JP3903653B2 - Water distribution facility control equipment - Google Patents

Water distribution facility control equipment Download PDF

Info

Publication number
JP3903653B2
JP3903653B2 JP21937899A JP21937899A JP3903653B2 JP 3903653 B2 JP3903653 B2 JP 3903653B2 JP 21937899 A JP21937899 A JP 21937899A JP 21937899 A JP21937899 A JP 21937899A JP 3903653 B2 JP3903653 B2 JP 3903653B2
Authority
JP
Japan
Prior art keywords
water
flow rate
water level
amount
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21937899A
Other languages
Japanese (ja)
Other versions
JP2001042949A (en
Inventor
信夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP21937899A priority Critical patent/JP3903653B2/en
Publication of JP2001042949A publication Critical patent/JP2001042949A/en
Application granted granted Critical
Publication of JP3903653B2 publication Critical patent/JP3903653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Flow Control (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、上水道の配水施設において、配水池を制御および配水池への送水量を制御する配水施設制御装置に関するものである。
【0002】
【従来の技術】
配水池については「水道施設設計・解説」(厚生省監修・1990年版)には以下のように記されている。配水池は、浄水場からの送水を受け、当該配水区域域の需要量に応じた配水を行うための貯留池で、配水量の時間変動を調整する機能とともに、配水池より上流側の事故発生時などにも、所定の水量、水圧を維持できる機能を持つことが必要である。
【0003】
一方、浄水施設は、計画一日最大給水量を基準としているので、毎時一定量の浄水が配水池に送られる。配水池の制御としては、これら2つの条件をバランス良く満たすことが要求される。現在の技術としては、「水道施設設計・解説」の要求を完全に満たしているとは言い難いが、代表的な制御としては水位一定制御や時間ごとに設定した水位でのレベル制御などが上げられる。
【0004】
図5は従来の配水池水位制御をポンプ台数制御に適用した配水施設の概略構成図で、1は配水池、2は配水池1の水位を計測する水位計である。3は浄水場7から配水池1に水を送水する複数台からなる送水ポンプで、これら送水ポンプ3は、ポンプ台数制御部4からのポンプ起動停止指令により制御される。ポンプ台数制御部4は水位計2からの信号により運転ポンプ台数が決定される。5は配水区域の管網である。
【0005】
上記のように構成された配水施設において、配水池1の現在水位が設定された設定最高水位HWL(ポンプ全台停止)より高くなった場合、ポンプは全台停止とするが、水位が以下の場合にはポンプの運転台数を次のように制御する。
【0006】
現在水位がポンプ制御水位1(LT1)より高くなった場合、次式からポンプは1台運転とする。なお、LWLは設定最低水位である。
【0007】
LT1=((HWL−LWL)/5)×1−HWL
次に、現在水位がポンプ制御水位2(LT2)より高くなった場合、次式からポンプは2台運転とする。
【0008】
LT2=((HWL−LWL)/5)×2−HWL
以下、現在水位がポンプ制御水位3(LT3)より高くなった場合、次式からポンプは3台運転とし、
LT3=((HWL−LWL)/5)×3−HWL
また、現在水位がポンプ制御水位4(LT4)より高くなった場合、次式からポンプは4台運転とする。
【0009】
LT4=((HWL−LWL)/5)×4−HWL
なお、現在水位がLT4より低くなった場合は、ポンプは5台運転とする。
【0010】
【発明が解決しようとする課題】
配水施設の配水池には上記の様に、「配水量の時間変動」の緩衝機能が求められる。最も簡易な制御としては水位一定制御が上げられるが、水位一定制御ではほとんど緩衝機能が働かない。配水の時間変動を考慮した、時間ごとの目標水位を設定する制御方法はある程度の成果を上げているが、日々の配水パタンが一定では無いため、うまく運用されない日が頻繁に発生してしまう問題がある。
【0011】
また、配水池には、配水池より上流側の事故発生時の配水能力が求められる。この要求(事故対応)をより良く満たすため、配水池の水位は、有効水深が常に高めに設定されている。しかし、上記「緩衝機能」と「事故対応」の要求は相反する要求であり、これらの要求をお互いに満たした制御をする必要があるが、そのような理想的な制御は現状ではなされていない。
【0012】
ところで配水池は実際に多く運用され、浄水場などからの送水を受けている場合が多い。複数の配水池へ送水している浄水場では、それぞれの配水池への送水量を制御していることが多い。ところが実際には、理想的な制御を行うことが難しい。これは主に配水量の変化が複雑なためにおこる問題である。
【0013】
水道施設の送水部分は、広域水道供給事業体によって営まれおり、各配水施設は地方自治体が運営している場合が多い。通常、広域水道供給事業体と地方自治体との設備間に、配水量データの送受信機能を持たないため、送水量を決めるプロセスに配水量を直接測定して利用することが出来ない状態である。
【0014】
この発明は上記の事情に鑑みてなされたもので、配水池の水位と配水池への送水量から配水量を求め、需要予測を用いて配水施設制御を行うようにした配水施設制御装置を提供することを課題とする。
【0015】
【課題を解決するための手段】
上記の課題を達成するために、この発明は、複数の送水ポンプと、これら送水ポンプにより浄水場から送水を受け、当該配水区域に配水を行う配水池と、この配水池に設置され、配水池の水位を計測する水位計と、この水位計で計測した水位データに応じて制御され、前記複数の送水ポンプの起動停止指令を送出するポンプ台数制御部とを備えた配水施設制御装置において、
前記送水ポンプと配水池とを結ぶ送水管路に設けられ、配水池に送水される送水量を制御する流量調節弁および送水量を計測する流量計と、計測された送水量および前記配水池の水位データが供給され、これらから目標流量値を演算する流量演算装置と、この流量演算装置で演算された目標流量値により前記ポンプ台数制御部を制御するとともに、この目標流量値と前記流量計で計測された送水量とが供給され、目標流量値に適合するように前記流量調節弁を制御する流量制御装置とを備え
前記流量演算装置は、流量計で配水池への送水量を計測した値と水位計で計測した水位データとから時間あたりの配水量を演算する配水量演算部と、この配水量演算部で演算された時間あたりの配水量と過去のデータを用いて需要予測を行う需要予測部と、この需要予測部により予測された予測配水量と水位計による現在の水位データとから予測水位を演算する予測水位演算部と、この予測水位演算部により得られた予測水位と流量計で計測した値とから目標流量値を演算する流量演算部とから構成したことにより、送水制御のみで配水施設の機能を生かした自動制御が可能になり、また送水量を安定させることができるとともに、ポンプを安定して稼動することができる特徴がある。
【0017】
さらに、前記需要予測部は、配水量演算部で演算された時間あたりの配水量を、単位時間の積算データとして時系列的に蓄えて、過去の配水量時系列データをn次元、t時間遅れの状態空間に埋め込むようにしたカオス需要予測を採用したことにより、未来に配水池水位を予測し、配水施設を自動制御することが可能になる。
【0018】
【発明の実施の形態】
以下この発明の実施の形態を図面に基づいて説明する。図1はこの発明の実施の形態を示す配水施設制御装置の概略構成説明図で、図1において、河川等から導入した水を浄水場11で浄水して図示しない浄水池に一時蓄える。この浄水池に蓄えられた浄水は、複数台の送水ポンプ12により送水管路26を介して配水池15a,15bに送水される。送水管路26の途中には、流量調節弁13a,13bおよび流量計14a,14bが設けられる。配水池15a,15bからは各配水区域16a,16bの管網に需要水量に応じて浄水が配水される。なお、送水ポンプ12は、後述するポンプ台数制御部で制御される。
【0019】
配水池15a,15bには水位計17a,17bが設けられていて、この水位計17a,17bで得られた水位信号は統合制御装置18に供給される。統合制御装置18は、流量演算装置19a,19bとポンプ台数制御部20から構成され、流量演算装置19a,19bは同一構成であるので、流量演算装置19aを例にとって以下述べる。
【0020】
流量演算装置19aは、配水池15aへの送水量を流量計14aで計測した値と水位計17aからの値とから時間あたりの配水量を演算する配水量演算部21と、この配水量演算部21で演算された時間あたりの配水量と過去のデータを用いて需要予測を行う需要予測部22と、この需要予測部22により予測された予測配水量と水位計17aによる現在の水位とから予測水位を演算する予測水位演算部23と、この予測水位演算部23により得られた予測水位と流量計14aで計測した値とから目標流量値を演算する流量演算部24とから構成される。
【0021】
流量演算部24で演算された目標流量値は流量制御装置25aに供給される。この流量制御装置25aには、流量計14aで計測した値も入力されていて、この計測値が目標流量値に合うように流量調節弁13aが流量制御装置25aからの出力により調節される。また、流量演算部24で演算された目標流量値は、ポンプ台数制御部20にも供給されて、ポンプ台数がその目標流量値に合うように制御される。
【0022】
上記制御は配水池15aの場合のものであるが、配水池15bの場合も同様に流量演算装置19bと流量制御装置15bの出力で制御される。なお、配水池が3つ以上の場合も同様に制御される。
【0023】
次に、流量演算装置19aの各演算部と予測部の詳細について述べる。
【0024】
▲1▼配水量演算部21の配水量は、以下の計算式によって計算される。
【0025】
Qout=ΣQin+(LL−L0)×S
Qout :配水量(1時間分)
ΣQin :送水量(1時間積算)
LL :配水池水位(1時間前)
L0 :配水池水位(現在値)
S :配水池底面積
▲2▼需要予測部22は、カオス理論による需要予測法を採用した。この予測法を採用したのは、検討した需要予測手法の中で最も成績が良かったからである。この予測法は、配水量演算部21で計算された配水量を用いて、需要予測を行い、時間あたりの配水量を1時間後、2時間後、3時間後、…と予測する。
【0026】
以下、カオス需要予測法について述べる。需要予測部22は配水量を単位時間の積算データとして時系列的に蓄え、その過去の配水量の時系列データをn次元、t時間遅れの状態空間に埋め込むようにしたものである。
【0027】
まず,配水量の時系列データy(t)からベクトル(y(t),y(t-τ),y(t-2τ),…y(t-(n-1)τ))をつくる(τは遅れ時間)。このベクトルはn次元再構成状態空間「Rn」の1点を示すことになる。従って、時間tを変化させると、このn次元再構成状態空間に軌道が描ける。この様子を図2に示す。図2に示したように、いま、最新の観測によって得られたデータベクトルz(T)をn次元再構成状態空間にプロットし、その近傍のデータベクトルをx(i)とし、x(i)のsステップ先の状態をx(i+s)とする。そして、予測すべきsステップ先のデータベクトルz(T+s)の予測値(以下予測値には記号∧を付す)を∧z(T+s)とする。この様子を図3に示す。状態x(i)のsステップ後の状態x(i+s)への変化は、x(i),x(i+s)を用いて次のように言語的表現で表すことができる。
【0028】
IF x(T) is x(i) THEN x(T+s) is x(i+s) ……(1)
この(1)式において、x(T)はn次元再構成状態空間におけるz(T)の近傍のデータベクトルを表す集合、x(T+s)はx(T)のsステップ後のデータベクトルを表す集合であり、x(i)は、z(T)の近傍のデータベクトルであるから、状態z(T)から状態z(T+s)のダイナミクスを、状態x(i)から状態x(i+s)のダイナミクスから推定することができる。
【0029】
n次元再構成状態空間に埋め込まれたアトラクタは滑らかな多様体であり、z(T)からz(T+s)への軌道はz(T)からx(i)へのユークリッド距離によって影響される。ところで、
x(i)=(y(i),y(i-τ),y(i-2τ),…y(i-(n-1)τ)) ……(2)
x(i+s)=(y(i+s),y(i+s-τ),y(i+s-2τ),…y(i+s-(n-1)τ))
であるので、(2)式はn次元再構成状態空間におけるj軸に注目すると、
IF aj(T) is yj(i) THEN aj(T+s) is yj(i+s) (j=1〜n) …(3)
ここで、aj(T)は、z(T)の近傍値x(i)のn次元再構成状態空間におけるj軸成分、aj(T+s)は、x(i+s)のn次元再構成状態空間におけるj軸成分、nは埋め込み次元数である。
【0030】
また、z(T)から∧z(T+s)への軌道は、z(T)からx(i)へのベクトル距離によって影響されるが、埋め込まれたアトラクタが滑らかな多様体であり、これは非線形な影響を受ける。よってx(T)からx(T+s)へのマッピングを非線形化するために、(3)式をファジィ関数により表現すると、次式のようになる。
【0031】
IF aj(T) is (i) THEN aj(T+s) is (i+s) (j=1〜n) …(4)
ところで、z(T)=(y(T),y(T-τ),y(T-2τ),…y(T-(n-1)τ))であるので、z(T)のn次元再構成状態空間におけるj軸成分はyj(T)となる。よって、データベクトルz(T)のsステップ後のデータベクトルz(T+s)への予測値∧z(T+s)のj軸成分は、(4)式のaj(T)にyj(T)を代入しファジィ推論をすることにより、aj(T+s)として求めることができる。
【0032】
▲3▼予測水位演算部23における予測水位計算は、それぞれの、配水池15a,15bに対して行われる。まず、それぞれの、配水池15a.15bについて、予測水位を計算する。需要予測部22で採用した単位時間後までの、予測水位を計算する。
【0033】
1時間後の予測水位(L1)は、L1=(Q0−Q1)/S+L0
2時間後の予測水位(L2)は、L2=(Q0−Q2)/S+L1
同様に、3時間後から12時間後までの予測水位を計算すると以下のようになる。
【0034】
L3=(Q0−Q3)/S+L2
L4=(Q0−Q4)/S+L3
L5=(Q0−Q5)/S+L4



L12=(Q0−Q12)/S+L11
なお、上記各符号の意味を以下に示す。
【0035】
S :配水池底面積
L0 :現在水位
L1 :1時間後の水位
L2 :2時間後の水位
L3 :3時間後の水位
L4 :4時間後の水位
L5 :5時間後の水位
L6 :6時間後の水位
L7 :7時間後の水位
L8 :8時間後の水位
L9 :9時間後の水位
L10 :10時間後の水位
L11 :11時間後の水位
L12 :12時間後の水位
Q0 :1時間あたりの送水ポンプ送水量(現状の値の積算)
Q1 :1時間後の予測配水量(単位時間あたり)
Q2 :2時間後の予測配水量(単位時間あたり)
Q3 :3時間後の予測配水量(単位時間あたり)
Q4 :4時間後の予測配水量(単位時間あたり)
Q5 :5時間後の予測配水量(単位時間あたり)
Q6 :6時間後の予測配水量(単位時間あたり)
Q7 :7時間後の予測配水量(単位時間あたり)
Q8 :8時間後の予測配水量(単位時間あたり)
Q9 :9時間後の予測配水量(単位時間あたり)
Q10 :10時間後の予測配水量(単位時間あたり)
Q11 :11時間後の予測配水量(単位時間あたり)
Q12 :12時間後の予測配水量(単位時間あたり)
▲4▼流量演算部24では、予め設定された予測有効数(ET)の範囲で、予測水位がHWLより高くなった場合には、流量設定値を下げ、予め設定された予測有効数(ET)の範囲で、予測水位がLWLより低くなった場合には、流量設定値を上げる。
【0036】
HWL:流量減少水位
LWL:流量増加水位
ET :予測有効数
上記のように構成された実施の形態を用いて配水池を制御した結果のトレンドグラフを図4に示す。このときの設定値は以下の通りである。
【0037】
HWL :9m
LWL :7m
単位時間 :1時間
ET :6
制御周期 :1時間
配水池の有効水深:10m。
【0038】
なお、水位7m〜9m(貯水率70%〜90%)という厳しい条件にもかかわらず、配水池の水位は安定して良好な状態で運用されていて、同時に送水流量も安定している。従って、配水池の運用としては良好である。この図4に示す7日間ポンプは2台の定常運転であった。流量が平均的に運用されるためポンプの台数が安定して運用されている。
【0039】
前述したように本水道施設の送水部分は、広域水道供給事業体によって営まれおり、各配水施設は地方自治体が運営している。広域水道供給事業体と地方自治体との設備間に、配水量データの送受信機能を持たないため、送水量を決めるプロセスに配水量を直接測定して利用することが出来ない。しかし、この発明により広域水道供給事業体の制御設備のみで、地方自治体が運営する配水池の水位を理想的に制御出来る利点がある。
【0040】
【発明の効果】
以上述べたように、この発明によれば、以下のような効果が得られる。
(1)配水池の水位と配水池への送水量から配水量を求め、需要予測を用いた配水施設制御を行う事により、配水量のデータが無い送水制御装置のみで配水施設の機能を生かした自動制御ができるようになる。
(2)配水池の水位と配水池への送水量から配水量を求め、需要予測を用いた配水施設制御を行う事により、配水量のデータが無い送水制御装置のみで流量調節弁の開度変更回数を少なくすることができ、設備や機器を大事に使用してそれらの耐久性の向上を図ることができるようになる。
(3)配水池の水位と配水池への送水量から配水量を求め、需要予測を用いた配水施設制御を行う事により、配水量のデータが無い送水制御装置のみでポンプを安定して稼動でき、省エネルギーな運転ができるようになる。
(4)配水池の水位と配水池への送水量から配水量を求め、需要予測を用いた配水施設制御を行う事により、配水量のデータが無い送水制御装置のみで送水量を安定させることができ、浄水場で生成される浄水量を安定させることができるようになる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す概略構成説明図。
【図2】時系列配水量データのn次元再構成空間への埋め込み説明図。
【図3】 x(T)からx(T+s)へのダイナミクス説明図。
【図4】実施の形態を使用した7日間のトレンドグラフ。
【図5】従来の配水池水位制御をポンプ台数制御に適用した配水施設の概略構成図。
【符号の説明】
11…浄水場
12…送水ポンプ
13a,13b…流量調節弁
14a,14b…流量計
15a,15b…配水池
16a,16b…配水区域
17a,17b…水位計
18…統合制御装置
19a,19b…流量演算装置
20…ポンプ台数制御部
21…配水量演算部
22…重要予測部
23…予測水位演算部
24…流量演算部
25a,25b…流量制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water distribution facility control apparatus for controlling a water distribution reservoir and controlling the amount of water supplied to the water distribution reservoir in a water distribution facility.
[0002]
[Prior art]
The distribution reservoir is described in “Water Supply Facility Design and Commentary” (supervised by the Ministry of Health and Welfare, 1990 edition) as follows. Reservoir is a reservoir that receives water from the water treatment plant and distributes water according to the amount of demand in the distribution area. Along with the function to adjust the time fluctuation of the water distribution, an accident occurs upstream of the reservoir. It is necessary to have a function capable of maintaining a predetermined amount of water and water pressure at times.
[0003]
On the other hand, since the water purification facility is based on the planned maximum daily water supply, a fixed amount of purified water is sent to the reservoir every hour. As control of the distribution reservoir, it is required to satisfy these two conditions in a well-balanced manner. Although it is difficult to say that the current technology completely satisfies the requirements of “design and explanation of water supply facilities”, typical control includes level control at constant water level and water level set at each time. It is done.
[0004]
FIG. 5 is a schematic configuration diagram of a distribution facility in which conventional distribution reservoir water level control is applied to control of the number of pumps. 1 is a water reservoir, and 2 is a water level meter that measures the water level of the distribution reservoir 1. Reference numeral 3 denotes a water pump composed of a plurality of units that feeds water from the water purification plant 7 to the distribution reservoir 1. These water pumps 3 are controlled by a pump start / stop command from the pump number control unit 4. The number-of-pumps control unit 4 determines the number of operating pumps based on a signal from the water level gauge 2. 5 is a pipe network of the water distribution area.
[0005]
In the distribution facility configured as described above, when the current water level of the distribution reservoir 1 is higher than the set maximum water level HWL (all pumps stopped), the pumps are all stopped, but the water levels are as follows: In this case, the number of operating pumps is controlled as follows.
[0006]
When the current water level becomes higher than the pump control water level 1 (LT1), one pump is operated from the following equation. LWL is a set minimum water level.
[0007]
LT1 = ((HWL−LWL) / 5) × 1−HWL
Next, when the current water level becomes higher than the pump control water level 2 (LT2), two pumps are operated from the following equation.
[0008]
LT2 = ((HWL−LWL) / 5) × 2−HWL
Hereinafter, when the current water level becomes higher than the pump control water level 3 (LT3), the pump is operated from the following formula,
LT3 = ((HWL−LWL) / 5) × 3-HWL
When the current water level becomes higher than the pump control water level 4 (LT4), four pumps are operated from the following equation.
[0009]
LT4 = ((HWL−LWL) / 5) × 4-HWL
If the current water level is lower than LT4, 5 pumps are operated.
[0010]
[Problems to be solved by the invention]
As described above, the distribution pond of the distribution facility is required to have a buffer function of “time fluctuation of the distribution amount”. The simplest control is the constant water level control, but the constant water level control has little buffer function. Although the control method for setting the target water level for each hour considering the time variation of the water distribution has achieved some results, the daily distribution pattern is not constant, so there are problems that frequently occur days that do not operate well There is.
[0011]
In addition, the distribution reservoir is required to have the capacity to distribute water when an accident occurs upstream from the distribution reservoir. In order to better satisfy this requirement (accident response), the effective water depth is always set high for the water level of the reservoir. However, the requirements for the "buffer function" and "accident response" are contradictory requirements, and it is necessary to perform control that satisfies these requirements, but such ideal control has not been achieved at present. .
[0012]
By the way, many reservoirs are actually operated and often receive water from water purification plants. In water treatment plants that supply water to multiple reservoirs, the amount of water supplied to each reservoir is often controlled. However, in practice, it is difficult to perform ideal control. This is a problem mainly caused by the complicated changes in water distribution.
[0013]
The water supply part of the water supply facility is operated by a wide-area water supply entity, and each water distribution facility is often operated by a local government. Usually, since there is no transmission / reception function of the distribution amount data between the facilities of the wide area water supply entity and the local government, the distribution amount cannot be directly measured and used in the process of determining the amount of water supply.
[0014]
The present invention has been made in view of the above circumstances, and provides a water distribution facility control apparatus that obtains the amount of water distribution from the water level of the water reservoir and the amount of water supplied to the water reservoir, and performs water distribution facility control using demand prediction. The task is to do.
[0015]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a plurality of water pumps, a water reservoir that receives water from a water purification plant by these water pumps, and distributes water to the water distribution area, and is installed in the water reservoir. In a water distribution facility control apparatus comprising a water level meter that measures the water level of the water pump, and a pump number control unit that is controlled according to the water level data measured by the water level meter and that sends a start / stop command for the plurality of water pumps,
A flow control valve for controlling the amount of water delivered to the reservoir, a flow meter for measuring the amount of water delivered, a flow meter for measuring the amount of water delivered, and the measured amount of water delivered to the reservoir. Water level data is supplied, and the flow rate calculation device for calculating the target flow rate value from these, and the pump flow rate control unit is controlled by the target flow rate value calculated by the flow rate calculation device, and the target flow rate value and the flow meter A flow rate control device that controls the flow rate control valve so that the measured water supply amount is supplied and matches the target flow rate value ;
The flow rate calculation device includes a water flow rate calculation unit that calculates a water flow rate per hour based on a value measured by a flow meter and a water level data measured by a water level meter. A forecast unit that calculates the predicted water level from the forecasted water volume predicted by the demand forecasting unit and the current water level data by the water level meter, which forecasts demand using the amount of water distribution per hour and past data By configuring the water level calculation unit and the flow rate calculation unit that calculates the target flow rate value from the predicted water level obtained by the predicted water level calculation unit and the value measured by the flow meter, the function of the water distribution facility can be achieved only by water supply control. This makes it possible to use automatic control, to stabilize the amount of water supply, and to operate the pump stably.
[0017]
Further, the demand prediction unit stores the water distribution amount per hour calculated by the water distribution amount calculation unit in a time series as integrated data of unit time, and the past water distribution time series data is delayed by n dimensions and t time. By adopting the chaotic demand forecast embedded in the state space, it is possible to predict the reservoir water level in the future and automatically control the distribution facility.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration explanatory view of a water distribution facility control apparatus showing an embodiment of the present invention. In FIG. 1, water introduced from a river or the like is purified at a water purification plant 11 and temporarily stored in a water purification pond (not shown). The purified water stored in the water purification pond is sent to the distribution reservoirs 15a and 15b through the water supply pipes 26 by a plurality of water supply pumps 12. In the middle of the water supply pipeline 26, flow rate control valves 13a and 13b and flow meters 14a and 14b are provided. From the reservoirs 15a and 15b, purified water is distributed to the pipe networks of the respective distribution areas 16a and 16b according to the amount of demand water. The water pump 12 is controlled by a pump number control unit described later.
[0019]
The water reservoirs 15a and 15b are provided with water level meters 17a and 17b, and the water level signals obtained by the water level meters 17a and 17b are supplied to the integrated control device 18. The integrated control device 18 is composed of the flow rate calculation devices 19a and 19b and the pump number control unit 20, and the flow rate calculation devices 19a and 19b have the same configuration. Therefore, the flow rate calculation device 19a will be described below as an example.
[0020]
The flow rate calculation device 19a includes a water flow rate calculation unit 21 that calculates a water flow rate per hour from a value measured by the flow meter 14a and a value from the water level meter 17a, and a water flow rate calculation unit. Demand prediction unit 22 that performs demand prediction using the amount of water distribution per hour calculated in 21 and past data, and prediction from the predicted water distribution amount predicted by this demand prediction unit 22 and the current water level by water level meter 17a It is comprised from the predicted water level calculating part 23 which calculates a water level, and the flow volume calculating part 24 which calculates a target flow value from the predicted water level obtained by this predicted water level calculating part 23 and the value measured by the flowmeter 14a.
[0021]
The target flow rate value calculated by the flow rate calculation unit 24 is supplied to the flow rate control device 25a. A value measured by the flow meter 14a is also input to the flow control device 25a, and the flow control valve 13a is adjusted by an output from the flow control device 25a so that the measured value matches the target flow value. The target flow rate value calculated by the flow rate calculation unit 24 is also supplied to the pump number control unit 20 so that the number of pumps is controlled to match the target flow rate value.
[0022]
The above control is for the distribution reservoir 15a, but similarly for the distribution reservoir 15b, it is controlled by the outputs of the flow rate calculation device 19b and the flow rate control device 15b. The same control is performed when there are three or more reservoirs.
[0023]
Next, details of each calculation unit and prediction unit of the flow rate calculation device 19a will be described.
[0024]
(1) The water distribution amount of the water distribution amount calculation unit 21 is calculated by the following formula.
[0025]
Qout = ΣQin + (LL−L0) × S
Qout: Amount of water distribution (for 1 hour)
ΣQin: Amount of water supply (1 hour integration)
LL: Reservoir level (1 hour ago)
L0: Distribution reservoir water level (current value)
S: Reservoir bottom area (2) The demand forecasting unit 22 employs a demand forecasting method based on chaos theory. This prediction method was adopted because the results were the best among the demand prediction methods studied. This prediction method performs demand prediction using the water distribution amount calculated by the water distribution amount calculation unit 21 and predicts the water distribution amount per hour as 1 hour, 2 hours, 3 hours, and so on.
[0026]
The chaos demand forecasting method is described below. The demand prediction unit 22 stores the water distribution amount in a time series as unit time integrated data, and embeds the time series data of the past water distribution amount in an n-dimensional, t-time delayed state space.
[0027]
First, a vector (y (t), y (t-τ), y (t-2τ), ... y (t- (n-1) τ)) is created from the time series data y (t) of water distribution ( τ is the delay time). This vector represents one point in the n-dimensional reconstruction state space “R n ”. Accordingly, when the time t is changed, a trajectory can be drawn in this n-dimensional reconstructed state space. This is shown in FIG. As shown in FIG. 2, the data vector z (T) obtained by the latest observation is plotted in the n-dimensional reconstructed state space, the data vector in the vicinity thereof is x (i), and x (i) Let x (i + s) be the state after s steps. Then, a predicted value of the data vector z (T + s) of s steps ahead to be predicted (hereinafter, the predicted value is denoted by symbol ∧) is set as ∧z (T + s). This is shown in FIG. The change of the state x (i) to the state x (i + s) after the s step can be expressed by a linguistic expression using x (i) and x (i + s) as follows.
[0028]
IF x (T) is x (i) THEN x (T + s) is x (i + s) (1)
In this equation (1), x (T) is a set representing a data vector in the vicinity of z (T) in the n-dimensional reconstruction state space, and x (T + s) is a data vector after s steps of x (T). X (i) is a data vector in the vicinity of z (T), so the dynamics from state z (T) to state z (T + s) are changed from state x (i) to state x. It can be estimated from the dynamics of (i + s).
[0029]
The attractor embedded in the n-dimensional reconstruction state space is a smooth manifold, and the trajectory from z (T) to z (T + s) is affected by the Euclidean distance from z (T) to x (i). The by the way,
x (i) = (y (i), y (i-τ), y (i-2τ), ... y (i- (n-1) τ)) (2)
x (i + s) = (y (i + s), y (i + s-τ), y (i + s-2τ), ... y (i + s- (n-1) τ))
Therefore, when focusing on the j-axis in the n-dimensional reconstructed state space, Equation (2)
IF aj (T) is yj (i) THEN aj (T + s) is yj (i + s) (j = 1 to n) (3)
Here, aj (T) is the j-axis component in the n-dimensional reconstruction state space of the neighborhood value x (i) of z (T), and aj (T + s) is the n-dimensional reconstruction of x (i + s). The j-axis component in the configuration state space, n is the number of embedding dimensions.
[0030]
Also, the trajectory from z (T) to ∧z (T + s) is affected by the vector distance from z (T) to x (i), but the embedded attractor is a smooth manifold, This is subject to nonlinear effects. Therefore, in order to make the mapping from x (T) to x (T + s) non-linear, when the expression (3) is expressed by a fuzzy function, the following expression is obtained.
[0031]
IF aj (T) is (i) THEN aj (T + s) is (i + s) (j = 1〜n)… (4)
By the way, since z (T) = (y (T), y (T-τ), y (T-2τ), ... y (T- (n-1) τ)), n of z (T) The j-axis component in the dimensional reconstruction state space is yj (T). Therefore, the j-axis component of the predicted value ∧z (T + s) to the data vector z (T + s) after s steps of the data vector z (T) is expressed as yj (T) in the expression (4). By substituting T) and performing fuzzy inference, it can be obtained as aj (T + s).
[0032]
(3) The predicted water level calculation in the predicted water level calculation unit 23 is performed for each of the reservoirs 15a and 15b. First, each reservoir 15a. The predicted water level is calculated for 15b. The predicted water level until after the unit time adopted by the demand prediction unit 22 is calculated.
[0033]
The predicted water level (L1) after 1 hour is L1 = (Q0−Q1) / S + L0
The predicted water level (L2) after 2 hours is L2 = (Q0−Q2) / S + L1
Similarly, the predicted water level from 3 hours to 12 hours is calculated as follows.
[0034]
L3 = (Q0-Q3) / S + L2
L4 = (Q0-Q4) / S + L3
L5 = (Q0-Q5) / S + L4



L12 = (Q0−Q12) / S + L11
In addition, the meaning of each said code | symbol is shown below.
[0035]
S: Distribution reservoir bottom area L0: Current water level L1: Water level L2 after 1 hour: Water level L2 after 2 hours: Water level L3 after 3 hours L4: Water level after 4 hours L5: Water level after 5 hours L6: After 6 hours Water level L7: water level L7 after 7 hours: water level L9 after 8 hours: water level L10 after 9 hours: water level L10 after 10 hours: L11: water level after 11 hours L12: water level after 12 hours Q0: per hour Water supply amount of water pump (accumulation of current value)
Q1: Estimated water distribution after 1 hour (per unit time)
Q2: Estimated water distribution after 2 hours (per unit time)
Q3: Estimated water distribution after 3 hours (per unit time)
Q4: Estimated water distribution after 4 hours (per unit time)
Q5: Estimated water distribution after 5 hours (per unit time)
Q6: Expected water distribution after 6 hours (per unit time)
Q7: Expected water distribution after 7 hours (per unit time)
Q8: Estimated water distribution after 8 hours (per unit time)
Q9: Estimated water distribution after 9 hours (per unit time)
Q10: Expected water distribution after 10 hours (per unit time)
Q11: Estimated water distribution after 11 hours (per unit time)
Q12: Estimated water distribution after 12 hours (per unit time)
(4) The flow rate calculation unit 24 lowers the flow rate set value when the predicted water level is higher than HWL within the range of the preset predicted effective number (ET), and sets the preset predicted effective number (ET ) If the predicted water level is lower than LWL, the flow rate set value is increased.
[0036]
HWL: Flow rate decreasing water level LWL: Flow rate increasing water level ET: Predicted effective number FIG. 4 shows a trend graph as a result of controlling the reservoir using the embodiment configured as described above. The set values at this time are as follows.
[0037]
HWL: 9m
LWL: 7m
Unit time: 1 hour ET: 6
Control period: 1 hour Reservoir effective depth: 10m.
[0038]
In addition, despite the severe conditions of water level 7m-9m (water storage rate 70% -90%), the water level of the reservoir is being operated stably and in good condition, and at the same time the water supply flow rate is also stable. Therefore, the operation of the reservoir is good. The 7-day pump shown in FIG. Since the flow rate is operated on average, the number of pumps is operated stably.
[0039]
As mentioned above, the water supply part of this water supply facility is operated by a wide-area water supply entity, and each water distribution facility is operated by a local government. Since there is no function to send and receive water distribution data between the facilities of the wide area water supply business and the local government, it is not possible to directly measure and use the water distribution in the process of determining the water supply. However, according to the present invention, there is an advantage that the water level of the distribution reservoir operated by the local government can be ideally controlled only by the control facility of the wide area water supply business entity.
[0040]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) By determining the amount of water distribution from the water level of the distribution reservoir and the amount of water delivered to the reservoir, and controlling the distribution facility using demand forecast, the functions of the distribution facility can be made use of only the distribution control device that has no data on the distribution amount. Automatic control will be possible.
(2) Opening the flow control valve using only the water supply control device that has no data on the amount of water distribution by calculating the water distribution amount from the water level of the distribution reservoir and the amount of water delivered to the reservoir, and controlling the distribution facility using demand forecast The number of changes can be reduced, and the durability of those facilities and equipment can be improved by using them with care.
(3) By determining the amount of water distribution from the water level of the distribution reservoir and the amount of water delivered to the reservoir, and controlling the distribution facility using demand forecast, the pump can be operated stably only with the water supply control device that has no data on the distribution amount. This will enable energy-saving operation.
(4) To determine the amount of water distribution from the water level of the distribution reservoir and the amount of water delivered to the reservoir, and to control the distribution facility using demand prediction, to stabilize the amount of water supply only with a water supply control device that has no data on the amount of water distribution. It is possible to stabilize the amount of water produced at the water purification plant.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory view showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram of embedding time-series water distribution data in an n-dimensional reconstruction space.
FIG. 3 is an explanatory diagram of dynamics from x (T) to x (T + s).
FIG. 4 is a seven-day trend graph using the embodiment.
FIG. 5 is a schematic configuration diagram of a water distribution facility in which conventional water level control of a distribution reservoir is applied to control of the number of pumps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Water purification plant 12 ... Water supply pump 13a, 13b ... Flow control valve 14a, 14b ... Flowmeter 15a, 15b ... Distribution reservoir 16a, 16b ... Distribution area 17a, 17b ... Water level meter 18 ... Integrated control apparatus 19a, 19b ... Flow calculation Device 20 ... Number-of-pumps control unit 21 ... Water distribution amount calculation unit 22 ... Important prediction unit 23 ... Predicted water level calculation unit 24 ... Flow rate calculation units 25a, 25b ... Flow rate control device

Claims (2)

複数の送水ポンプと、これら送水ポンプにより浄水場から送水を受け、当該配水区域に配水を行う配水池と、この配水池に設置され、配水池の水位を計測する水位計と、この水位計で計測した水位データに応じて制御され、前記複数の送水ポンプの起動停止指令を送出するポンプ台数制御部とを備えた配水施設制御装置において、
前記送水ポンプと配水池とを結ぶ送水管路に設けられ、配水池に送水される送水量を制御する流量調節弁および送水量を計測する流量計と、計測された送水量および前記配水池の水位データが供給され、これらから目標流量値を演算する流量演算装置と、この流量演算装置で演算された目標流量値により前記ポンプ台数制御部を制御するとともに、この目標流量値と前記流量計で計測された送水量とが供給され、目標流量値に適合するように前記流量調節弁を制御する流量制御装置とを備え
前記流量演算装置は、流量計で配水池への送水量を計測した値と水位計で計測した水位データとから時間あたりの配水量を演算する配水量演算部と、この配水量演算部で演算された時間あたりの配水量と過去のデータを用いて需要予測を行う需要予測部と、この需要予測部により予測された予測配水量と水位計による現在の水位データとから予測水位を演算する予測水位演算部と、この予測水位演算部により得られた予測水位と流量計で計測した値とから目標流量値を演算する流量演算部とから構成したことを特徴とする配水施設制御装置。
A plurality of water pumps, a water reservoir that receives water from the water treatment plant by these water pumps, distributes water to the water distribution area, a water level meter that is installed in this water reservoir and measures the water level of the water reservoir, and In the water distribution facility control device, which is controlled according to the measured water level data, and includes a pump number control unit that sends start and stop commands of the plurality of water pumps,
A flow control valve for controlling the amount of water delivered to the reservoir, a flow meter for measuring the amount of water delivered, a flow meter for measuring the amount of water delivered, and the measured amount of water delivered to the reservoir. Water level data is supplied, and the flow rate calculation device for calculating the target flow rate value from these, and the pump flow rate control unit is controlled by the target flow rate value calculated by the flow rate calculation device, and the target flow rate value and the flow meter A flow rate control device that controls the flow rate control valve so that the measured water supply amount is supplied and matches the target flow rate value ;
The flow rate calculation device includes a water flow rate calculation unit that calculates a water flow rate per hour based on a value measured by a flow meter and a water level data measured by a water level meter. A forecast unit that calculates the predicted water level from the forecasted water volume predicted by the demand forecasting unit and the current water level data by the water level meter, which forecasts demand using the amount of water distribution per hour and past data A water distribution facility control apparatus comprising: a water level calculation unit; and a flow rate calculation unit that calculates a target flow rate value from a predicted water level obtained by the predicted water level calculation unit and a value measured by a flow meter .
前記需要予測部は、配水量演算部で演算された時間あたりの配水量を単位時間の積算データとして時系列的に蓄えて過去の配水量時系列データをn次元、t時間遅れの状態空間に埋め込むようにしたカオス需要予測を採用したことを特徴とする請求項1記載の配水施設制御装置。The demand prediction unit stores the water distribution amount per time calculated by the water distribution amount calculation unit in a time series as unit time integrated data, and stores the past water distribution time series data in an n-dimensional, t-time delayed state space. The water distribution facility control device according to claim 1, wherein the chaotic demand forecast is embedded.
JP21937899A 1999-08-03 1999-08-03 Water distribution facility control equipment Expired - Lifetime JP3903653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21937899A JP3903653B2 (en) 1999-08-03 1999-08-03 Water distribution facility control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21937899A JP3903653B2 (en) 1999-08-03 1999-08-03 Water distribution facility control equipment

Publications (2)

Publication Number Publication Date
JP2001042949A JP2001042949A (en) 2001-02-16
JP3903653B2 true JP3903653B2 (en) 2007-04-11

Family

ID=16734491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21937899A Expired - Lifetime JP3903653B2 (en) 1999-08-03 1999-08-03 Water distribution facility control equipment

Country Status (1)

Country Link
JP (1) JP3903653B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703965B2 (en) * 2011-05-27 2015-04-22 株式会社明電舎 Water operation system and water operation method
JP6876509B2 (en) * 2017-05-10 2021-05-26 清二 美和 Tap water delivery system and tap water delivery method

Also Published As

Publication number Publication date
JP2001042949A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP3800713B2 (en) Water distribution facility control equipment
Machell et al. Online modelling of water distribution systems: a UK case study
Puig et al. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona
US20160378123A1 (en) System and method for agent-based control of sewer infrastructure
EP3475893A1 (en) Method and apparatus for model-based control of a water distribution system
JPS58700A (en) Control method for fluid transport system
CN111340316B (en) Intelligent water supply management method and system
US20230205943A1 (en) Real-time simulation method of sewage pipe network based on water supply iot data assimilation
JP2001275501A (en) Irrigation system for field
JP2003027567A (en) Sewage inflow estimating device and method, and server device
JP2013227826A (en) Water distribution application control device
Karathanasi et al. Development of a leakage control system at the water supply network of the city of Patras
JP2001280597A (en) Terminal pressure control device for water distribution network
JP3903653B2 (en) Water distribution facility control equipment
JP3974294B2 (en) Water and sewage monitoring and control system
Ermolin Mathematical modelling for optimized control of Moscow's sewer network
CN111062576A (en) DMA partition based pressure management system with least disadvantages
AbdelMeguid et al. Pressure and leakage management in water distribution systems via flow modulation PRVs
JPH1161893A (en) Controller for water-supply plant
CN114003013B (en) Control system of layered interconnected intelligent drainage pipe network system
Dai Mathematical Program with Vanishing Constraints for Optimal Pressure Control in Water Distribution Systems
JPS592945B2 (en) Water demand forecasting method
McKerchar Optimal monthly operation of interconnected hydroelectric power storages
JPH0921500A (en) Pipe network control method
CN109313416B (en) Method, computer program product and system for dynamically controlling a fluid network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Ref document number: 3903653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

EXPY Cancellation because of completion of term