JP3905359B2 - Exhaust gas purification device for gas engine - Google Patents

Exhaust gas purification device for gas engine Download PDF

Info

Publication number
JP3905359B2
JP3905359B2 JP2001357487A JP2001357487A JP3905359B2 JP 3905359 B2 JP3905359 B2 JP 3905359B2 JP 2001357487 A JP2001357487 A JP 2001357487A JP 2001357487 A JP2001357487 A JP 2001357487A JP 3905359 B2 JP3905359 B2 JP 3905359B2
Authority
JP
Japan
Prior art keywords
exhaust
monolith
hydrocarbons
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357487A
Other languages
Japanese (ja)
Other versions
JP2003161143A (en
Inventor
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2001357487A priority Critical patent/JP3905359B2/en
Publication of JP2003161143A publication Critical patent/JP2003161143A/en
Application granted granted Critical
Publication of JP3905359B2 publication Critical patent/JP3905359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスエンジンの排気浄化装置において、特に、窒素酸化物(NOx)の排出量を低減させる技術に関する。
【0002】
【従来の技術】
炭化水素類(Cmn)を含むCNG(圧縮天然ガス),LPG(液化天然ガス)などを燃料とするガスエンジンは、NOx排出量が少ないという優れた特徴を有している。しかし、最近ではNOx排出量規制が一層強化される傾向にあり、より一層NOx排出量を低減させる必要がある。
【0003】
このため、例えば、第80回触媒討論会A 予稿集3A07,P.67(1997)に開示されるように、排気中に微量残留している未燃炭化水素類を還元剤として用い、排気通路に介装されたモノリスに塗布された触媒により、NOxを還元浄化する排気浄化装置が開発された。また、排気中の未燃炭化水素類が浄化すべきNOxに比べて少ないことに鑑み、例えば、Applied Catalysis B: Environmental 17(1998) 333-345に開示されるように、モノリス上流側に未燃炭化水素類を含む燃料等を添加する技術も案出されている。そして、かかる従来技術においては、排気中のNOxは、主に、NO2+HC(Cmn)→N2+CO2+H2Oという化学反応により還元浄化される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来技術では、炭化水素類を還元剤とする触媒のNOx還元性能がいまだ不十分であるため、NOx排出量のさらなる低減を通して、排気性状を一層向上させることが求められるようになってきた。
そこで、本発明は以上のような従来の問題点に鑑み、水蒸気改質反応により生成された水素(H2)により、触媒におけるNOxの還元浄化反応を促進させ、NOx排出量のさらなる低減化を実現したガスエンジンの排気浄化装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1記載の発明では、排気通路に介装された第1のモノリスと、排気通路を流通する排気の一部を迂回させ、前記第1のモノリス上流側に導入する排気迂回通路と、該排気迂回通路に介装された第2のモノリスと、前記第1及び第2のモノリスに、夫々塗布された第1及び第2の触媒と、前記第2のモノリス上流側に炭化水素類を添加する添加手段と、前記第1のモノリス上流側に位置する排気通路を流通する排気中の窒素酸化物濃度を検出する濃度検出手段と、該濃度検出手段により検出された窒素酸化物濃度が所定値以上のときのみ、前記添加手段を制御して、前記第2のモノリス上流側に炭化水素類を添加する添加制御手段と、を含んで構成されたガスエンジンの排気浄化装置であって、
前記第2の触媒は、排気中の水蒸気に対して、前記添加手段により添加された炭化水素類を反応させて、次式のような水蒸気改質反応を起こさせる一方、
mn+mH2O→(m+n/2)H2+mCO
前記第1の触媒は、排気中の窒素酸化物に対して、前記第2の触媒により生成された水素及び未転化の炭化水素類を反応させて、夫々次式のような還元反応を起こさせる
NOx+H2→N2+H2
NOx+Cmn→N2+CO2+H2
ことを特徴とする。
【0006】
かかる構成によれば、ガスエンジンから排出された排気は、排気通路を介して第1のモノリスに導入されると共に、その一部が排気迂回通路を介して第2のモノリスに導入される。第2のモノリスでは、ここに塗布された第2の触媒の作用により、排気中の水蒸気に対して炭化水素類を反応させて水蒸気改質反応を起こさせ、水素と一酸化炭素とを生成させる。水蒸気改質反応により生成された水素及び一酸化炭素は、水蒸気改質反応に供されなかった炭化水素類と共に、第1のモノリス上流側に導入される。第1のモノリスでは、ここに塗布された第1の触媒の作用により、排気中の窒素酸化物に対して水素及び炭化水素類を夫々反応させ、無害な窒素,二酸化炭素及び水蒸気に転化させる。
【0007】
このとき、排気中の窒素酸化物濃度が所定値以上のときのみ、換言すると、炭化水素類の添加量が不足して排気浄化が不十分であるときのみ、第2のモノリス上流側に炭化水素が添加されるため、その消費量が抑制される。
【0008】
請求項2記載の発明では、前記添加制御手段は、前記濃度検出手段により検出された窒素酸化物濃度に基づいて、前記第2モノリス上流側に添加する炭化水素類の添加量を増減することを特徴とする。
かかる構成によれば、排気中の窒素酸化物濃度に基づいて、第2のモノリス上流側に添加する炭化水素類の添加量が増減されるので、未反応の炭化水素類がそのまま排出されることが抑制され、広範囲に亘って安定した排気浄化を行うことが可能となり、排気性状が向上する。
【0009】
請求項3記載の発明では、前記第1の触媒は、白金担持ゼオライト又は銀担持アルミナであることを特徴とする。
かかる構成によれば、第1の触媒として、白金担持ゼオライト又は銀担持アルミナを用いることで、排気中の窒素酸化物に対して、水素及び炭化水素類を効果的に反応させられる。
【0010】
請求項4記載の発明では、前記第2の触媒は、ロジウム担持ジルコニア又はロジウム担持アルミナであることを特徴とする。
かかる構成によれば、第2の触媒として、ロジウム担持ジルコニア又はロジウム担持アルミナを用いることで、水蒸気改質反応が効果的に行われる。
請求項5記載の発明では、前記排気迂回通路には、前記排気通路を流通する排気の一部を強制的に迂回させる強制迂回手段が介装されたことを特徴とする。
【0011】
かかる構成によれば、排気通路を流通する排気の一部は、水蒸気改質反応を行う第2のモノリスに強制的に導入されるので、窒素酸化物の還元浄化に供される水素が確実に生成される。
請求項6記載の発明では、前記添加制御手段は、前記第2のモノリス上流側に炭化水素類を添加するときのみ、前記強制迂回手段を作動させることを特徴とする。
かかる構成によれば、第2のモノリス上流側に炭化水素類が添加されるときのみ、強制迂回手段が作動される。
【0012】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図1は、本発明に係るガスエンジンの排気浄化装置(以下「排気浄化装置」という)の第1実施形態の全体構成を示す。
ガスエンジン10の排気通路12には、ハニカム形状の横断面を有する第1のモノリス14が介装される。また、排気通路12には、ここを流通する排気の一部を迂回させ、第1のモノリス14上流側に導入する排気迂回通路16が併設される。排気迂回通路16には、ハニカム形状の横断面を有する第2のモノリス18が介装される。
【0013】
燃料タンク20に貯蔵される気体燃料は、ガスエンジン10に供給されると共に、導入通路22を介して、第2モノリス18上流側の排気迂回通路16に添加される。ここで、気体燃料としては、炭化水素類を含むCNG,LPGなどが用いられる。なお、燃料タンク20及び導入通路22を含んで添加手段が構成される。
【0014】
第2のモノリス18には、排気迂回通路16を介して導入された排気中の水蒸気に対して、燃料タンク20から添加された気体燃料を反応させて、次式のような水蒸気改質反応を起こさせる第2の触媒が塗布される。第2の触媒としては、効果的な水蒸気改質反応を起こさせるべく、例えば、ロジウム担持ジルコニア(Rh/ZrO2)又はロジウム担持アルミナ(Rh/Al23)を用いることが望ましい。
【0015】
mn+mH2O→(m+n/2)H2+mCO
一方、第1のモノリス14には、排気中の窒素酸化物に対して、第2のモノリス18で生成された水素及び未転化(未反応)の気体燃料を反応させて、次式のように窒素酸化物を還元浄化させる第1の触媒が塗布される。第1の触媒としては、効果的に窒素酸化物を還元浄化させるべく、例えば、白金担持ゼオライト(Pt/ZSM−5)又は銀担持アルミナ(Ag/Al23)を用いることが望ましい。
【0016】
NOx+H2→N2+H2
NOx+Cmn→N2+CO2+H2
なお、以上説明しなかった符号24は、排気通路12及び排気迂回通路16に、夫々、第1のモノリス14及び第2のモノリス18を保持させるための保持材である。
【0017】
次に、かかる構成からなる排気浄化装置の作用について説明する。
ガスエンジン10から排出された排気は、排気通路12を介して第1のモノリス14に導入されると共に、その一部が排気迂回通路16に分流される。排気迂回通路16に分流された排気は、導入路22を介して添加された気体燃料と混合して混合気となり、第2のモノリス18に導入される。そして、混合気が第2のモノリス18を通過するとき、ここに塗布された第2の触媒と接触し、次式のような水蒸気改質反応が起こる。即ち、水蒸気改質反応では、気体燃料に含まれる炭化水素類(Cmn)と排気中の水蒸気(H2O)とが反応し、水素(H2)と一酸化炭素(CO)とが生成される。
【0018】
mn+mH2O→(m+n/2)H2+mCO
水蒸気改質反応で生成された水素及び一酸化炭素は、水蒸気改質反応に供されなかった炭化水素類と共に、第1のモノリス14上流側の排気通路12に導入される。排気通路12に導入された水素,一酸化炭素及び炭化水素類は、排気通路12を流通する排気と混合され、排気中の水素含有量を増加させる。
【0019】
そして、水素含有量が増加された排気が第1のモノリス14を通過するとき、ここに塗布された第1の触媒と接触し、次式のような還元浄化反応が起こる。
NOx+H2→N2+H2
NOx+Cmn→N2+CO2+H2
従って、排気中の窒素酸化物は、水蒸気改質反応によって生成された水素、及び、水蒸気改質反応に供されなかった炭化水素類と反応し、無害な窒素(N2),二酸化炭素(CO2)及び水蒸気(H2O)に転化される。このため、水素により窒素酸化物の還元浄化反応が促進され、窒素酸化物の排出量をより低減させることができる。
【0020】
なお、第2のモノリス18における水蒸気改質反応により生成された一酸化炭素は、そのまま排気浄化装置から排出されるが、その排出量は極めて微量であり、酸化触媒などで処理可能であるため、排気性状には影響がない。
図2は、本発明に係る排気浄化装置の第2実施形態の全体構成を示す。第2実施形態は、還元剤としての気体燃料の消費を極力抑制すべく、第1の実施形態に対して、排気中の窒素酸化物濃度に応じて気体燃料の添加制御を行う機構を追加したものである。なお、先の第1実施形態と同一構成については、同一符号を付すことで、その説明を省略する。
【0021】
第2のモノリス18上流側の排気迂回通路16には、第2のモノリス18への排気導入を確実ならしめるべく、例えば、電動モータにより駆動されるポンプ30(強制迂回手段)が介装される。また、導入通路22には、排気迂回通路16への気体燃料添加量を制御すべく、導入通路22を開閉する電磁式の開閉弁32が介装される。一方、排気通路12には、排気中の窒素酸化物濃度を検出するNOxセンサ34(濃度検出手段)が介装される。そして、NOxセンサ34からの出力は、マイクロコンピュータを内蔵したコントロールユニット36に入力され、後述する処理によってポンプ30及び開閉弁32の駆動制御が行われる。なお、コントロールユニット36により、添加制御手段がソフトウエア的に実現される。
【0022】
図3は、コントロールユニット36において、所定時間毎に繰り返し実行される処理内容を示す。
ステップ1(図では「S1」と略記する。以下同様)では、NOxセンサ34から排気中の窒素酸化物濃度が検出される。
ステップ2では、検出された窒素酸化物濃度が所定値以上であるか否か、即ち、還元剤としての気体燃料が不足して排気浄化が不十分であるか否かが判定される。そして、窒素酸化物濃度が所定値以上であればステップ3へと進み(Yes)、気体燃料を排気迂回通路16に添加すべく、開閉弁32が開弁されると共に、ポンプ30が作動される。一方、窒素酸化物濃度が所定値未満であればステップ4へと進み(No)、気体燃料の消費を抑制すべく、開閉弁32が閉弁されると共に、ポンプ30が停止される。
【0023】
以上説明したステップ1〜ステップ4の処理によれば、排気中の窒素酸化物が所定値以上のときのみ、排気迂回通路16に気体燃料が添加されるため、気体燃料の消費量を極力抑制することができる。
なお、排気迂回通路16に添加される気体燃料は、排気中の窒素酸化物濃度に基づいて、例えば、マップを参照することで、その添加量を多段階に設定するようにしてもよい。この場合、開閉弁32は、例えば、設定された添加量に応じてデューティ制御するようにすればよい。
【0024】
このようにすれば、排気中の窒素酸化物濃度に応じて気体燃料の添加量が多段階に制御されるため、未反応の炭化水素類がそのまま排出されることが抑制され、広範囲に亘って安定した排気浄化を行うことが可能となり、排気性状を向上させることができる。
【0025】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、水蒸気改質反応により生成された水素により、窒素酸化物の還元浄化反応が促進されるので、窒素酸化物の排出量をより低減することができる。このとき、炭化水素類の添加量が不足して排気浄化が不十分であるときのみ、第2のモノリスに炭化水素類が添加されるため、その消費量を抑制することができる。
【0026】
請求項2記載の発明によれば、未反応の炭化水素類がそのまま排出されることが抑制され、広範囲に亘って安定した排気浄化を行うことが可能となり、排気性状を向上させることができる。
請求項3記載の発明によれば、排気中の窒素酸化物に対して、水素及び炭化水素類を効果的に反応させることができる。
【0027】
請求項4記載の発明によれば、水蒸気改質反応を効果的に行わせることができる。
請求項5記載の発明によれば、窒素酸化物の還元浄化に供される水素を確実に生成することができる。
請求項6記載の発明によれば、第2のモノリス上流側に炭化水素類が添加されるときのみ、強制迂回手段を作動させることができる。
【図面の簡単な説明】
【図1】本発明に係る排気浄化装置の第1実施形態の全体構成図
【図2】本発明に係る排気浄化装置の第2実施形態の全体構成図
【図3】同上の制御内容を示すフローチャート
【符号の説明】
10 ガスエンジン
12 排気通路
14 第1のモノリス
16 排気迂回通路
18 第2のモノリス
20 燃料タンク
22 導入通路
30 ポンプ
32 開閉弁
34 NOxセンサ
36 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for reducing the emission amount of nitrogen oxides (NOx), particularly in an exhaust gas purification apparatus for a gas engine.
[0002]
[Prior art]
Gas engines that use CNG (compressed natural gas), LPG (liquefied natural gas), etc., containing hydrocarbons (C m H n ) as fuel, have an excellent feature of low NOx emissions. However, recently, the NOx emission regulation tends to be further strengthened, and it is necessary to further reduce the NOx emission.
[0003]
For this reason, for example, as disclosed in the 80th Catalysis Conference A Proceedings 3A07, P.67 (1997), a small amount of unburned hydrocarbons remaining in the exhaust gas are used as a reducing agent, and the exhaust passage An exhaust gas purification device that reduces and purifies NOx using a catalyst applied to a monolith intervening in the air has been developed. In view of the fact that unburned hydrocarbons in the exhaust gas are less than NOx to be purified, for example, as disclosed in Applied Catalysis B: Environmental 17 (1998) 333-345, unburned upstream of the monolith. A technique for adding a fuel containing hydrocarbons has also been devised. In this conventional technique, NOx in the exhaust gas is reduced and purified mainly by a chemical reaction of NO 2 + HC (C m H n ) → N 2 + CO 2 + H 2 O.
[0004]
[Problems to be solved by the invention]
However, in the prior art, the NOx reduction performance of a catalyst using hydrocarbons as a reducing agent is still insufficient, and therefore it has been required to further improve the exhaust properties through further reduction of NOx emissions. .
Therefore, in view of the conventional problems as described above, the present invention promotes the reduction and purification reaction of NOx in the catalyst by hydrogen (H 2 ) generated by the steam reforming reaction, and further reduces the NOx emission amount. An object of the present invention is to provide an exhaust gas purification device for a realized gas engine.
[0005]
[Means for Solving the Problems]
For this reason, in the first aspect of the present invention, the first monolith interposed in the exhaust passage and the exhaust bypass passage that bypasses a part of the exhaust gas flowing through the exhaust passage and introduces it to the upstream side of the first monolith. A second monolith interposed in the exhaust bypass passage, the first and second catalysts applied to the first and second monoliths, respectively, and a hydrocarbon upstream of the second monolith Adding means for adding a kind, concentration detecting means for detecting the concentration of nitrogen oxide in the exhaust gas flowing through the exhaust passage located upstream of the first monolith, and the concentration of nitrogen oxide detected by the concentration detecting means And an addition control means for controlling the addition means to add hydrocarbons upstream of the second monolith only when the value is equal to or greater than a predetermined value. ,
While the second catalyst reacts the hydrocarbons added by the adding means with the steam in the exhaust gas to cause a steam reforming reaction such as the following formula,
C m H n + mH 2 O → (m + n / 2) H 2 + mCO
The first catalyst causes the nitrogen oxides in the exhaust to react with the hydrogen produced by the second catalyst and unconverted hydrocarbons to cause reduction reactions as shown in the following equations, respectively. NO x + H 2 → N 2 + H 2 O
NO x + C m H n → N 2 + CO 2 + H 2 O
It is characterized by that.
[0006]
According to such a configuration, the exhaust discharged from the gas engine is introduced into the first monolith via the exhaust passage, and a part thereof is introduced into the second monolith via the exhaust bypass passage. In the second monolith, the action of the second catalyst applied here causes hydrocarbons to react with the steam in the exhaust gas to cause a steam reforming reaction to generate hydrogen and carbon monoxide. . Hydrogen and carbon monoxide produced by the steam reforming reaction are introduced upstream of the first monolith together with hydrocarbons that have not been subjected to the steam reforming reaction. In the first monolith, by the action of the first catalyst applied here, hydrogen and hydrocarbons react with nitrogen oxides in the exhaust gas, respectively, and are converted into harmless nitrogen, carbon dioxide and water vapor.
[0007]
At this time, only when the concentration of nitrogen oxides in the exhaust gas is equal to or higher than a predetermined value, in other words, only when the amount of hydrocarbons added is insufficient and exhaust purification is insufficient, the hydrocarbon on the upstream side of the second monolith. Is added, so that its consumption is suppressed.
[0008]
In the invention according to claim 2 , the addition control means increases or decreases the addition amount of hydrocarbons added upstream of the second monolith based on the nitrogen oxide concentration detected by the concentration detection means. Features.
According to such a configuration, the amount of hydrocarbons added to the upstream side of the second monolith is increased or decreased based on the nitrogen oxide concentration in the exhaust gas, so that unreacted hydrocarbons are discharged as they are. Is suppressed, it is possible to perform stable exhaust purification over a wide range, and the exhaust properties are improved.
[0009]
The invention according to claim 3 is characterized in that the first catalyst is platinum-supported zeolite or silver-supported alumina.
According to this configuration, by using platinum-supported zeolite or silver-supported alumina as the first catalyst, hydrogen and hydrocarbons can be effectively reacted with nitrogen oxides in the exhaust.
[0010]
The invention according to claim 4 is characterized in that the second catalyst is rhodium-supported zirconia or rhodium-supported alumina.
According to this configuration, the steam reforming reaction is effectively performed by using rhodium-supported zirconia or rhodium-supported alumina as the second catalyst.
The invention according to claim 5 is characterized in that the exhaust bypass passage is provided with a forced bypass means for forcibly bypassing a part of the exhaust gas flowing through the exhaust passage.
[0011]
According to such a configuration, a part of the exhaust gas flowing through the exhaust passage is forcibly introduced into the second monolith that performs the steam reforming reaction, so that the hydrogen used for the reduction and purification of nitrogen oxides is surely obtained. Generated.
The invention according to claim 6 is characterized in that the addition control means operates the forced bypass means only when adding hydrocarbons upstream of the second monolith.
According to this configuration, the forced detour means is activated only when hydrocarbons are added upstream of the second monolith.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows the overall configuration of a first embodiment of a gas engine exhaust gas purification apparatus (hereinafter referred to as “exhaust gas purification apparatus”) according to the present invention.
A first monolith 14 having a honeycomb-shaped cross section is interposed in the exhaust passage 12 of the gas engine 10. Further, the exhaust passage 12 is provided with an exhaust bypass passage 16 that bypasses a part of the exhaust gas flowing through the exhaust passage 12 and introduces the exhaust to the upstream side of the first monolith 14. A second monolith 18 having a honeycomb-shaped cross section is interposed in the exhaust bypass passage 16.
[0013]
The gaseous fuel stored in the fuel tank 20 is supplied to the gas engine 10 and is added to the exhaust bypass passage 16 upstream of the second monolith 18 through the introduction passage 22. Here, CNG, LPG, etc. containing hydrocarbons are used as the gaseous fuel. The adding means includes the fuel tank 20 and the introduction passage 22.
[0014]
The second monolith 18 reacts with the gaseous fuel added from the fuel tank 20 to the water vapor in the exhaust gas introduced through the exhaust gas bypass passage 16 to perform a water vapor reforming reaction as shown in the following equation. A second catalyst to be awakened is applied. As the second catalyst, for example, rhodium-supported zirconia (Rh / ZrO 2 ) or rhodium-supported alumina (Rh / Al 2 O 3 ) is desirably used in order to cause an effective steam reforming reaction.
[0015]
C m H n + mH 2 O → (m + n / 2) H 2 + mCO
On the other hand, the first monolith 14 is reacted with hydrogen produced in the second monolith 18 and unconverted (unreacted) gaseous fuel with respect to nitrogen oxides in the exhaust gas, as shown in the following formula: A first catalyst for reducing and purifying nitrogen oxides is applied. As the first catalyst, for example, platinum-supported zeolite (Pt / ZSM-5) or silver-supported alumina (Ag / Al 2 O 3 ) is preferably used in order to effectively reduce and purify nitrogen oxides.
[0016]
NO x + H 2 → N 2 + H 2 O
NO x + C m H n → N 2 + CO 2 + H 2 O
Reference numeral 24 not described above is a holding material for holding the first monolith 14 and the second monolith 18 in the exhaust passage 12 and the exhaust bypass passage 16, respectively.
[0017]
Next, the operation of the exhaust emission control device having such a configuration will be described.
The exhaust discharged from the gas engine 10 is introduced into the first monolith 14 via the exhaust passage 12 and a part thereof is diverted to the exhaust bypass passage 16. The exhaust gas divided into the exhaust bypass passage 16 is mixed with the gaseous fuel added via the introduction passage 22 to become an air-fuel mixture, and is introduced into the second monolith 18. When the air-fuel mixture passes through the second monolith 18, it comes into contact with the second catalyst applied here, and a steam reforming reaction such as the following equation occurs. That is, in the steam reforming reaction, hydrocarbons (C m H n ) contained in the gaseous fuel react with steam (H 2 O) in the exhaust gas, and hydrogen (H 2 ), carbon monoxide (CO), and Is generated.
[0018]
C m H n + mH 2 O → (m + n / 2) H 2 + mCO
Hydrogen and carbon monoxide generated in the steam reforming reaction are introduced into the exhaust passage 12 upstream of the first monolith 14 together with hydrocarbons that have not been subjected to the steam reforming reaction. Hydrogen, carbon monoxide, and hydrocarbons introduced into the exhaust passage 12 are mixed with the exhaust flowing through the exhaust passage 12 to increase the hydrogen content in the exhaust.
[0019]
Then, when the exhaust gas having an increased hydrogen content passes through the first monolith 14, it comes into contact with the first catalyst applied here, and a reduction and purification reaction such as the following equation occurs.
NO x + H 2 → N 2 + H 2 O
NO x + C m H n → N 2 + CO 2 + H 2 O
Therefore, nitrogen oxides in the exhaust gas react with hydrogen generated by the steam reforming reaction and hydrocarbons not subjected to the steam reforming reaction, and harmless nitrogen (N 2 ), carbon dioxide (CO 2 ) and converted to water vapor (H 2 O). For this reason, the reduction and purification reaction of nitrogen oxides is promoted by hydrogen, and the emission amount of nitrogen oxides can be further reduced.
[0020]
Note that carbon monoxide generated by the steam reforming reaction in the second monolith 18 is discharged as it is from the exhaust purification device, but the discharge amount is extremely small and can be treated with an oxidation catalyst or the like. Exhaust properties are not affected.
FIG. 2 shows an overall configuration of a second embodiment of the exhaust emission control device according to the present invention. In the second embodiment, in order to suppress the consumption of gaseous fuel as a reducing agent as much as possible, a mechanism for controlling the addition of gaseous fuel according to the nitrogen oxide concentration in the exhaust is added to the first embodiment. Is. In addition, about the same structure as previous 1st Embodiment, the description is abbreviate | omitted by attaching | subjecting the same code | symbol.
[0021]
The exhaust bypass passage 16 upstream of the second monolith 18 is provided with, for example, a pump 30 (forced bypass means) driven by an electric motor in order to ensure the introduction of exhaust into the second monolith 18. . The introduction passage 22 is provided with an electromagnetic on-off valve 32 that opens and closes the introduction passage 22 in order to control the amount of gaseous fuel added to the exhaust bypass passage 16. On the other hand, the exhaust passage 12 is provided with a NOx sensor 34 (concentration detection means) for detecting the nitrogen oxide concentration in the exhaust. The output from the NOx sensor 34 is input to a control unit 36 incorporating a microcomputer, and drive control of the pump 30 and the on-off valve 32 is performed by processing to be described later. Note that the addition control means is realized by software by the control unit 36.
[0022]
FIG. 3 shows the processing contents that are repeatedly executed at predetermined time intervals in the control unit 36.
In Step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the NOx sensor 34 detects the nitrogen oxide concentration in the exhaust gas.
In step 2, it is determined whether or not the detected nitrogen oxide concentration is equal to or higher than a predetermined value, that is, whether or not exhaust gas purification is insufficient due to insufficient gaseous fuel as a reducing agent. If the nitrogen oxide concentration is equal to or higher than the predetermined value, the routine proceeds to step 3 (Yes), and the on-off valve 32 is opened and the pump 30 is operated to add gaseous fuel to the exhaust bypass passage 16. . On the other hand, if the nitrogen oxide concentration is less than the predetermined value, the routine proceeds to step 4 (No), and the on-off valve 32 is closed and the pump 30 is stopped to suppress the consumption of gaseous fuel.
[0023]
According to the processing of Step 1 to Step 4 described above, the gaseous fuel is added to the exhaust bypass passage 16 only when the nitrogen oxide in the exhaust gas is greater than or equal to a predetermined value, so that the consumption amount of the gaseous fuel is suppressed as much as possible. be able to.
The gaseous fuel added to the exhaust bypass passage 16 may be set in multiple stages by referring to a map, for example, based on the nitrogen oxide concentration in the exhaust. In this case, for example, the on-off valve 32 may be duty-controlled according to the set addition amount.
[0024]
In this way, the amount of gaseous fuel added is controlled in multiple stages in accordance with the concentration of nitrogen oxides in the exhaust, so that unreacted hydrocarbons are prevented from being discharged as they are, and over a wide range. Stable exhaust purification can be performed, and exhaust properties can be improved.
[0025]
【The invention's effect】
As described above, according to the first aspect of the invention, the reduction and purification reaction of nitrogen oxides is promoted by the hydrogen generated by the steam reforming reaction, so that the emission amount of nitrogen oxides is further reduced. be able to. At this time, since the hydrocarbons are added to the second monolith only when the addition amount of the hydrocarbons is insufficient and the exhaust purification is insufficient, the consumption amount can be suppressed.
[0026]
According to the second aspect of the present invention, it is possible to suppress unreacted hydrocarbons from being discharged as they are, and it is possible to perform stable exhaust purification over a wide range and to improve exhaust properties.
According to invention of Claim 3 , hydrogen and hydrocarbons can be made to react effectively with the nitrogen oxide in exhaust_gas | exhaustion.
[0027]
According to invention of Claim 4 , a steam reforming reaction can be performed effectively.
According to the fifth aspect of the present invention, hydrogen used for reduction and purification of nitrogen oxides can be reliably generated.
According to the sixth aspect of the present invention, the forced bypass means can be operated only when hydrocarbons are added upstream of the second monolith.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a first embodiment of an exhaust emission control device according to the present invention. FIG. 2 is an overall configuration diagram of an exhaust emission control device according to a second embodiment of the present invention. Flow chart [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Gas engine 12 Exhaust passage 14 1st monolith 16 Exhaust bypass passage 18 2nd monolith 20 Fuel tank 22 Introduction passage 30 Pump 32 On-off valve 34 NOx sensor 36 Control unit

Claims (6)

排気通路に介装された第1のモノリスと、
排気通路を流通する排気の一部を迂回させ、前記第1のモノリス上流側に導入する排気迂回通路と、
該排気迂回通路に介装された第2のモノリスと、
前記第1及び第2のモノリスに、夫々塗布された第1及び第2の触媒と、
前記第2のモノリス上流側に炭化水素類を添加する添加手段と、
前記第1のモノリス上流側に位置する排気通路を流通する排気中の窒素酸化物濃度を検出する濃度検出手段と、
該濃度検出手段により検出された窒素酸化物濃度が所定値以上のときのみ、前記添加手段を制御して、前記第2のモノリス上流側に炭化水素類を添加する添加制御手段と、
を含んで構成されたガスエンジンの排気浄化装置であって、
前記第2の触媒は、排気中の水蒸気に対して、前記添加手段により添加された炭化水素類を反応させて、次式のような水蒸気改質反応を起こさせる一方、
mn+mH2O→(m+n/2)H2+mCO
前記第1の触媒は、排気中の窒素酸化物に対して、前記第2の触媒により生成された水素及び未転化の炭化水素類を反応させて、夫々次式のような還元反応を起こさせる
NOx+H2→N2+H2
NOx+Cmn→N2+CO2+H2
ことを特徴とするガスエンジンの排気浄化装置。
A first monolith interposed in the exhaust passage;
An exhaust bypass passage that bypasses a part of the exhaust gas flowing through the exhaust passage and is introduced upstream of the first monolith;
A second monolith interposed in the exhaust bypass passage;
First and second catalysts respectively applied to the first and second monoliths;
Adding means for adding hydrocarbons upstream of the second monolith;
Concentration detecting means for detecting the concentration of nitrogen oxide in the exhaust flowing through the exhaust passage located upstream of the first monolith;
An addition control means for controlling the addition means only when the nitrogen oxide concentration detected by the concentration detection means is a predetermined value or more, and adding hydrocarbons upstream of the second monolith;
An exhaust purification device for a gas engine configured to include:
While the second catalyst reacts the hydrocarbons added by the adding means with the steam in the exhaust gas to cause a steam reforming reaction such as the following formula,
C m H n + mH 2 O → (m + n / 2) H 2 + mCO
The first catalyst causes the nitrogen oxides in the exhaust to react with the hydrogen produced by the second catalyst and unconverted hydrocarbons to cause reduction reactions as shown in the following equations, respectively. NO x + H 2 → N 2 + H 2 O
NO x + C m H n → N 2 + CO 2 + H 2 O
An exhaust emission control device for a gas engine.
前記添加制御手段は、前記濃度検出手段により検出された窒素酸化物濃度に基づいて、前記第2モノリス上流側に添加する炭化水素類の添加量を増減することを特徴とする請求項1記載のガスエンジンの排気浄化装置。 The said addition control means increases / decreases the addition amount of the hydrocarbons added to a said 2nd monolith upstream based on the nitrogen oxide density | concentration detected by the said density | concentration detection means . Exhaust gas purification device for gas engines. 前記第1の触媒は、白金担持ゼオライト又は銀担持アルミナであることを特徴とする請求項1又は請求項2に記載のガスエンジンの排気浄化装置。The exhaust purification device for a gas engine according to claim 1 or 2, wherein the first catalyst is platinum-supported zeolite or silver-supported alumina . 前記第2の触媒は、ロジウム担持ジルコニア又はロジウム担持アルミナであることを特徴とする請求項1〜請求項3のいずれか1つに記載のガスエンジンの排気浄化装置。The exhaust purification device for a gas engine according to any one of claims 1 to 3, wherein the second catalyst is rhodium-supported zirconia or rhodium-supported alumina . 前記排気迂回通路には、前記排気通路を流通する排気の一部を強制的に迂回させる強制迂回手段が介装されたことを特徴とする請求項1〜請求項4のいずれか1つに記載のガスエンジンの排気浄化装置。 5. The forced bypass means for forcibly bypassing a part of the exhaust gas flowing through the exhaust passage is interposed in the exhaust bypass path. Gas engine exhaust purification device. 前記添加制御手段は、前記第2のモノリス上流側に炭化水素類を添加するときのみ、前記強制迂回手段を作動させることを特徴とする請求項5記載のガスエンジンの排気浄化装置。 6. The exhaust gas purification apparatus for a gas engine according to claim 5, wherein the addition control means operates the forced bypass means only when adding hydrocarbons upstream of the second monolith .
JP2001357487A 2001-11-22 2001-11-22 Exhaust gas purification device for gas engine Expired - Fee Related JP3905359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357487A JP3905359B2 (en) 2001-11-22 2001-11-22 Exhaust gas purification device for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357487A JP3905359B2 (en) 2001-11-22 2001-11-22 Exhaust gas purification device for gas engine

Publications (2)

Publication Number Publication Date
JP2003161143A JP2003161143A (en) 2003-06-06
JP3905359B2 true JP3905359B2 (en) 2007-04-18

Family

ID=19168828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357487A Expired - Fee Related JP3905359B2 (en) 2001-11-22 2001-11-22 Exhaust gas purification device for gas engine

Country Status (1)

Country Link
JP (1) JP3905359B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278162A (en) * 2006-04-06 2007-10-25 Hino Motors Ltd Exhaust emission control device for diesel engine
US20100251700A1 (en) * 2009-04-02 2010-10-07 Basf Catalysts Llc HC-SCR System for Lean Burn Engines
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
JP6404181B2 (en) * 2015-06-03 2018-10-10 愛三工業株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JP2003161143A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US7472545B2 (en) Engine exhaust emission control system providing on-board ammonia generation
EP0616115B1 (en) Exhaust gas purifying apparatus and method for internal combustion engine
AU2008268742B2 (en) NOx purification system, and method for control of NOx purification system
EP2230002B1 (en) NOx reduction catalyst and exhaust system using the same
EP1674682B1 (en) Exhaust gas purifying apparatus for internal combustion engine
JPH09317446A (en) Exhaust gas purifying device for internal combustion engine
JP2967113B2 (en) Exhaust gas purification method
US6651424B1 (en) Catalyst systems
JP2007332881A (en) Exhaust emission control device and exhaust emission control method using this device
US5419124A (en) Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with sample processing oxygen sensor regeneration control
JP2003314328A (en) Exhaust emission control device
US5375414A (en) Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with internal engine purge flow control
JP3905359B2 (en) Exhaust gas purification device for gas engine
EP1536111B1 (en) Apparatus and method for removal of by-products from exhaust gases of a combustion engine
US10823025B2 (en) Apparatus for purifying exhaust gas
JP3107294B2 (en) Exhaust gas purification device for internal combustion engine
JPH05171921A (en) Exhaust gas purifying device
US11686236B1 (en) Device for the reduction of ammonia and nitrogen oxides emissions
JP2001140630A (en) Exhaust emission control device for internal combustion engine
JP2001327838A (en) Exhaust cleaning device for diesel engine
JP4326723B2 (en) Exhaust gas purification device for internal combustion engine
JP3815236B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2002303127A (en) Exhaust emission control system
KR20000015196U (en) Canister Exhaust Treatment System
JP2008291673A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Ref document number: 3905359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees