JP3903473B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP3903473B2
JP3903473B2 JP2003060673A JP2003060673A JP3903473B2 JP 3903473 B2 JP3903473 B2 JP 3903473B2 JP 2003060673 A JP2003060673 A JP 2003060673A JP 2003060673 A JP2003060673 A JP 2003060673A JP 3903473 B2 JP3903473 B2 JP 3903473B2
Authority
JP
Japan
Prior art keywords
scattered light
size distribution
information
particle size
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060673A
Other languages
Japanese (ja)
Other versions
JP2004271287A (en
Inventor
山口哲司
梅澤誠
右近寿一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003060673A priority Critical patent/JP3903473B2/en
Publication of JP2004271287A publication Critical patent/JP2004271287A/en
Application granted granted Critical
Publication of JP3903473B2 publication Critical patent/JP3903473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、分散させた粒子群に基本光を照射して生じる散乱光の測定情報に基づいて当該粒子群の粒径分布を算出する方法に関するものである。
【0002】
【従来の技術】
従来、小径粒子群の粒径分布を測定する方法の一つとして、動的散乱式粒径分布測定方法と言われるものが知られている。この方法は、特許文献1に示すように、分散させた粒子群に基本光を照射するとそれら粒子のブラウン運動に起因して、散乱光の強度が経時的に揺らぐことを利用するもので、その揺らぎ信号を解析することにより粒径分布を算出するようにしている。
【0003】
【特許文献1】
特開2002−221479公報
【0004】
【発明が解決しようとする課題】
しかしながら、所定粒子群に微量の別径粒子群が混在している場合に、その微量な別径粒子群からの光の揺らぎ信号は、大多数の所定粒子群から散乱された光の揺らぎ信号の中に埋もれて無視されてしまう。また、粒径分布を算出する段階でノイズなどから現れるゴースト分布を排除するため、分布算出時にある閾値レベルを設定しているところ、別径粒子群の分布がその閾値レベル以下であれば分布なしとして変換してしまうこともある。さらに粒径分布を全体で100%の比率分布に置き換えるため、分布的に0%に近い分布形状として表示され、オペレータに認識されない場合もある。
【0005】
しかしてかかる不具合は、動的散乱式の粒径分布測定方法のみならず、散乱光強度の角度分布により粒子経分布を測定するいわゆる散乱/回折式粒径分布測定方法等、他の粒径分布測定方法においても共通する。
【0006】
そこで本発明は、この種の粒径分布測定方法において、多数を占める所定粒子群に微量の別径粒子群が混在している場合であっても、その別径粒子群の粒径分布を確実に算出できるようにすることをその主たる課題としたものである。
【0007】
【課題を解決するための手段】
すなわち本発明に係る粒径分布測定方法は、サンプルに基本光を照射して生じた散乱光から得られる散乱光情報に基づいて当該サンプルに含まれる粒子群の粒径分布を算出する方法であって、所定粒子群のみを含むリファレンスサンプルに前記基本光を照射して生じたリファレンス散乱光からリファレンス散乱光情報を得るとともに、前記所定粒子群を大多数含み、その他に微量の別径をなす測定対象粒子群を含んでなる測定サンプルに基本光を照射して生じた測定サンプル散乱光から測定サンプル散乱光情報を得る散乱光情報取得ステップと、前記散乱光情報取得ステップで得られた各散乱光情報の差分をとり差分情報を生成する差分情報生成ステップと、前記差分情報生成ステップで生成した差分情報に基づいて、前記測定サンプルに含まれる測定対象粒子群の粒径分布を算出する粒径分布算出ステップとを有することを特徴とする。
【0008】
このようなものであれば、多量にある粒子群中に含まれる別径微量粒子の粒径分布測定が可能となる。そして例えば製品の品質管理において、正規品をリファレンスサンプルとし、生産された製品を測定サンプルとして、この方法を用いて差分測定することにより、製品の合否判定が可能となり、より精密な品質管理に寄与できる。具体的には不良品が混入した場合に、その不良品の粒径分布を知ることができる。
【0009】
いわゆる動的散乱式粒径分布測定方法における具体的な散乱光情報としては、散乱光強度の揺らぎを示す揺らぎ情報や、散乱光強度の揺らぎを示す揺らぎ情報から算出されるパワースペクトル情報を挙げることができる。その他に、前記揺らぎ情報から得られる種々の演算結果情報を散乱光情報としてもよい。
【0010】
一方、散乱/回折式粒径分布測定方法における具体的な散乱光情報としては、散乱光強度の角度分布に関する情報を挙げることができる。ここで「Xに関する情報」とは、Xそのものを示す情報の他に、そのXに基づいて算出された関連情報も含む意味である。
また、本発明に係る粒径分布測定装置は、サンプルに基本光を照射して生じた散乱光から得られる散乱光情報に基づいて当該サンプルに含まれる粒子群の粒径分布を測定するものであって、大多数の所定粒子群のみを含むリファレンスサンプルを収容するリファレンスセルと前記大多数の所定粒子群の他に微量の別径をなす測定対象粒子群を含んでなる測定サンプルを収容する測定セルと、単一の光源から射出された基本光を分割し、前記リファレンスサンプル及び測定サンプルにそれぞれ導く基本光案内機構と、前記各サンプルに基本光が照射されて生じた散乱光を、光の強度を検出する光強度検出部に導く散乱光案内機構と、前記光強度検出部で検出された各散乱光情報の差分に基づいて、前記測定サンプルに含まれる測定対象粒子群の粒径分布を算出する情報処理部と、を備えていることを特徴とする。
このようなものであれば、多量にある粒子群中に含まれる別径微量粒子の粒径分布測定が可能となる。そして例えば製品の品質管理において、正規品をリファレンスサンプルとし、生産された製品を測定サンプルとして、この方法を用いて差分測定することにより、製品の合否判定が可能となり、より精密な品質管理に寄与できる。具体的には不良品が混入した場合に、その不良品の粒径分布を知ることができる。
【0011】
図1は、本発明に係る測定方法を具現化する粒径分布測定装置1の一態様を示した模式図である。この粒径分布測定装置1は動的散乱式のもので、測定サンプルOSを収容する透明の測定セル2aと、リファレンスサンプルRSを収容する透明のリファレンスセル2bと、これらセル2a、2bを保持収容するセルユニット部3と、単一の光源(半導体レーザ)4と、前記半導体レーザ4から射出された基本光たるレーザ光Lを2分割し、前記リファレンスサンプルRS及び測定サンプルOSにセル2a、2bの外側からそれぞれ導く基本光案内機構5と、光の強度を検出する光強度検出部(フォトディテクタ)6と、前記各サンプルOS、RSからの散乱光LNa、LNbをフォトディテクタ6a、6bに導く散乱光案内機構7と、前記フォトディテクタ6a、6bで検出された各散乱光LNa、LNbの強度の揺らぎの差分に基づいて、前記測定サンプルOSに含まれる測定対象粒子C群の粒径分布を算出する情報処理部8とを備えている。
【0012】
各部を説明すると、測定セル2a及びリファレンスセル2bは、中空透明ガラス製の互いに同一のもので、前記セルユニット部3に収容してある。リファレンスセルに2bに収容したリファレンスサンプルRSは、溶媒に所定粒子群を分散させたもので、本実施形態では、単一粒子群からなる単分散サンプルであるが、もちろん、複数の粒子群からなるものであってもよい。一方、測定セル2aに収容した測定サンプルOSは、前記リファレンスサンプルRSに更に微量の別径粒子が混ざり込んだものである。なお、これら粒子は温度の変化によってそのブラウン運動が敏感に変化し、測定に影響を及ぼすおそれのあるところ、本実施形態では、セルユニット部3内の温度制御を行う温度制御機構(図示しない)を設けて測定中の試料温度を安定化させ、高精度な測定が行えるようにしてある。
【0013】
基本光案内機構5は、前記半導体レーザ4から射出された拡散レーザ光Lを所定径の平行レーザ光Lにするコリメートレンズ51と、前記平行レーザ光Lを、透過するものLaと反射するものLbとに空間的に分割する光分割要素たるハーフミラー52と、前記ハーフミラー52を透過した第1のレーザ光Laを前記測定セル2aの内壁面やや内側に集光させる測定サンプル用集光レンズ53aと、前記ハーフミラー52で反射した第2のレーザ光Lbを前記リファレンスセル2bの内壁面やや内側に集光させるリファレンスセル用集光レンズ53bとを備えたものである。
【0014】
フォトディテクタ6a、6bは、周知のごとく、所定波長帯域の光を受光し、その光の強度に応じた強さの電気信号である光強度信号を出力するもので、本実施形態では測定サンプル用のもの6aとリファレンスサンプル用のもの6bとの2つを設けている。
【0015】
散乱光案内機構7は、例えば後方散乱光を測定するためのもので、前記各サンプルOS、RSにレーザ光La、Lbをそれぞれ照射することにより生じた散乱光LNa、LNbを、前記各フォトディテクタ6a、6bにそれぞれ導く各一対の構成要素からなる。構成要素とは、入射レーザ光La、Lbの進行方向と逆向きに散乱する散乱光LNa、LNbを、前記平行レーザ光La、Lbより大径の平行光とする平行化レンズ71a、71b、平行化された散乱光LNa、LNbのうちから多重散乱光等のノイズ要因となる光をカットするためのノイズ光カット部72a、72b、このノイズ光カット部72a、72bからでた散乱光LNa、LNbを反射して光路を変える反射ミラー73a、73b、その散乱光LNa、LNbを前記フォトディテクタ6a、6bの受光面に集光照射する集光レンズ74a、74b等である。前記平行化レンズ71a、71bは、前記基本光案内機構5における集光レンズ53a、53bを兼ねるもので、散乱光LNa、LNbの光路が入射レーザ光La、Lbの光路と途中まで合致するようにしてある。前記ノイズ光カット部72a、72bは、ピンホールPHを有した遮蔽板Bの前後に一対の凸レンズR1、R2を配してなるものである。反射ミラー73a、73bは、前記平行レーザ光La、Lbの光路上に設置されるため、その平行レーザ光La、Lbの光量を変えることなくこれを通過させるべく中央部に略同径のレーザ貫通孔LHが設けてある。なお、本実施形態において前記半導体レーザ4、セル2a、2b、セルユニット部3、基本光案内機構5、散乱光案内機構7、フォトディテクタ6a、6b等は同一筐体内に収容してある。
【0016】
情報処理部8は、記憶装置に記憶させたプログラムに基づくCPU及び周辺ハードウェアの動作や、専用ディスクリート回路の動作によって、その機能を発揮するもので、各フォトディテクタ6a、6bから出力される散乱光強度信号の時間的揺らぎを、それぞれ揺らぎ情報として受け付け、それらの差分をとる差分部81と、その差分部で生成された差分情報に加え、溶媒や粒子の屈折率、温度、粘度等に係るデータをパラメータとして粒径分布を算出する算出部82と、その結果をディスプレイやプリンタ等に所定の態様で出力する出力部83等としての役割を担う。なお、本実施形態ではホモダイン検出法を用いており、前記各パラメータに基づく粒径分布算出に係るアルゴリズム等の詳細内容に関しては本発明者が特開2000−171383等で明らかにしているため、ここでの説明は省略する。もちろんヘテロダイン検出法でも適用可能なのはいうまでもない。また、本実施形態では、図3に示すように、前記差分部81において、各散乱光強度信号をアナログ信号のままディスクリート差分回路を用いて差分し、その結果をデジタル変換して算出部82に伝達するようにしているが、各散乱光強度信号をデジタル信号に変換した後、差分をとるようにしても構わない。
【0017】
次にこのように構成した本装置1の作動例について図2を参照しつつ説明する。
【0018】
半導体レーザ4からレーザ光Lが照射されると、ハーフミラー52で等強度の2つのレーザ光La、Lbに分割され、測定セル2a中の測定サンプルOS及びリファレンスセル2b中のリファレンスサンプルRSにそれぞれ照射される。次に各セル2a、2bで生じた散乱光LNa、LNbが、散乱光案内機構7に導かれてそれぞれフォトディテクタ6a、6bで受光され、アナログ散乱光強度信号としてそれぞれ出力される。
【0019】
そして情報処理部8が、前記各アナログ散乱光強度信号を受け付け、その時間的揺らぎであるリファレンス散乱光揺らぎ情報及び測定サンプル散乱光揺らぎ情報を得る(散乱光情報取得ステップS1)。
【0020】
次に情報処理部8は、前記散乱光情報取得ステップで得られた各散乱光揺らぎ情報の差分をとり差分情報を生成する(差分情報生成ステップS2)。
【0021】
そして、前記差分情報生成ステップで生成した差分情報を、フーリエ変換処理してパワースペクトル情報に変換するなどの演算処理を行った後、前記測定サンプルに含まれる測定対象粒子群の粒径分布を算出し(粒径分布算出ステップS3)、その結果をディスプレイやプリンタ等に所定の態様で出力する(ステップS4)。
【0022】
したがってこのようなものであれば、前記差分により、多量にある粒子群からの散乱光情報がキャンセルされるため、測定サンプルOS中に含まれる別径微量粒子の粒径分布測定が可能となる。そして例えば製品の品質管理において、正規品をリファレンスサンプルとし、生産された製品を測定サンプルとして、この方法を用いて差分測定することにより、製品の合否判定が可能となり、より精密な品質管理に寄与できる。具体的には不良品が混入した場合に、その不良品の粒径分布を知ることができる。
【0023】
さらに本実施形態では、各セル2a、2bが同一セルユニット部3内に保持されて周辺環境がほぼ等しく保たれているうえ、それらセル2a、2bからの散乱光LNa、LNbの測定を完全同時に行っているため、地場の振動影響、界面での屈折率差による散乱影響等の外乱に起因するノイズが、各揺らぎ情報に等しく重畳することとなる一方、上述したように同一ノイズが重畳した各揺らぎ情報の差分をとっているため、ノイズが有効にキャンセルされ、測定対象粒子が微量であっても、ノイズに阻害されることなく、その分布を正確に求めることができる。
【0024】
なお、本発明は前記実施形態に限られるものではない。
【0025】
例えば、前記差分部が、各揺らぎ情報から演算される途中演算情報の差分をとるようにしても構わない。そのような途中演算情報の一例としては、揺らぎ情報の周波数強度分布情報、すなわちパワースペクトル情報を挙げることができる。具体的には、図4に示すように、差分部81にAD変換部、FFT処理部、差分処理部等を設けておき、各揺らぎ情報をデジタル化するとともにフーリエ変換処理してパワースペクトル情報とした後、差分をとるようにすればよい。
【0026】
このように時間をパラメータとしない途中演算情報に変換した後、差分をとるようにすれば、前記実施形態のように、各サンプルからの散乱光の揺らぎの完全同時測定及び同時差分を必要としないため、機器構成や散乱光測定方法に更に多くのバリエーションを与えることができる。例えば、各サンプルからの散乱光を選択的に測定するようにしたり、サンプルを入れ替えて別々に測定することも可能である。
【0027】
さらに本発明は、上述した動的散乱式の粒径分布測定装置のみならず、散乱光強度の角度分布から粒径分布を測定するいわゆる散乱/回折式粒径分布測定装置にも適用して前記実施形態と同様の効果を得ることができる。
【0028】
加えて、リファレンスサンプルが水等の溶媒のみ(ただしゴミや不純物粒子を含む)ものであってもよい。従来のように純粋な溶媒ではなくこのように不純物等が混入していても、これらを差し引き、真のサンプル粒径分布を求めることができる。
【0029】
もちろん、ノイズカット部は必ずしも必要ないし、前方散乱、側方散乱を利用してもよい。
【0030】
その他、本発明は前記図示例に限られず、その趣旨を逸脱しない範囲で種々の変更が可能である。
【0031】
【発明の効果】
以上に詳述したように、本発明によれば、前記差分により、多量にある粒子群からの散乱光情報がキャンセルされるため、その中に含まれる別径微量粒子の粒径分布測定が可能となる。そして例えば製品の品質管理において、正規品をリファレンスサンプルとし、生産された製品を測定サンプルとして、この方法を用いて差分測定することにより、製品の合否判定が可能となり、より精密な品質管理に寄与できる。具体的には不良品が混入した場合に、その不良品の粒径分布を知ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における粒径分布測定装置の模式的全体図。
【図2】同実施形態における動的散乱式粒径分布測定装置の作動ステップを示すフローチャート。
【図3】同実施形態における差分部の詳細機能を示す機能ブロック図。
【図4】本発明の他の実施形態における差分部の詳細機能を示す機能ブロック図。
【符号の説明】
RS・・・リファレンスサンプル
L、La、Lb・・・基本光(レーザ光)
LNb・・・リファレンス散乱光
OS・・・測定サンプル
LNa・・・測定サンプル散乱光
S1・・・散乱光情報取得ステップ
S2・・・差分情報生成ステップ
S3・・・粒径分布算出ステップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for calculating a particle size distribution of a particle group based on measurement information of scattered light generated by irradiating the dispersed particle group with basic light.
[0002]
[Prior art]
Conventionally, as one of methods for measuring the particle size distribution of small particle groups, a so-called dynamic scattering type particle size distribution measuring method is known. This method utilizes the fact that the intensity of scattered light fluctuates over time due to the Brownian motion of these particles when the dispersed particles are irradiated with basic light, as shown in Patent Document 1, The particle size distribution is calculated by analyzing the fluctuation signal.
[0003]
[Patent Document 1]
[Patent Document 1] Japanese Unexamined Patent Application Publication No. 2002-221479
[Problems to be solved by the invention]
However, when a small amount of particle groups of different diameters are mixed in the predetermined particle group, the light fluctuation signal from the minute amount of different diameter particle groups is the light fluctuation signal scattered from the majority of the predetermined particle groups. It is buried inside and ignored. Also, in order to eliminate the ghost distribution that appears from noise etc. at the stage of calculating the particle size distribution, a certain threshold level is set at the time of distribution calculation. If the distribution of particle groups of different diameter is below the threshold level, there is no distribution May be converted. Furthermore, since the particle size distribution is replaced with the ratio distribution of 100% as a whole, the distribution shape is displayed as a distribution shape close to 0% in distribution and may not be recognized by the operator.
[0005]
Therefore, this problem is not only the dynamic scattering type particle size distribution measuring method, but also other particle size distributions such as the so-called scattering / diffraction type particle size distribution measuring method for measuring the particle diameter distribution by the angular distribution of scattered light intensity. The same applies to the measurement method.
[0006]
In view of this, the present invention provides a method for measuring the particle size distribution of this type, even when a small number of different-sized particle groups are mixed in a large number of predetermined particle groups. The main problem is to make it possible to calculate the value.
[0007]
[Means for Solving the Problems]
That is, the particle size distribution measuring method according to the present invention is a method for calculating the particle size distribution of the particle group included in the sample based on the scattered light information obtained from the scattered light generated by irradiating the sample with basic light. Te, along with obtaining a reference scattered light information from the reference scattered light generated by irradiating the fundamental light to a reference sample containing only a predetermined particles, the comprises the majority of the predetermined particle group, another diameter in addition to traces of its Scattered light information acquisition step for obtaining measurement sample scattered light information from measurement sample scattered light generated by irradiating basic light to a measurement sample comprising a measurement target particle group, and each obtained in the scattered light information acquisition step Based on the difference information generation step of taking the difference of the scattered light information and generating difference information, and the difference information generated in the difference information generation step, the difference is included in the measurement sample. It is characterized by having a particle size distribution calculation step of calculating a particle size distribution of the measured particles.
[0008]
If it is such, it will become possible to measure the particle size distribution of the small-diameter particles having different diameters contained in a large number of particle groups. For example, in quality control of products, it is possible to make a pass / fail judgment for products by measuring differences using this method using a genuine product as a reference sample and a manufactured product as a measurement sample, contributing to more precise quality control. it can. Specifically, when a defective product is mixed, the particle size distribution of the defective product can be known.
[0009]
Specific scattered light information in the so-called dynamic scattering type particle size distribution measuring method includes fluctuation information indicating fluctuation of scattered light intensity and power spectrum information calculated from fluctuation information indicating fluctuation of scattered light intensity. Can do. In addition, various calculation result information obtained from the fluctuation information may be used as scattered light information.
[0010]
On the other hand, specific scattered light information in the scattering / diffraction particle size distribution measuring method can include information on the angular distribution of scattered light intensity. Here, the “information about X” means not only information indicating X itself but also related information calculated based on X.
The particle size distribution measuring apparatus according to the present invention measures the particle size distribution of the particle group included in the sample based on the scattered light information obtained from the scattered light generated by irradiating the sample with basic light. A reference cell that contains a reference sample containing only the majority of predetermined particle groups and a measurement sample that contains a measurement sample comprising a measurement target particle group having a very small diameter in addition to the majority of predetermined particle groups. A basic light guide mechanism that divides basic light emitted from a cell and a single light source and directs the light to the reference sample and the measurement sample, and scattered light generated by irradiating the basic light to each sample, Based on the difference between the scattered light information detected by the light intensity detection unit and the scattered light guide mechanism that leads to the light intensity detection unit that detects the intensity of the measurement target particle group included in the measurement sample Characterized in that it comprises an information processing unit for calculating the size distribution, the.
If it is such, it will become possible to measure the particle size distribution of the small-diameter particles having different diameters contained in a large number of particle groups. For example, in quality control of products, it is possible to make a pass / fail judgment for products by measuring differences using this method using a genuine product as a reference sample and a manufactured product as a measurement sample, contributing to more precise quality control. it can. Specifically, when a defective product is mixed, the particle size distribution of the defective product can be known.
[0011]
FIG. 1 is a schematic diagram showing an embodiment of a particle size distribution measuring apparatus 1 that embodies the measuring method according to the present invention. The particle size distribution measuring apparatus 1 is of a dynamic scattering type, and includes a transparent measurement cell 2a for storing a measurement sample OS, a transparent reference cell 2b for storing a reference sample RS, and holding and storing these cells 2a and 2b. A cell unit 3 to be split, a single light source (semiconductor laser) 4, and a laser beam L, which is a basic light emitted from the semiconductor laser 4, are divided into two, and the reference sample RS and the measurement sample OS are divided into cells 2 a and 2 b. The basic light guide mechanism 5 for guiding light from outside the light, the light intensity detector (photo detector) 6 for detecting the light intensity, and the scattered light for guiding the scattered lights LNa and LNb from the respective samples OS and RS to the photodetectors 6a and 6b. Based on the difference in intensity fluctuation between the scattered light LNa and LNb detected by the guide mechanism 7 and the photodetectors 6a and 6b. And a processing unit 8 which calculates the particle size distribution of measured particle group C contained in the measurement sample OS.
[0012]
Explaining each part, the measurement cell 2a and the reference cell 2b are made of the same hollow hollow glass and are accommodated in the cell unit 3. The reference sample RS accommodated in the reference cell 2b is obtained by dispersing a predetermined particle group in a solvent. In the present embodiment, the reference sample RS is a monodisperse sample composed of a single particle group. Of course, the reference sample RS is composed of a plurality of particle groups. It may be a thing. On the other hand, the measurement sample OS accommodated in the measurement cell 2a is obtained by further mixing a minute amount of different diameter particles into the reference sample RS. In addition, in the present embodiment, a temperature control mechanism (not shown) that controls the temperature in the cell unit unit 3 may be used because the Brownian motion of the particles changes sensitively due to changes in temperature and may affect the measurement. Is provided to stabilize the temperature of the sample during measurement so that highly accurate measurement can be performed.
[0013]
The basic light guiding mechanism 5 includes a collimator lens 51 that converts the diffused laser light L emitted from the semiconductor laser 4 into a parallel laser light L having a predetermined diameter, and a light beam Lb that transmits and reflects the parallel laser light L. A half mirror 52 that is a light splitting element that is spatially divided into two and a condensing lens 53a for a measurement sample that condenses the first laser light La that has passed through the half mirror 52 on the inner wall surface of the measurement cell 2a. And a reference cell condensing lens 53b that condenses the second laser light Lb reflected by the half mirror 52 on the inner wall surface or slightly inside of the reference cell 2b.
[0014]
As is well known, the photodetectors 6a and 6b receive light in a predetermined wavelength band and output an optical intensity signal that is an electric signal having an intensity corresponding to the intensity of the light. In this embodiment, the photodetectors 6a and 6b are used for measurement samples. Two are provided, one for the sample 6a and one for the reference sample 6b.
[0015]
The scattered light guide mechanism 7 is for measuring backscattered light, for example. The scattered light LNa and LNb generated by irradiating the sample OS and RS with laser light La and Lb, respectively, are used as the respective photodetectors 6a. , 6b, each of which leads to a pair of components. Constituent elements include collimating lenses 71a, 71b, and parallel light that make scattered light LNa and LNb scattered in the direction opposite to the traveling direction of incident laser light La and Lb into parallel light having a diameter larger than that of the parallel laser light La and Lb. Noise light cut portions 72a and 72b for cutting light that causes noise such as multiple scattered light from the scattered light LNa and LNb, and scattered light LNa and LNb emitted from the noise light cut portions 72a and 72b Mirrors 74a and 74b for condensing and irradiating the light-receiving surfaces of the photodetectors 6a and 6b with the reflection mirrors 73a and 73b for reflecting the light and changing the optical path. The collimating lenses 71a and 71b also serve as the condensing lenses 53a and 53b in the basic light guiding mechanism 5 so that the optical paths of the scattered light LNa and LNb coincide with the optical paths of the incident laser lights La and Lb halfway. It is. The noise light cut portions 72a and 72b are formed by arranging a pair of convex lenses R1 and R2 before and after a shielding plate B having a pinhole PH. Since the reflection mirrors 73a and 73b are installed on the optical paths of the parallel laser beams La and Lb, the laser beams having substantially the same diameter are passed through the central portion so that the parallel laser beams La and Lb can pass through without changing the light amounts. A hole LH is provided. In this embodiment, the semiconductor laser 4, the cells 2a and 2b, the cell unit 3, the basic light guiding mechanism 5, the scattered light guiding mechanism 7, the photodetectors 6a and 6b, and the like are accommodated in the same casing.
[0016]
The information processing unit 8 exhibits its function by the operation of the CPU and peripheral hardware based on the program stored in the storage device and the operation of the dedicated discrete circuit. The scattered light output from each of the photodetectors 6a and 6b Data relating to the refractive index, temperature, viscosity, etc. of the solvent and particles, in addition to the difference information 81 that accepts each time fluctuation of the intensity signal as fluctuation information and takes the difference between them, and the difference information generated by the difference part As a parameter, the calculation unit 82 calculates the particle size distribution, and the output unit 83 outputs the result to a display or printer in a predetermined manner. In the present embodiment, the homodyne detection method is used, and the inventor has clarified the detailed contents of the algorithm and the like relating to the particle size distribution calculation based on each parameter in Japanese Patent Application Laid-Open No. 2000-171383. The description in is omitted. Of course, it can be applied to the heterodyne detection method. Further, in the present embodiment, as shown in FIG. 3, in the difference unit 81, each scattered light intensity signal is differentiated by using a discrete difference circuit as an analog signal, and the result is digitally converted to the calculation unit 82. However, the difference may be calculated after each scattered light intensity signal is converted into a digital signal.
[0017]
Next, an operation example of the apparatus 1 configured as described above will be described with reference to FIG.
[0018]
When the laser beam L is irradiated from the semiconductor laser 4, the laser beam is divided into two laser beams La and Lb having the same intensity by the half mirror 52, and each of the measurement sample OS in the measurement cell 2a and the reference sample RS in the reference cell 2b. Irradiated. Next, the scattered lights LNa and LNb generated in the cells 2a and 2b are guided to the scattered light guide mechanism 7, received by the photodetectors 6a and 6b, and output as analog scattered light intensity signals, respectively.
[0019]
The information processing unit 8 receives the analog scattered light intensity signals, and obtains reference scattered light fluctuation information and measurement sample scattered light fluctuation information, which are temporal fluctuations (scattered light information acquisition step S1).
[0020]
Next, the information processing section 8 takes the difference between the scattered light fluctuation information obtained in the scattered light information acquisition step and generates difference information (difference information generation step S2).
[0021]
Then, after performing the arithmetic processing such as converting the difference information generated in the difference information generation step into power spectrum information by performing Fourier transform processing, the particle size distribution of the measurement target particle group included in the measurement sample is calculated. (Particle size distribution calculating step S3), and the result is output to a display, a printer or the like in a predetermined manner (step S4).
[0022]
Accordingly, in such a case, the scattered light information from a large amount of the particle group is canceled due to the difference, so that it is possible to measure the particle size distribution of the different-diameter trace particles contained in the measurement sample OS. For example, in quality control of products, it is possible to make a pass / fail judgment for products by measuring differences using this method using a genuine product as a reference sample and a manufactured product as a measurement sample, contributing to more precise quality control. it can. Specifically, when a defective product is mixed, the particle size distribution of the defective product can be known.
[0023]
Furthermore, in the present embodiment, the cells 2a and 2b are held in the same cell unit 3 so that the surrounding environment is kept substantially equal, and the scattered light LNa and LNb from the cells 2a and 2b are completely simultaneously measured. As a result, noise caused by disturbances such as local vibration effects and scattering effects due to differences in refractive index at the interface are equally superimposed on each fluctuation information. Since the difference of the fluctuation information is taken, the noise is effectively canceled, and even if the measurement target particle is a very small amount, the distribution can be accurately obtained without being disturbed by the noise.
[0024]
The present invention is not limited to the above embodiment.
[0025]
For example, the difference unit may take a difference of midway calculation information calculated from each fluctuation information. As an example of such midway calculation information, there can be mentioned frequency intensity distribution information of fluctuation information, that is, power spectrum information. Specifically, as shown in FIG. 4, the difference unit 81 is provided with an AD conversion unit, an FFT processing unit, a difference processing unit, etc., and each fluctuation information is digitized and subjected to Fourier transform processing to obtain power spectrum information and After that, the difference may be taken.
[0026]
In this way, if the difference is taken after the conversion to midway calculation information that does not use time as a parameter, complete simultaneous measurement of the fluctuation of scattered light from each sample and simultaneous difference are not required as in the above embodiment. Therefore, many variations can be given to the instrument configuration and the scattered light measurement method. For example, the scattered light from each sample can be selectively measured, or the samples can be exchanged and measured separately.
[0027]
Further, the present invention is applied not only to the above-described dynamic scattering type particle size distribution measuring apparatus but also to a so-called scattering / diffraction type particle size distribution measuring apparatus that measures the particle size distribution from the angular distribution of scattered light intensity. The same effect as the embodiment can be obtained.
[0028]
In addition, the reference sample may be only a solvent such as water (including dust and impurity particles). Even if impurities and the like are mixed instead of a pure solvent as in the prior art, the true sample particle size distribution can be obtained by subtracting them.
[0029]
Of course, a noise cut part is not necessarily required, and forward scattering and side scattering may be used.
[0030]
In addition, the present invention is not limited to the illustrated example, and various modifications can be made without departing from the spirit of the present invention.
[0031]
【The invention's effect】
As described in detail above, according to the present invention, the scattered light information from a large number of particle groups is canceled due to the difference, so that it is possible to measure the particle size distribution of the different diameter trace particles contained therein. It becomes. For example, in quality control of products, it is possible to make a pass / fail judgment for products by measuring differences using this method using a genuine product as a reference sample and a manufactured product as a measurement sample, contributing to more precise quality control. it can. Specifically, when a defective product is mixed, the particle size distribution of the defective product can be known.
[Brief description of the drawings]
FIG. 1 is a schematic overall view of a particle size distribution measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the operation steps of the dynamic scattering type particle size distribution measuring apparatus according to the embodiment.
FIG. 3 is a functional block diagram showing a detailed function of a difference unit in the embodiment.
FIG. 4 is a functional block diagram showing detailed functions of a difference unit according to another embodiment of the present invention.
[Explanation of symbols]
RS: Reference sample L, La, Lb: Basic light (laser light)
LNb ... reference scattered light OS ... measurement sample LNa ... measurement sample scattered light S1 ... scattered light information acquisition step S2 ... difference information generation step S3 ... particle size distribution calculation step

Claims (4)

サンプルに基本光を照射して生じた散乱光から得られる散乱光情報に基づいて当該サンプルに含まれる粒子群の粒径分布を測定するものであって、
所定粒子群のみを含むリファレンスサンプルを収容するリファレンスセルと、
前記所定粒子群を大多数含み、その他に微量の別径をなす測定対象粒子群を含んでなる測定サンプルを収容する測定セルと、
単一の光源から射出された基本光を分割し、前記リファレンスサンプル及び測定サンプルにそれぞれ導く基本光案内機構と、
前記各サンプルに基本光が照射されて生じた散乱光を、光の強度を検出する光強度検出部に導く散乱光案内機構と、
前記光強度検出部で検出された各散乱光情報の差分に基づいて、前記測定サンプルに含まれる測定対象粒子群の粒径分布を算出する情報処理部と、を備えている粒径分布測定装置。
Based on scattered light information obtained from scattered light generated by irradiating a sample with basic light, the particle size distribution of a particle group included in the sample is measured,
A reference cell containing a reference sample containing only a predetermined particle group;
A measurement cell that contains a large number of the predetermined particle groups, and that contains a measurement sample that includes a measurement target particle group that has a small amount of another diameter,
A basic light guide mechanism that divides basic light emitted from a single light source and guides it to the reference sample and the measurement sample, respectively;
A scattered light guide mechanism for guiding scattered light generated by irradiating each sample with basic light to a light intensity detector that detects the intensity of the light;
A particle size distribution measuring apparatus comprising: an information processing unit that calculates a particle size distribution of a measurement target particle group included in the measurement sample based on a difference between pieces of scattered light information detected by the light intensity detection unit. .
前記散乱光情報が、散乱光強度の揺らぎを示す揺らぎ情報である請求項記載の粒径分布測定装置。The scattered light information, a particle size distribution measuring apparatus according to claim 1, wherein the fluctuation information indicating the fluctuation of the scattered light intensity. 前記散乱光情報が、散乱光強度の揺らぎを示す揺らぎ情報から算出されるパワースペクトル情報である請求項記載の粒径分布測定装置。The scattered light information is a power spectrum information calculated from the fluctuation information indicating the fluctuation of the scattered light intensity claim 1 particle size distribution measuring apparatus according. 前記散乱光情報が、散乱光強度の角度分布に関する情報である請求項記載の粒径分布測定装置。The scattered light information is information about the angular distribution of scattered light intensity claim 1 particle size distribution measuring apparatus according.
JP2003060673A 2003-03-06 2003-03-06 Particle size distribution measuring device Expired - Fee Related JP3903473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060673A JP3903473B2 (en) 2003-03-06 2003-03-06 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060673A JP3903473B2 (en) 2003-03-06 2003-03-06 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2004271287A JP2004271287A (en) 2004-09-30
JP3903473B2 true JP3903473B2 (en) 2007-04-11

Family

ID=33123105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060673A Expired - Fee Related JP3903473B2 (en) 2003-03-06 2003-03-06 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3903473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035775A1 (en) 2008-09-26 2010-04-01 株式会社堀場製作所 Device for measuring physical property of particle
JP5418383B2 (en) * 2010-04-13 2014-02-19 株式会社島津製作所 Particle size distribution measuring apparatus and program

Also Published As

Publication number Publication date
JP2004271287A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4455730B2 (en) Method and apparatus for particle evaluation using multi-scan beam reflectivity
US7495762B2 (en) High-density channels detecting device
GB1583992A (en) Spectrometers
KR20150146415A (en) Dynamic light scattering measurement device and dynamic light scattering measurement method
US20100014076A1 (en) Spectrometric apparatus for measuring shifted spectral distributions
CN102507500B (en) Laser environment scattering power measuring device
US7151602B2 (en) Particle size distribution analyzer
JP3903473B2 (en) Particle size distribution measuring device
US20040227941A1 (en) Particle size distribution analyzer
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP3422725B2 (en) An analyzer that simultaneously performs Raman spectroscopy and particle size distribution measurement
JP4119385B2 (en) Photothermal conversion measuring device
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
JP2018040648A (en) Laser type gas analysis device
JPS63295945A (en) Glossiness measuring apparatus
JP2006300808A (en) Raman spectrometry system
CN215179601U (en) Multimode spectrum detection device sharing optical channel
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
US8823931B1 (en) Laser wavelength tracking via direct laser measurement and optical filters in a spectrometer
JP2002139422A (en) Light absorption measuring instrument for light scattering medium
JP4895436B2 (en) Method and apparatus for measuring optical characteristics of rejection filter
JP2022043483A (en) Spectroscopic measuring device
JP2006300664A (en) Fourier spectral device and measuring timing detection method
JP4290139B2 (en) Photothermal conversion measuring apparatus and method
JP2022074869A (en) Interferometer and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees