0036】
また前記水晶振動子5が固定材7を介して接着固定されている基体1は、その上面に蓋体3が取着され、これによって基体1と蓋体3とから成る容器4内部に水晶振動子5が気密に収容され、水晶デバイス6となる。
【0037】
前記蓋体3は、鉄−ニッケル−コバルト合金、鉄−ニッケル合金等の金属材料や、酸化アルミニウム質焼結体等のセラミック材料により形成され、例えば、鉄−ニッケル−コバルト合金のインゴット(塊)に圧延加工、打ち抜き加工等の周知の金属加工を施すことによって形成される。
【0038】
更に前記蓋体3の基体1への取着は、ロウ材、ガラス、有機樹脂接着剤等の接合材を介して行う方法や、シーム溶接等の溶接法により行うことができ、例えば、蓋体3をシーム溶接にて取着する場合は通常、基体1の凹部1a周囲に枠状のロウ付け用メタライズ層8を配線層2と同様の方法で被着させておくとともに、該ロウ付け用メタライズ層8に金属枠体9を銀ロウ等のロウ材を介してロウ付けし、しかる後、前記金属枠体9に金属製の蓋体3を載置させるとともに蓋体3の外縁部をシーム溶接することによって行われる。この場合、金属枠体9は、その上面と側面との間の角部に曲率半径が5〜30μmの丸みを形成しておくと金属枠体9の上面側にバリが形成されることがなく、この金属枠体9の上面に蓋体3をシーム溶接する際に両者を信頼性高く気密に、かつ強固に接合させることができる。従って、前記金属枠体9はその上面と側面との間の角部を曲率半径が5〜30μmの丸みをもたせるようにしておくことが好ましい。
【0039】
また更に、前記金属枠体9は、その下面と側面との間の角部に曲率半径が40〜80μmの丸みを形成しておくと、該金属枠体9をロウ付け用メタライズ層8にロウ材を介して接合する際、ロウ付け用メタライズ層8と金属枠体9の下面側角部との間に空間が形成されるとともに該空間にロウ材の大きな溜まりが形成されて金属枠体9のロウ付け用メタライズ層8への接合が強固となる。従って、前記金属枠体9をロウ付け用メタライズ層8にロウ材を介して強固に接合させるには金属枠体9の下面と側面との間の角部に曲率半径が40〜80μmの丸みを形成しておくことが好ましい。
【0040】
かくして上述の水晶デバイス6によれば、配線層2を外部電気回路に接続し、水晶振動子5の電極に所定の電圧を印加させることによって水晶振動子5は所定の振動数で振動し、コンピュータ等の情報処理装置や携帯電話等の電子装置において時間および周波数の基準源として使用される。
【0041】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、図2に示すように、配線層2の一部に突起10を形成しておくと、この突起10がスペーサーとなって配線層2と水晶振動子5との間に一定のスペースが確保され、このスペースに十分な固定材7が入り込んで水晶振動子5を配線層2に極めて強固に接着固定することができる。
【0042】
また上述の水晶デバイス6では基体1に凹部1aを設け、該凹部1a内に水晶振動子5を収容するようになしたが、これを図3に示す如く、平坦な基体1上に水晶振動子5を搭載固定し、該固定された水晶振動子5を椀状の蓋体3で気密に封止するようになした水晶デバイス6にも適用し得る。
【0043】
【発明の効果】
本発明の水晶デバイスによれば、基体を、Si成分がSiO2に換算して25〜80重量%、Ba成分がBaOに換算して15〜70重量%、B成分がB23に換算して1.5〜5重量%、Al成分がAl23に換算して1〜30重量%、Ca成分がCaOに換算して0重量%を超え30重量%以下含まれる焼結体で形成し、該焼結体の焼成温度が800〜1000℃と低いことから、基体と同時焼成により形成される配線層を比電気抵抗が2.5μΩ・cm(20℃)以下と低い銅や銀、金で形成することができ、その結果、配線層に水晶振動子の基準信号を伝搬させた場合、基準信号に大きな減衰が生じることはなく、基準信号を外部電気回路に正確、かつ確実に伝搬させることが可能となる。
【0044】
また本発明の水晶デバイスによれば、基体に水晶振動子を固定する固定材として、例えば、ゴム粒子を添加したエポキシ樹脂等から成る弾性率が2.8GPa以下のものを使用したことから外部環境の変化に伴い基体と水晶振動子に熱が繰り返し作用し、基体と水晶振動子との間に両者の熱膨張係数差に起因する熱応力が繰り返し発生したとしても、その熱応力は固定材を適度に変形させることによって吸収され、固定材に機械的な破壊が招来することはなく、その結果、基体に水晶振動子を長期間にわたり確実、強固に固定することが可能となり、水晶デバイスの長期信頼性を高いものとなすことができる。
【図面の簡単な説明】
【図1】本発明の水晶デバイスの一実施例を示す断面図である。
【図2】本発明の水晶デバイスの他の実施例を示す要部断面図である。
【図3】本発明の水晶デバイスの他の実施例を示す断面図である。
【符号の説明】
1・・・・・基体
1a・・・・凹部
2・・・・・配線層
3・・・・・蓋体
4・・・・・容器
5・・・・・水晶振動子
6・・・・・水晶デバイス
7・・・・・固定材
8・・・・・ロウ付け用メタライズ層
9・・・・・金属枠体
10・・・・突起
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal device used as a time and frequency reference source in an information processing apparatus such as a computer and an electronic apparatus such as a mobile phone.
[0002]
[Prior art]
A crystal device used as a time and frequency reference source in an information processing apparatus such as a computer or an electronic apparatus such as a mobile phone is generally a crystal resonator in which a voltage application electrode is formed on a rectangular plate-shaped crystal substrate. Is housed in a quartz crystal housing package in an airtight manner.
[0003]
The crystal resonator housing package is generally made of an electrically insulating material such as an aluminum oxide sintered body, and has a concave portion for forming a space for accommodating the crystal resonator at the center of the upper surface, and an outer surface from the concave surface. A substrate having a wiring layer made of a metal material such as tungsten or molybdenum derived from tungsten, molybdenum, and the like, and a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy, or an aluminum oxide sintered body, etc. And a lid made of a ceramic material.
[0004]
Then, the quartz resonator is adhered and fixed in the recess and the wiring layer by attaching the electrode of the crystal resonator to the wiring layer exposed on the inner surface of the concave portion of the substrate and the surrounding substrate surface via a fixing material. After that, the lid is attached to the upper surface of the base by bonding means such as adhesive or seam welding, and the crystal unit is hermetically accommodated inside the container composed of the base and the lid. By doing so, a crystal device as a product is completed.
[0005]
In general, as a fixing material for attaching a crystal resonator, a conductive adhesive made by mixing an organic resin such as an epoxy resin and a conductive powder such as silver powder as a main material is used. Yes.
[0006]
Further, when the lid is attached to the base by seam welding, a frame-like brazing metallization layer is usually formed around the recess of the base in advance, and a metal frame is brazed to the metallization layer. A method of seam welding the lid to the frame is used.
[0007]
Further, the mounting of the crystal device on the external electric circuit board is performed by connecting the wiring layer led to the outer surface of the base to the wiring conductor of the external electric circuit board through a conductive connecting material such as solder, The crystal resonator is electrically connected to the external electric circuit via the wiring layer, and vibrates at a predetermined frequency according to a voltage applied from the external electric circuit, and supplies a reference signal to the external electric circuit.
[0008]
[Problems to be solved by the invention]
However, in the conventional quartz device, the wiring layer formed on the base is formed of a refractory metal material such as tungsten, molybdenum or manganese, and the tungsten or the like has a specific electric resistance of 5.4 μΩ · cm (20 ° C. ) When the reference signal is propagated to the wiring layer, the reference signal is greatly attenuated, and the reference signal cannot be propagated accurately and reliably to the external electric circuit.
[0009]
The present invention has been devised in view of the above drawbacks, and an object of the present invention is to provide a crystal device capable of supplying a reference signal of a crystal resonator to an external electric circuit at high speed, accurately and reliably.
[0010]
[Means for Solving the Problems]
The present invention has a mounting portion for the crystal oscillator is mounted, a substrate having a wiring layer is derived toward the outer surface from the mounting portion, the conductive fixing member to the wiring layer of the front Ki搭 mounting portion through is fixed to a quartz crystal device comprising a crystal oscillator electrodes are electrically connected to the wiring layer, 25 to 80 wt% said substrate Si component in terms of SiO 2, Ba component Is 15 to 70% by weight in terms of BaO, 1.5 to 5% by weight in terms of B component in terms of B 2 O 3 , 1 to 30% by weight in terms of Al component in terms of Al 2 O 3 , and Ca component Is a sintered body containing more than 0 wt% and not more than 30 wt% in terms of CaO, the wiring layer is formed of a metal material having a specific electric resistance of 2.5 μΩ · cm or less, and the fixing material consists added epoxy resin rubber particles and conductive powder, the elastic modulus It is characterized in that .8GPa or less.
[0012]
According to the quartz crystal device of the present invention, the substrate has a Si component converted to SiO 2 of 25 to 80% by weight, a Ba component converted to BaO of 15 to 70% by weight, and a B component converted to B 2 O 3 . A sintered body containing 1.5 to 5% by weight, 1 to 30% by weight of Al component converted to Al 2 O 3 , and more than 0% by weight and 30% by weight or less of Ca component converted to CaO. Since the sintering temperature of such a sintered body is as low as 800 to 1000 ° C., the wiring layer formed by simultaneous firing with the base body has a low specific electrical resistance of 2.5 μΩ · cm (20 ° C.) or less, such as copper or silver As a result, when the reference signal of the crystal resonator is propagated to the wiring layer, the reference signal is not greatly attenuated, and the reference signal is accurately and reliably supplied to the external electric circuit. Propagation is possible.
[0013]
Further, according to the quartz crystal device of the present invention, as the fixing material for fixing the quartz crystal resonator to the substrate, for example, an elastic material made of an epoxy resin or the like to which rubber particles are added has an elastic modulus of 2.8 GPa or less. Even if heat is repeatedly applied to the base and the crystal unit as a result of the change in temperature, and thermal stress due to the difference in the thermal expansion coefficient between the base and the crystal unit is repeatedly generated, It is absorbed by being deformed appropriately, and mechanical damage is not caused to the fixing material. As a result, it is possible to securely and firmly fix the crystal unit to the base for a long period of time. High reliability can be achieved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the crystal device of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an embodiment of a quartz crystal device according to the present invention. In FIG. 1, 1 is a substrate, 2 is a wiring layer, and 3 is a lid. The quartz crystal device 6 is formed by airtightly accommodating the quartz crystal resonator 5 in the container 4 formed by the base 1 and the lid 3.
[0015]
The substrate 1 is 25 to 80 wt% Si component in terms of SiO 2, 15 to 70 wt% Ba component in terms of BaO, B component in terms of B 2 O 3 1.5 to 5 It is formed of a sintered body containing 1% by weight to 30% by weight, Al component converted to Al 2 O 3 and 1 to 30% by weight, and Ca component converted to CaO and exceeding 0% by weight and 30% by weight or less. A recess 1a serving as a space for accommodating the crystal resonator 5 is provided in the recess 1a, and the crystal resonator 5 is accommodated in the recess 1a.
[0016]
In the base 1, a wiring layer 2 is led out from the surface of the recess 1a to the outer surface, and the electrode of the crystal unit 5 is fixed to a portion exposed on the surface of the recess 1a of the wiring layer 2 such as a conductive adhesive. The portion that is bonded and fixed via 7 and led to the outer surface is connected to the wiring conductor of the external electric circuit board via a brazing material such as solder.
[0017]
The substrate 1 made of the sintered body includes, for example, a binder and a dispersant, a plasticizer, and an organic solvent mainly composed of an acrylic resin in a raw material powder such as SiO 2 , BaO, B 2 O 3 , Al 2 O 3 , and CaO. The slurry is made into a green sheet (raw sheet) by adopting a doctor blade method or a calender roll method, and then the green sheet is subjected to appropriate punching processing and a plurality of these are formed. It is manufactured by laminating and baking at a temperature of about 800 ° C. to 1000 ° C.
[0018]
Since the firing temperature of the substrate 1 is as low as about 800 ° C. to 1000 ° C., the wiring layer 2 formed by simultaneous firing with the substrate 1 has a low specific electrical resistance of 2.5 μΩ · cm (20 ° C.) or less. As a result, when the reference signal of the crystal unit 5 is propagated to the wiring layer 2, the reference signal is not greatly attenuated, and the reference signal is accurately transmitted to the external electric circuit. And it becomes possible to propagate reliably.
[0019]
If the sintered body constituting the substrate 1 is less than 25% by weight of SiO 2 , the dielectric loss becomes large, causing attenuation or delay in the reference signal of the crystal resonator propagating through the wiring layer 2. On the other hand, if it exceeds 80% by weight, the mechanical strength of the substrate 1 is greatly reduced, and at the same time, the firing temperature becomes high, making it difficult to fire simultaneously with the wiring layer 2 made of a metal material such as copper. Therefore, the amount of SiO 2 is specified in the range of 25 to 80% by weight.
[0020]
Further, if the sintered body constituting the substrate 1 has a BaO content of less than 15% by weight, the firing temperature becomes high and it becomes difficult to fire simultaneously with the wiring layer 2 made of a metal material such as copper. When the weight percentage is exceeded, the dielectric loss increases and attenuation or delay is caused in the reference signal of the crystal resonator that propagates through the wiring layer 2. Therefore, the amount of BaO is specified in the range of 15 to 70% by weight.
[0021]
Further, the sintered body constituting the substrate 1 has a high firing temperature when B 2 O 3 is less than 1.5% by weight, and is difficult to be fired simultaneously with the wiring layer 2 made of a metal material such as copper. Further, if it exceeds 5% by weight, the mechanical strength of the substrate 1 is greatly reduced. Therefore, the amount of B 2 O 3 is specified in the range of 1.5 to 5% by weight.
[0022]
Furthermore, when the Al 2 O 3 content is less than 1% by weight, the sintered body constituting the substrate 1 has a high firing temperature and is difficult to be fired simultaneously with the wiring layer 2 made of a metal material such as copper. Further, if it exceeds 30% by weight, the dielectric loss increases and the reference signal of the crystal resonator that propagates through the wiring layer 2 is attenuated or delayed. Therefore, the amount of Al 2 O 3 is specified in the range of 1 to 30% by weight.
[0023]
Furthermore, the sintered body constituting the substrate 1 has a low sinterability and a low mechanical strength when CaO is not contained, and when it exceeds 30% by weight, the firing temperature becomes high. It becomes difficult to fire simultaneously with the wiring layer 2 made of a metal material such as. Therefore, the amount of CaO is specified in the range of more than 0% by weight and not more than 30% by weight.
[0024]
Further, the wiring layer 2 formed on the base body 1 has an action of electrically connecting the crystal resonator 5 accommodated in the recess 1a and the wiring conductor of the external electric circuit board, for example, gold, silver, If it is made of a metal material having a specific electric resistance of 2.5 μΩ · cm (20 ° C.) or less, such as copper, and if it is made of copper, add an appropriate organic solvent, organic binder, etc. to the copper powder. The obtained metal paste is formed by printing and applying a predetermined pattern on the surface of the green sheet to be the base 1 by a screen printing method or the like.
[0025]
If the exposed surface of the wiring layer 2 is covered with a plating layer (not shown) made of a metal having good corrosion resistance such as nickel and gold and good wettability with the brazing material, the wiring layer 2 is subject to oxidative corrosion. In addition to being able to prevent it well, it is possible to improve the wettability of the brazing material such as solder to the wiring layer 2, and the connection of the wiring layer 2 to the wiring conductor of the external electric circuit board is made easier and more reliable. Can be. Therefore, the wiring layer 2 has an exposed surface plated with nickel, gold or the like, for example, a nickel or nickel alloy plating layer with a thickness of 1 μm to 10 μm, and a gold plating layer with a thickness of 0.1 to 3 μm. It is preferable to coat with.
[0026]
When the surface of the wiring layer 2 is covered with a plating layer such as nickel or gold, the arithmetic average roughness (Ra) of the outermost surface is 1.5 μm or less and the root mean square roughness (Rms) is 1.8 μm or less. As a result, the reflectance of light on the outermost surface is 40% or more, and when the crystal unit 5 is fixed to the wiring layer 2 via the fixing member 7, the work such as positioning is facilitated. Therefore, when the surface of the wiring layer 2 is covered with a plating layer such as nickel or gold, the arithmetic average roughness (Ra) of the outermost surface is 1.5 μm or less and the root mean square roughness (Rms) is 1.8 μm. The following is preferable.
[0027]
Further, the arithmetic average roughness (Ra) of the outermost surface of the plating layer made of nickel, gold, or the like covering the surface of the wiring layer 2 is 1.5 μm or less, and the root mean square roughness (Rms) is 1.8 μm or less. In this case, the wiring layer 2 is immersed in an electrolytic nickel plating solution in which a brightening agent such as a sulfur compound is added to a well-known Watt bath so that the nickel plating layer is deposited on the surface of the wiring layer 2, and then the cyan electrolysis is performed. It is carried out by dipping in a gold plating solution and depositing a gold plating layer on the surface of the nickel plating layer.
[0028]
The wiring layer 2 is also the crystal oscillator 5 that a part (region exposed to the inner surface of the recess 1a) are fixed through the fixing member 7, the fixing member 7, rubber particles and conductive An epoxy resin added with a conductive powder and having an elastic modulus of 2.8 GPa or less.
[0029]
Since the elastic modulus of the fixing material 7 is 2.8 GPa or less and is easily deformed, heat repeatedly acts on the base 1 and the crystal resonator 5 in accordance with a change in the external environment. Even if thermal stress due to the difference in thermal expansion coefficient between the two is repeatedly generated during this period, the thermal stress is absorbed by appropriately deforming the fixing material 7, and mechanical damage is caused to the fixing material 7. As a result, the crystal resonator 5 can be securely and firmly fixed to the substrate 1 for a long period of time, and the long-term reliability of the crystal device 6 can be improved.
[0030]
When the elastic modulus of the fixing material 7 exceeds 2.8 GPa, thermal expansion of both the base 1 and the crystal unit 5 occurs when heat is repeatedly applied to both the base 1 and the crystal unit 5 in accordance with a change in the external environment. The thermal stress caused by the coefficient difference repeatedly acts on the fixing material 7, causing mechanical damage to the fixing material 7, and the fixing of the crystal unit 5 via the fixing material 7 is broken. Will drop significantly. Therefore, the fixing material 7 is specified to have an elastic modulus of 2.8 GPa or less, and more preferably 2 GPa or less.
[0031]
The fixing material 7 having an elastic modulus of 2.8 GPa or less is, for example, a ratio of 15 to 60% by weight of conductive powder such as silver powder with respect to an epoxy resin to which rubber particles such as acrylic rubber and isoprene rubber are added. Those added are preferably used.
[0032]
As the epoxy resin, epoxy resins such as bisphenol A type, bisphenol F type, rubber modified type, urethane modified type, etc., particularly those that are viscous (room temperature) when uncured are preferably used.
[0033]
In this case, the elastic modulus of the fixing material 7 can be reduced by increasing the amount of rubber particles added to the epoxy resin, and the state of the epoxy resin (structure, degree of crosslinking, degree of polymerization, type of curing agent, etc.) can be reduced. Accordingly, the elastic modulus of the fixing material 7 can be reduced to 2.8 GPa or less by appropriately controlling the addition amount of the rubber particles. When the amount of the rubber particles added to the epoxy resin exceeds 50% by weight, the fluidity of the uncured resin composition is greatly reduced, and the fixing material 7 is interposed between the electrode of the crystal unit 5 and the wiring layer 2. Are difficult to interpose uniformly, and it tends to be difficult to firmly fix the crystal unit 5 to the base 1. Therefore, when rubber particles are added to the epoxy resin, the addition amount is preferably 50% by weight or less within a range where the elastic modulus of the fixing material 7 is 2.8 GPa or less.
[0034]
When the elastic modulus of the fixing member 7 is less than 0.1 GPa, the fixing member 7 is easily deformed, so that it is difficult to securely bond and fix the crystal unit 5 to a predetermined position in the recess 1a of the base 1. Tend. Therefore, the elastic modulus of the fixing material 7 is preferably set to 0.1 GPa or more in the range of 2.8 GPa or less.
[0035]
The fixing material 7 having an elastic modulus of 2.8 GPa or less is not limited to the above-mentioned epoxy resin composition, but a low elastic modulus thermosetting resin such as a silicone resin, or a filler component such as silica in a silicone resin or the like. You may form by adding electroconductive powder to the added resin composition.
[0036]
The base body 1 to which the crystal resonator 5 is bonded and fixed via a fixing material 7 has a lid 3 attached to the upper surface thereof, so that the crystal vibration is placed inside the container 4 composed of the base body 1 and the lid body 3. The child 5 is housed in an airtight manner to form the crystal device 6.
[0037]
The lid 3 is formed of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy, or a ceramic material such as an aluminum oxide sintered body. For example, an iron-nickel-cobalt alloy ingot Is formed by performing known metal processing such as rolling and punching.
[0038]
Further, the lid 3 can be attached to the base body 1 by a method using a bonding material such as a brazing material, glass, or an organic resin adhesive, or by a welding method such as seam welding. When attaching 3 by seam welding, a frame-like brazing metallization layer 8 is usually applied around the recess 1a of the substrate 1 in the same manner as the wiring layer 2, and the brazing metallization is applied. A metal frame 9 is brazed to the layer 8 via a brazing material such as silver brazing, and then the metal lid 3 is placed on the metal frame 9 and the outer edge of the lid 3 is seam welded. Is done by doing. In this case, if the metal frame 9 is rounded with a radius of curvature of 5 to 30 μm at the corner between the upper surface and the side surface, no burr is formed on the upper surface side of the metal frame 9. When the lid 3 is seam-welded to the upper surface of the metal frame 9, both can be reliably and airtightly bonded. Therefore, it is preferable that the metal frame body 9 has a corner between the upper surface and the side surface thereof to have a roundness with a radius of curvature of 5 to 30 μm.
[0039]
Furthermore, when the metal frame 9 is rounded with a radius of curvature of 40 to 80 μm at the corner between its lower surface and side surface, the metal frame 9 is brazed to the brazing metallization layer 8. When joining via the material, a space is formed between the brazing metallized layer 8 and the lower surface side corner of the metal frame 9, and a large pool of brazing material is formed in the space, so that the metal frame 9 The bonding to the brazing metallization layer 8 becomes strong. Therefore, in order to firmly bond the metal frame 9 to the brazing metallization layer 8 via the brazing material, the corner between the lower surface and the side surface of the metal frame 9 is rounded with a curvature radius of 40 to 80 μm. It is preferable to form it.
[0040]
Thus, according to the crystal device 6 described above, by connecting the wiring layer 2 to an external electric circuit and applying a predetermined voltage to the electrodes of the crystal resonator 5, the crystal resonator 5 vibrates at a predetermined frequency, and the computer It is used as a reference source for time and frequency in information processing apparatuses such as mobile phones and electronic devices such as mobile phones.
[0041]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, as shown in FIG. If the protrusion 10 is formed in the portion, the protrusion 10 serves as a spacer to secure a certain space between the wiring layer 2 and the crystal resonator 5, and a sufficient fixing material 7 enters the space so that the crystal The vibrator 5 can be bonded and fixed to the wiring layer 2 very firmly.
[0042]
In the crystal device 6 described above, the substrate 1 is provided with the recess 1a and the crystal resonator 5 is accommodated in the recess 1a. As shown in FIG. 5 is also applicable to the crystal device 6 in which the fixed crystal unit 5 is hermetically sealed by the bowl-shaped lid 3.
[0043]
【The invention's effect】
According to the quartz crystal device of the present invention, the substrate has a Si component converted to SiO 2 of 25 to 80% by weight, a Ba component converted to BaO of 15 to 70% by weight, and a B component converted to B 2 O 3 . A sintered body containing 1.5 to 5% by weight, 1 to 30% by weight of Al component converted to Al 2 O 3 , and more than 0% by weight and 30% by weight or less of Ca component converted to CaO. Since the sintering temperature of the sintered body is as low as 800 to 1000 ° C., the wiring layer formed by co-firing with the substrate has a low specific electrical resistance of 2.5 μΩ · cm (20 ° C.) or less, such as copper or silver. As a result, when the reference signal of the crystal resonator is propagated to the wiring layer, the reference signal is not greatly attenuated, and the reference signal is accurately and reliably supplied to the external electric circuit. Propagation is possible.
[0044]
Further, according to the quartz crystal device of the present invention, as the fixing material for fixing the quartz crystal resonator to the substrate, for example, an elastic material made of an epoxy resin or the like to which rubber particles are added has an elastic modulus of 2.8 GPa or less. Even if heat is repeatedly applied to the base and the crystal unit as a result of the change in temperature, and thermal stress due to the difference in the thermal expansion coefficient between the base and the crystal unit is repeatedly generated, It is absorbed by being deformed appropriately, and mechanical damage is not caused to the fixing material. As a result, it is possible to securely and firmly fix the crystal unit to the base for a long period of time. High reliability can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a quartz crystal device of the present invention.
FIG. 2 is a cross-sectional view of an essential part showing another embodiment of the quartz crystal device of the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of the quartz crystal device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base | substrate 1a ... Recessed part 2 ... Wiring layer 3 ... Cover body 4 ... Container 5 ... Crystal oscillator 6 ...・ Crystal device 7... Fixing material 8... Brazing metallized layer 9... Metal frame 10.

Claims (1)

水晶振動子が搭載される搭載部を有し、該搭載部から外表面にかけて導出される配線層を有する基体と、前記搭載部の前記配線層導電性の固定材を介して固定され、電極が前記配線層に電気的に接続されている水晶振動子とから成る水晶デバイスであって、前記基体はSi成分がSiOに換算して25〜80重量%、Ba成分がBaOに換算して15〜70重量%、B成分がBに換算して1.5〜5重量%、Al成分がAlに換算して1〜30重量%、Ca成分がCaOに換算して0重量%を超え30重量%以下含まれる焼結体で、前記配線層が2.5μΩ・cm以下の比電気抵抗を有する金属材で形成されており、かつ前記固定材は、ゴム粒子および導電性粉末を添加したエポキシ樹脂から成り、弾性率が2.8GPa以下であることを特徴とする水晶デバイス。Having a mounting portion for the crystal oscillator is mounted, it is fixed through a substrate having a wiring layer that is derived toward the outer surface, a conductive fixing material to the wiring layer of the front Ki搭 mounting portion from the mounting portion , a quartz crystal device comprising a crystal oscillator electrodes are electrically connected to the wiring layer, wherein the substrate is 25 to 80 wt% Si component in terms of SiO 2, in terms of Ba component in BaO to 15 to 70 wt%, 1.5-5 wt% B component in terms of B 2 O 3, 1 to 30 wt% Al component in terms of Al 2 O 3, Ca component terms of CaO a sintered body that contains less than 30 wt% more than 0% by weight, the wiring layer is formed of a metal material having a specific electric resistance of less 2.5μΩ · cm, and the fixing material, rubber particles and made of a conductive powder added with epoxy resin, the elastic modulus 2.8GP Crystal devices, wherein the or less.
JP2001306383A 2001-10-02 2001-10-02 Crystal device Expired - Fee Related JP3906047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306383A JP3906047B2 (en) 2001-10-02 2001-10-02 Crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306383A JP3906047B2 (en) 2001-10-02 2001-10-02 Crystal device

Publications (2)

Publication Number Publication Date
JP2003110395A JP2003110395A (en) 2003-04-11
JP3906047B2 true JP3906047B2 (en) 2007-04-18

Family

ID=19126029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306383A Expired - Fee Related JP3906047B2 (en) 2001-10-02 2001-10-02 Crystal device

Country Status (1)

Country Link
JP (1) JP3906047B2 (en)

Also Published As

Publication number Publication date
JP2003110395A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP3906047B2 (en) Crystal device
JP3906062B2 (en) Crystal device
JP3961267B2 (en) Crystal device
JP2011035660A (en) Piezoelectric device
JP3961255B2 (en) Crystal device
JP3906050B2 (en) Crystal device
JP3906049B2 (en) Crystal device
JP3906060B2 (en) Crystal device
JP3798969B2 (en) Crystal device
JP3906048B2 (en) Crystal device
JP2003069369A (en) Crystal device
JP4443306B2 (en) Manufacturing method of crystal unit
JP2003101363A (en) Crystal device
JP2002252538A (en) Package for housing quartz-oscillator and quartz-device using it
JP2003124427A (en) Quartz device
JP2003101369A (en) Crystal device
JP2003101365A (en) Crystal device
JP3792612B2 (en) Piezoelectric vibrator container and piezoelectric vibrator
JP2002252540A (en) Quartz-device
JP2002252541A (en) Quartz-device
JP2002252539A (en) Package for housing quartz-oscillator and quartz-device using it
JP2003124376A (en) Package for housing semiconductor device
JP2002252537A (en) Package for housing quartz-oscillator and quartz-device using it
JP2003101368A (en) Crystal device
JP2003101361A (en) Crystal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees