JP3901321B2 - Method for producing riboflavin-5'-phosphate or a sodium salt thereof - Google Patents

Method for producing riboflavin-5'-phosphate or a sodium salt thereof Download PDF

Info

Publication number
JP3901321B2
JP3901321B2 JP35657397A JP35657397A JP3901321B2 JP 3901321 B2 JP3901321 B2 JP 3901321B2 JP 35657397 A JP35657397 A JP 35657397A JP 35657397 A JP35657397 A JP 35657397A JP 3901321 B2 JP3901321 B2 JP 3901321B2
Authority
JP
Japan
Prior art keywords
riboflavin
phosphate
water
acid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35657397A
Other languages
Japanese (ja)
Other versions
JPH1149790A (en
Inventor
幸夫 奈良部
徳也 小林
昌彦 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Priority to JP35657397A priority Critical patent/JP3901321B2/en
Publication of JPH1149790A publication Critical patent/JPH1149790A/en
Application granted granted Critical
Publication of JP3901321B2 publication Critical patent/JP3901321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、医薬、食品添加物、飼料、工業中間体などとして有用な、リン酸リボフラビン(III)の、工業的に優れた新規製造方法に関する。
【0002】
【従来技術】
本発明は医薬品として価値のあるリボフラビン-5'-リン酸(以後5'-FMNと記す)もしくはそのモノナトリウム塩の製造法に関する。5'-FMNは生体内の異なる酵素反応における補酵素として重要な役割を持ち、その塩、特にナトリウム-5'FMNの形で薬品、食品および飼料添加物として使用される化合物である。従来リボフラビン-5'-リン酸エステルの製造法としては極性溶媒、三級アミン、オキシ塩化リンおよび水の混合液にリボフラビンを加えて反応させ、その後系内に多量の水を加え過剰のオキシ塩化リンを分解、そこで副生する塩酸(水)により加水分解を行ない、pH調整後濃縮する方法(特開昭48-54099号)、ラクトン類とオキシ塩化リンの混合液にリボフラビンを加えて反応させ、その後系内に多量の水を加え過剰のオキシ塩化リンを分解、そこで副生する塩酸(水)により加水分解を行ない、pH調整後濾取する方法(特開平3-109394号)などがあり、これらの方法は多量の水を用いて分解するため、多大な反応缶を必要とする。(同一反応缶でのロットスケール小)加えて多量のリン酸廃液を産出する。本発明によれば過剰のリン酸化剤(POCl3など)は濃縮操作で分解させることなく容易に回収再利用できるため多大な反応缶を必要とせず、またリン酸廃液も削減でき、反応に使用した溶媒類も目的物の熱虐待を気にすることなく容易に回収される。加えて過剰なオキシ塩化リンと分離した事により品質上問題となる目的物中の遊離リン酸は極めて少なくなる。また上記の通り従来法では次工程の加水分解は過剰のリン酸化試薬の分解で副生する塩酸(水)で行なわれているため、高品質を確保するための条件変更は容易ではないが、本法は中間体であるリボフラビン・サイクリック 4',5'-ホスホリデート(II)またはその塩を単離しているため任意の濃度、酸種を選択でき余分な酸がない。そのためpH調整に必要な水酸化ナトリウム水溶液量も減り、副生する塩も少なくなる。
【0003】
本発明は医薬品として価値のあるリボフラビン-5'-リン酸(以後5'-FMNと記す)もしくはそのモノナトリウム塩の製造法に関する。5'-FMNは生体内の異なる酵素反応における補酵素として重要な役割を持ち、その塩、特にナトリウム-5'FMNの形で薬品、食品および飼料添加物として使用される化合物である。従来リボフラビン-5'-リン酸エステルの製造法としては極性溶媒、三級アミン、オキシ塩化リンおよび水の混合液にリボフラビンを加えて反応させ、その後系内に水を加え過剰のオキシ塩化リンを分解、そこで副生する塩酸(水)により加水分解を行ない、pH調整後濃縮する方法(特開昭48-54099号)、ラクトン類とオキシ塩化リンの混合液にリボフラビンを加えて反応させ、その後系内に水を加え過剰のオキシ塩化リンを分解、そこで副生する塩酸(水)により加水分解を行ない、pH調整後濾取する方法(特開平3-109394号)などがあり、これらの方法で得られる5'-FMNの純度は日局基準を満たすものの、生体内で活性型でない異性体である3'-FMN、4'-FMN、および未反応リボフラビンを多く含有する。たとえば前者特許の追試によれば3'-FMN 5〜7%、4'-FMN 11〜13%、未反応リボフラビン1〜2%(5'-FMN 75〜80%)であり、後者特許の記載によれば3'-FMN 5〜7%、4'-FMN 9〜11%、未反応リボフラビン4〜5.8%(5'-FMN 76〜80%)である。より高純度の目的物を得るためには技術的に経費のかかる精製法(たとえばカラムクロマト)を行なう必要がある。
FMNはその酸溶液中3',4',5'異性体に平衡が存在する事が知られている。(Eur.J.biochem.,66,567-577,1976.)その比率は約3':4':5'=5:15:80であり、実際上記特許結果もこれらの値を示唆している。我々は5'-FMN側に平衡をずらす検討の中で酸濃度を変化させる事により、選択的に5'-FMNを結晶として系外に除き、平衡をずらす方法を見いだした。
本発明によれば経費のかかる精製法なしに高純度の5'-FMNを得ることができる。
本発明は所定の反応により析出した中間体であるリボフラビン・サイクリック 4',5'-ホスホリデート(II)またはその塩を濾取し、適当な濃度、量の酸により異性化させる事を特徴とする。詳しくは1〜35.5(w/v)%濃度、好ましくは5〜18%、さらに好ましくは12%の酸、たとえば塩酸、硝酸、硫酸(望ましくは塩酸)などの鉱酸を、出発原料であるリボフラビンに対し1〜10倍容量(望ましくは2倍容量)加えて10〜100℃(望ましくは20〜40℃)で攪拌反応する。異性化の進行はHPLCにて行ない、5'-FMN純度が90%を越えた時点を仮の終点とし、後処理に入る。後処理は得られた懸濁反応液中に酸もしくはアルカリ水を投入し溶解後、先に使用した液性と逆のアルカリもしくは酸でpHを5.5に調整する。この液を冷却後濾取し、アルコールで洗浄後乾燥する。本発明による方法で得られる目的物は、3'-FMN 3〜5%、4'-FMN 4〜6%、5'-FMN 88〜90%、未反応リボフラビン〜1%であり、薬局方グレードを大きく上回る品質であり、引き続き経費のかかる精製法を行なう必要はない。
【本発明が解決しようとする問題点】
このように、工業的に優れたリン酸リボフラビン(III)またはそのナトリウム塩の製造法は、まだ確立されていないのが現状であり、新たな優れた方法が求められていた。
【0004】
【課題を解決するための手段】
本発明者らは、上記問題点の改善を目指して鋭意研究を進めてきた。その結果、以下に詳述する方法により課題を解決できることを見出し本発明を完成するに至った。
【0005】
本発明はより詳しくは、以下のいずれかの方法である。
(1) リボフラビン(I)とオキシ塩化リンを反応させてリン酸リボフラビン(III)を製造する反応において、反応中間体であるリボフラビン・サイクリック 4',5'-ホスホリデート(II)またはその塩を系外に取り出して分解する。
(2) リボフラビン・サイクリック 4',5'-ホスホリデート(II)の分解を酸性条件下で行う。
(3) 酸性条件を、1〜35.5(w/v)%濃度の酸を出発原料であるリボフラビンに対し1〜10倍容量用いて調整し行う。
【0006】
続いて本発明を具体的に説明するため、以下に実施例および比較例を掲げるが、本発明がこれらに限定されないことは言うまでもない。
【実施例】
【0007】
実施例1 リン酸リボフラビンの製造
攪拌機、塩化カルシウム管、温度計、バッフルを付けた1L四頚フラスコ中にアセトニトリル300ml、オキシ塩化リン150mlおよびピリジン127mlを投入し攪拌する。氷冷下に水16.7mlを滴下後リボフラビン100gを加え、室温で一夜攪拌する。
翌日ヌッチェにて析出した中間体を吸引濾取し、アセトニトリル250mlで洗浄した。得られた中間体を1Lナスフラスコに移し、濃塩酸80ml、水80mlを加え、50℃で3時間攪拌する。この液を20℃以下まで冷却し、25%NaOH水250mlを滴下、pHを5.5に調整する。この溶液を10℃以下まで冷却後、ヌッチェにて析出した粗FMNを吸引濾取し、メタノール200mlで洗浄した。得られた粗FMNを1Lナスフラスコに移し、水およびメタノールで再結晶化を行ない、濾取後減圧乾燥し精FMN88.8gを得た。(理論量の70%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 2.5%
リボフラビン-4-リン酸 8.5%
リボフラビン-5-リン酸 86.8%
リボフラビン 1.4%
旋光度は+38.5°であった。
【0008】
実施例2 リン酸リボフラビンの製造
攪拌機、塩化カルシウム管、温度計、バッフルを付けた1L四頚フラスコ中にアセトニトリル600ml、オキシ塩化リン150mlおよびトリエチルアミン220mlを投入し攪拌する。氷冷下に水16.7mlを滴下後リボフラビン100gを加え、室温で一夜攪拌する。翌日ヌッチェにて析出した中間体を吸引濾取し、アセトニトリル250mlで洗浄した。得られた中間体を1Lナスフラスコに移し、濃塩酸80ml、水80mlを加え、50℃で2時間攪拌する。この液を20℃以下まで冷却し、25%NaOH水250mlを滴下、pHを5.5に調整する。この溶液を10℃以下まで冷却後、ヌッチェにて析出した粗FMNを吸引濾取し、メタノール200mlで洗浄した。得られた粗FMNを1Lナスフラスコに移し、水およびメタノールで再結晶化を行ない、濾取後減圧乾燥し精FMN81.3gを得た。(理論量の64%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 2.5%
リボフラビン-4-リン酸 8.4%
リボフラビン-5-リン酸 86.2%
リボフラビン 1.9%
旋光度は+38.5°であった。
【0009】
実施例3 リン酸リボフラビンの製造
溶媒をアセトニトリルからテトラヒドロフラン300ml使用以外は実施例1と同様に反応を行なった。濾取後減圧乾燥し精FMN88.9gを得た。(理論量の70.0%に相当) HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 2.4%
リボフラビン-4-リン酸 8.4%
リボフラビン-5-リン酸 87.1%
リボフラビン 1.0%
旋光度は+38.7°であった。
【0010】
実施例4 リン酸リボフラビンの製造
リボフラビン100gスケール反応での中間体濾液650mlを1000mlナスフラスコに移し、常圧蒸留を行ない、留出温度78〜82℃にて495ml回収した。この物はアセトニトリルとオキシ塩化リンおよびHClの混合物で滴定分析により5%のオキシ塩化リンであった。これにより使用アセトニトリルの85%回収、未反応オキシ塩化リンの60%回収となる。
【0011】
実施例5 リン酸リボフラビンの製造
回収したアセトニトリルを315ml(オキシ塩化リン5%含有、オキシ塩化リンとして15mlに相当)、オキシ塩化リン135ml使用以外は実施例1と同様に反応を行なった。濾取後減圧乾燥し精FMN88.7gを得た。(理論量の69.9%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 2.1%
リボフラビン-4-リン酸 7.7%
リボフラビン-5-リン酸 88.1%
リボフラビン 1.4%
旋光度は+38.7°であった。
【0012】
実施例6 リン酸リボフラビンの製造
攪拌機、塩化カルシウム管、温度計、バッフルを付けた1L四頚フラスコ中にアセトニトリル300ml、オキシ塩化リン150mlおよびピリジン127mlを投入し攪拌する。氷冷下に水16.7mlを滴下後リボフラビン100gを加え、室温で一夜攪拌する。
翌日ヌッチェにて析出した中間体を吸引濾取し、アセトニトリル300mlで洗浄した。得られた中間体を1L四頚フラスコに移し、濃塩酸67ml、水133mlを加え、40℃で21時間攪拌する。この際クリアーな褐色溶液から黄色懸濁溶液へと変化し、HPLC値91.2%を示した。この反応液に25%NaOH水を徐々に加え280ml投入した時点でpH=9.3を示しクリアーな褐色液とする。さらに濃塩酸を徐々にくわえ34ml投入した時点でpH=5.5を示し懸濁反応液となる。冷却後吸引濾過しアルコールで洗浄、減圧乾燥を行ない目的物104.2gを得た。(理論量の82%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 2.8%
リボフラビン-4-リン酸 5.4%
リボフラビン-5-リン酸 88.9%
リボフラビン 0.8%
旋光度は+38.4°であった。
【0013】
実施例7 リン酸リボフラビンの製造
攪拌機、塩化カルシウム管、温度計、バッフルを付けた1L四頚フラスコ中にアセトニトリル300ml、オキシ塩化リン150mlおよびピリジン127mlを投入し攪拌する。氷冷下に水16.7mlを滴下後リボフラビン100gを加え、室温で一夜攪拌する。
翌日ヌッチェにて析出した中間体を吸引濾取し、アセトニトリル300mlで洗浄した。得られた中間体を1L四頚フラスコに移し、濃塩酸67ml、水133mlを加え、40℃で21時間攪拌する。この際クリアーな褐色溶液から黄色懸濁溶液へと変化し、HPLC値90.2%を示した。この反応液に濃塩酸を徐々に加え110ml投入した時点でクリアーな褐色液とする。さらに25%アルカリ水を徐々にくわえ392ml投入した時点でpH=5.5を示し懸濁反応液となる。冷却後吸引濾過しアルコールで洗浄、減圧乾燥を行ない目的物108.8gを得た。(理論量の85.7%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 3.3%
リボフラビン-4-リン酸 6.1%
リボフラビン-5-リン酸 88.6%
リボフラビン 0.8%
旋光度は+38.7°であった。
【0014】
実施例8 リン酸リボフラビンの製造
実施例6と同様にして得た中間体を1L四頚フラスコに移し濃硝酸53ml、水167mlを加え50℃にて16時間攪拌反応させる。室温まで冷却しpH調整のため25%NaOH水を220ml投入しpH=5.5とした。さらにメタノール200mlを加え冷却後吸引濾過し、アルコールで洗浄、減圧乾燥を行ない目的物111.3gを得た。(理論量の87.6%に相当)
HPLC分析よりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 4.5%
リボフラビン-4-リン酸 6.1%
リボフラビン-5-リン酸 88.1%
リボフラビン 0.6%
旋光度は+38.7°であった。
【0015】
実施例9 リン酸リボフラビンの製造
1000mL4頚フラスコに、アセトニトリル250mL、ピリジン127mL、オキシ塩化リン150mLを取り、氷水で冷却した。イオン交換水16.6mL/アセトニトリル100mLの混合液を1時間かけて加えた後、リボフラビン100gを加え、一晩攪拌した。翌朝析出物を濾過し、アセトニトリル150mLで洗浄した。
あらかじめ別のフラスコにイオン交換水187.5mLと濃塩酸62.5mLを取り、9%HCl水を調製した。ここに濾取した析出物を全量加え、50℃温水槽中にて、一晩撹拌した。翌朝冷却しながら25%NaOH水267mLを加えて溶解後、内温31℃時点で濃塩酸28.5mLを加えてpH=5.5とし、冷却下、さらに一晩攪拌した。
翌朝析出した結晶を分離し、10%水/メタノール200mLで洗浄した。湿結晶を1000mLナスフラスコ中に移し、20℃水浴中60mmHg減圧下で一晩乾燥し、さらに40℃水浴中10mmHg以下の真空度で乾燥して、標題化合物 102gを得た。(収率;77.4%、5'-FMN純度;90.3%、水分;3.6%、メタノール;検出せず)
【0016】
実施例10 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水187.5mLと濃塩酸62.5mLを取り、9%HCl水を調製した。ここに濾取した析出物を全量加え、40℃温水槽中にて、以下実施例9と同様に反応させた。
翌朝冷却しながら25%NaOH水292mLを加えて溶解後、内温34℃時点で濃塩酸40mLを加えてpH=5.5とし、冷却後結晶を分離し、15%水/メタノール300mLで洗浄した。以後実施例9と同様に乾燥して、標題化合物 101gを得た。(収率;77.1%、5'-FMN純度;88.4%、水分;3.1%、メタノール;検出せず)
【0017】
実施例11 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水187.5mLと濃塩酸62.5mLを取り、9%HCl水を調製した。ここに濾取した析出物を全量加え、60℃温水槽中にて、以下実施例9と同様に反応させた。
翌朝冷却しながら25%NaOH水288mLを加えて溶解後、内温34℃時点で濃塩酸40mLを加えてpH=5.5とし、冷却後結晶を分離し、15%水/メタノール300mLで洗浄した。
湿結晶を1000mLナスフラスコ中に移し、20℃水浴中40mmHgで一晩、さらに40℃水浴中10mmHg以下の真空度で乾燥して、標題化合物 100.7gを得た。(収率;76.4%、5'-FMN純度;87.5%、水分;3.7%;、メタノール;検出せず)
【0018】
実施例12 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水195mLと濃塩酸55mLを取り、8%HCl水を調製した。ここに濾取した析出物を全量加え、40℃温水槽中にて、以下実施例9と同様に反応させた。
翌朝冷却しながら25%NaOH水276mLを加えて溶解後、内温29℃時点で濃塩酸36.8mLを加えてpH=5.5とし、冷却後結晶を分離し、10%水/メタノール300mLで洗浄した。 湿結晶を乾燥機に移し一晩通風乾燥後、さらに40℃/10mmHg以下の真空度で乾燥して、標題化合物 99gを得た。(収率;75.5%、5'-FMN純度;90.7%、水分3.1%、メタノール;検出せず)
【0019】
実施例13 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水180.4mLと濃塩酸69.6mLを取り、10%HCl水を調製した。ここに濾取した析出物を全量加え、40℃温水中にて、以下実施例9と同様に反応させた。
翌朝冷却しながら25%NaOH水308mLを加えて溶解後、内温27℃時点で濃塩酸38.4mLを加えてpH=5.5とし、冷却後結晶を分離し、10%水/メタノール300mLで洗浄した。 以後実施例12と同様に乾燥して、標題化合物 101gを得た。(収率;77.1%、5'-FMN純度;88.6%、水分;3.1%、メタノール;検出せず)
【0020】
実施例14 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水133mLと濃塩酸67 mLを取り、12%HCl水を調製した。ここに濾取した析出物を全量加え、40℃温水槽中にて、以下実施例9と同様に反応させた。
翌日冷却しながら25%NaOH水280mLを加えて溶解後、内温25℃時点で濃塩酸34mLを加えてpH=5.5とし、冷却後結晶を分離し、5%水/メタノール200mLで洗浄した。 以後実施例12と同様に乾燥して、標題化合物 106.2gを得た。(収率;80.4%、5'-FMN純度;88.9%、水分;3.9%、メタノール;検出せず)
【0021】
実施例15 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水133mLと濃塩酸67 mLを取り、12%HCl水を調製した。ここに濾取した析出物を全量加え、40℃温水槽中にて、以下実施例9と同様に反応させた。
翌日冷却しながら濃塩酸110mLを加えて攪拌溶解後、25%NaOH水392mLを加えてpH=5.5とした。冷却後結晶を分離し、5%水/メタノール200mLで洗浄した。以後実施例12と同様に乾燥して、標題化合物 111gを得た。(収率;83.9%、5'-FMN純度;88.6%、水分;4.0%、メタノール;検出せず)
【0022】
実施例16 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水182.5mLと濃硝酸61.5mLを取り、15%硝酸水を調製した。ここに濾取した析出物を全量加え、50℃温水槽中にて、以下実施例9と同様に反応させた。
翌日冷却しながら25%NaOH水280mLを加えて溶解後、内温28℃時点で濃硝酸24.8mLを加えてpH=5.5とし、メタノール100mLを加えて冷却後、結晶を分離し、メタノール200mLで洗浄した。以後実施例12と同様に乾燥して、標題化合物 98.8gを得た。(収率;74.7%、5'-FMN純度;89.1%、水分;3.0%、メタノール;検出せず)
【0023】
実施例17 リン酸リボフラビンの製造
実施例9と同様にしてリボフラビンとオキシ塩化リンを反応させた。
あらかじめ別のフラスコにイオン交換水187mLと濃硝酸53mLを取り、13%硝酸水を調製した。ここに濾取した析出物を全量加え、50℃温水槽中にて、以下実施例9と同様に反応させた。
翌日冷却しながら25%NaOH水220mLを加えてpH=5.5とし、メタノール200mLを加え冷却後、結晶を分離し、メタノール500mLで洗浄した。以後実施例9と同様に乾燥して、標題化合物 111.3gを得た。(収率;85.8%、5'-FMN純度;86.5%、水分;2.1%、メタノール;検出せず)
【0024】
比較例1 リン酸リボフラビンの製造(特開昭48-54099号の追試)
攪拌機、塩化カルシウム管、温度計、バッフルを付けた1L四頚フラスコ中にアセトニトリル80ml、オキシ塩化リン22.5mlおよびピリジン19mlを投入し攪拌する。氷冷下に水2.5mlを滴下後リボフラビン10gを加え、室温で5時間攪拌した。水500mlを加えた後、溶媒を減圧留去し、結晶が析出した水溶液を加熱溶解したのち冷却し、25%NaOH水でpH=5.5に調節した。この液を濃縮乾固し残渣に水を加え300mlとし、再度加熱溶解後冷却し析出した結晶を濾取、水、アルコール、エーテルで洗浄後減圧乾燥を行ない目的物11.0gを得た。(理論量の86.6%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 5.7%
リボフラビン-4-リン酸 12.6%
リボフラビン-5-リン酸 78.2%
リボフラビン 0.4%
旋光度は+39.5°であった。
【0025】
比較例2 リン酸リボフラビンの製造(特開昭48-54099号の追試)
ピリジンをトリエチルアミン33mlに変更した以外は比較例1と同様に行なって、目的物10.3gを得た。(理論量の81.1%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 6.0%
リボフラビン-4-リン酸 12.0%
リボフラビン-5-リン酸 73.8%
リボフラビン 2.1%
旋光度は+39.4°であった。
【0026】
比較例3 リン酸リボフラビンの製造(特開平3-109394号の追試)
500mlのカッ色ナスフラスコ中にγ-ブチロラクトン42mlを入れ、攪拌下リボフラビン10.8g、オキシ塩化リン6.4mlを順次投入した。フラスコ内溶物をゆっくりと35℃まで加熱し、かつこの温度で1時間攪拌した。この反応液に迅速に水18mlを投入後90℃ま で昇温し更に水25mlを投入、90℃内温で10分保持させた。更に水43mlを投入し室温まで冷却した。25%NaOH水でpH=5.5とし冷却後濾取、洗浄後減圧乾燥を行ない目的物10.4gを得た。(理論量の81.9%に相当)
HPLC分析によりこの生成物は次のものを含有した。
リボフラビン-3-リン酸 5.5%
リボフラビン-4-リン酸 12.0%
リボフラビン-5-リン酸 73.1%
リボフラビン 3.8%
旋光度は+38.9°であった。
以上の実施例及び比較例から、本発明の優れた効果が明らかである。
[0001]
[Industrial application fields]
The present invention relates to a novel industrially superior method for producing riboflavin (III) phosphate, which is useful as a medicine, food additive, feed, industrial intermediate and the like.
[0002]
[Prior art]
The present invention relates to a method for producing riboflavin-5′-phosphate (hereinafter referred to as 5′-FMN) or a monosodium salt thereof, which is valuable as a pharmaceutical product. 5'-FMN has an important role as a coenzyme in different enzyme reactions in vivo, and is a compound used as a drug, food and feed additive in the form of its salt, especially sodium-5'FMN. Conventionally, riboflavin-5'-phosphate is produced by adding riboflavin to a mixture of polar solvent, tertiary amine, phosphorous oxychloride and water and reacting, and then adding a large amount of water to the system to add excess oxychlorination. Decompose phosphorus, hydrolyze it with hydrochloric acid (water) as a by-product, adjust the pH and concentrate (JP-A-48-54099), add riboflavin to the mixture of lactones and phosphorus oxychloride and react Then, a large amount of water is added to the system to decompose excess phosphorus oxychloride, hydrolyzed with hydrochloric acid (water) by-produced there, and filtered after pH adjustment (Japanese Patent Laid-Open No. 3-109394) Since these methods decompose using a large amount of water, they require a large number of reaction cans. In addition, a large amount of phosphoric acid waste liquid is produced. According to the present invention, excess phosphorylating agent (such as POCl 3 ) can be easily recovered and reused without being decomposed by a concentration operation, so that a large reactor is not required, and phosphoric acid waste liquid can be reduced and used in the reaction. Solvents are easily recovered without worrying about thermal abuse of the target product. In addition, the amount of free phosphoric acid in the target product, which is a problem in quality due to separation from excess phosphorus oxychloride, is extremely small. In addition, as described above, in the conventional method, the hydrolysis in the next step is performed with hydrochloric acid (water) by-produced by the decomposition of the excess phosphorylating reagent, so it is not easy to change the conditions to ensure high quality. In this method, since riboflavin cyclic 4 ′, 5′-phosphoridate (II) or a salt thereof, which is an intermediate, is isolated, any concentration and acid species can be selected and there is no excess acid. For this reason, the amount of aqueous sodium hydroxide solution required for pH adjustment is reduced, and the amount of salt produced as a by-product is reduced.
[0003]
The present invention relates to a method for producing riboflavin-5′-phosphate (hereinafter referred to as 5′-FMN) or a monosodium salt thereof, which is valuable as a pharmaceutical product. 5'-FMN has an important role as a coenzyme in different enzyme reactions in vivo, and is a compound used as a drug, food and feed additive in the form of its salt, especially sodium-5'FMN. Conventionally, riboflavin-5'-phosphate is produced by adding riboflavin to a mixture of polar solvent, tertiary amine, phosphorus oxychloride and water and reacting, and then adding water to the system to remove excess phosphorus oxychloride. Decomposition, hydrolysis with by-product hydrochloric acid (water), pH adjustment and concentration (JP-A-48-54099), riboflavin is added to the mixture of lactones and phosphorus oxychloride, and then reacted. There are methods such as adding water to the system to decompose excess phosphorus oxychloride, hydrolyzing with hydrochloric acid (water) as a by-product, adjusting the pH and filtering (JP-A-3-109394). Although the purity of 5′-FMN obtained in 1) satisfies the JP standards, it contains a large amount of 3′-FMN, 4′-FMN, which are inactive isomers in vivo, and unreacted riboflavin. For example, 3'-FMN 5-7%, 4'-FMN 11-13%, unreacted riboflavin 1-2% (5'-FMN 75-80%) according to the follow-up examination of the former patent, description of the latter patent 3′-FMN 5-7%, 4′-FMN 9-11%, unreacted riboflavin 4-5.8% (5′-FMN 76-80%). In order to obtain a higher-purity target product, it is necessary to perform a technically expensive purification method (for example, column chromatography).
FMN is known to have equilibrium in 3 ', 4', 5 'isomers in its acid solution. (Eur. J. biochem., 66, 567-577, 1976.) The ratio is about 3 ': 4': 5 '= 5: 15: 80, and the above patent results also suggest these values. In the study of shifting the equilibrium to the 5'-FMN side, we found a method of shifting the equilibrium by selectively removing 5'-FMN from the system as a crystal by changing the acid concentration.
According to the present invention, high-purity 5′-FMN can be obtained without an expensive purification method.
The present invention is characterized in that riboflavin cyclic 4 ′, 5′-phosphoridate (II), which is an intermediate deposited by a predetermined reaction, or a salt thereof is collected by filtration and isomerized with an appropriate concentration and amount of acid. To do. Specifically, 1 to 35.5 (w / v)% concentration, preferably 5 to 18%, more preferably 12% acid, for example, mineral acid such as hydrochloric acid, nitric acid, sulfuric acid (preferably hydrochloric acid), riboflavin as the starting material 1-10 times volume (preferably 2 times volume) is added to the mixture, and the reaction is stirred at 10-100 ° C (preferably 20-40 ° C). The progress of isomerization is carried out by HPLC, and the time when the 5′-FMN purity exceeds 90% is set as a temporary end point, and the post-treatment is started. In the post-treatment, acid or alkaline water is added to the obtained suspension reaction solution and dissolved, and then the pH is adjusted to 5.5 with an alkali or acid opposite to the previously used liquid property. The liquid is cooled, filtered, washed with alcohol and dried. The target product obtained by the method according to the present invention is 3'-FMN 3-5%, 4'-FMN 4-6%, 5'-FMN 88-90%, unreacted riboflavin -1%, pharmacopoeia grade There is no need to continue the costly purification process.
[Problems to be solved by the present invention]
As described above, an industrially excellent method for producing riboflavin (III) phosphate or a sodium salt thereof has not yet been established, and a new and superior method has been demanded.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have been diligently researching to improve the above problems. As a result, the inventors have found that the problem can be solved by the method described in detail below, and have completed the present invention.
[0005]
More specifically, the present invention is one of the following methods.
(1) In the reaction of producing riboflavin phosphate (III) by reacting riboflavin (I) with phosphorus oxychloride, the reaction intermediate riboflavin cyclic 4 ', 5'-phosphoridate (II) or a salt thereof is added. Take it out of the system and disassemble it.
(2) Riboflavin cyclic 4 ', 5'-phosphoridate (II) is decomposed under acidic conditions.
(3) The acidic condition is adjusted by using 1 to 35.5 (w / v)% acid at 1 to 10 times the volume of riboflavin as the starting material.
[0006]
Subsequently, in order to specifically describe the present invention, examples and comparative examples are listed below, but it goes without saying that the present invention is not limited thereto.
【Example】
[0007]
Example 1 Production of Riboflavin Phosphate 300 ml of acetonitrile, 150 ml of phosphorus oxychloride and 127 ml of pyridine are stirred in a 1 L four-necked flask equipped with a stirrer, calcium chloride tube, thermometer and baffle. Add 16.7 ml of water under ice cooling, add 100 g of riboflavin, and stir overnight at room temperature.
On the next day, the intermediate precipitated in Nutsche was collected by suction filtration and washed with 250 ml of acetonitrile. The obtained intermediate is transferred to a 1 L eggplant flask, 80 ml of concentrated hydrochloric acid and 80 ml of water are added, and the mixture is stirred at 50 ° C. for 3 hours. The solution is cooled to 20 ° C. or lower, and 250 ml of 25% NaOH water is added dropwise to adjust the pH to 5.5. After cooling this solution to 10 ° C. or lower, the crude FMN precipitated in Nutsche was collected by suction filtration and washed with 200 ml of methanol. The obtained crude FMN was transferred to a 1 L eggplant flask, recrystallized with water and methanol, filtered and dried under reduced pressure to obtain 88.8 g of fine FMN. (Equivalent to 70% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 2.5%
Riboflavin-4-phosphate 8.5%
Riboflavin-5-phosphate 86.8%
Riboflavin 1.4%
The optical rotation was + 38.5 °.
[0008]
Example 2 Production of Riboflavin Phosphate 600 ml of acetonitrile, 150 ml of phosphorus oxychloride and 220 ml of triethylamine are placed in a 1 L four-necked flask equipped with a stirrer, calcium chloride tube, thermometer and baffle and stirred. Add 16.7 ml of water under ice cooling, add 100 g of riboflavin, and stir overnight at room temperature. On the next day, the intermediate precipitated in Nutsche was collected by suction filtration and washed with 250 ml of acetonitrile. The obtained intermediate is transferred to a 1 L eggplant flask, 80 ml of concentrated hydrochloric acid and 80 ml of water are added, and the mixture is stirred at 50 ° C. for 2 hours. The solution is cooled to 20 ° C. or lower, and 250 ml of 25% NaOH water is added dropwise to adjust the pH to 5.5. After cooling this solution to 10 ° C. or lower, the crude FMN precipitated in Nutsche was collected by suction filtration and washed with 200 ml of methanol. The obtained crude FMN was transferred to a 1 L eggplant flask, recrystallized with water and methanol, filtered and dried under reduced pressure to obtain 81.3 g of fine FMN. (Equivalent to 64% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 2.5%
Riboflavin-4-phosphate 8.4%
Riboflavin-5-phosphate 86.2%
Riboflavin 1.9%
The optical rotation was + 38.5 °.
[0009]
Example 3 Production of riboflavin phosphate The reaction was carried out in the same manner as in Example 1 except that 300 ml of tetrahydrofuran was used from acetonitrile. After filtration, it was dried under reduced pressure to obtain 88.9 g of fine FMN. (Corresponding to 70.0% of theory) This product contained the following by HPLC analysis:
Riboflavin-3-phosphate 2.4%
Riboflavin-4-phosphate 8.4%
Riboflavin-5-phosphate 87.1%
Riboflavin 1.0%
The optical rotation was + 38.7 °.
[0010]
Example 4 Production of Riboflavin Phosphate 650 ml of the intermediate filtrate in the 100 g scale reaction of riboflavin was transferred to a 1000 ml eggplant flask, subjected to atmospheric distillation, and 495 ml was recovered at a distillation temperature of 78-82C. This was a mixture of acetonitrile, phosphorus oxychloride and HCl, and 5% phosphorus oxychloride by titration analysis. This results in 85% recovery of used acetonitrile and 60% recovery of unreacted phosphorus oxychloride.
[0011]
Example 5 Production of riboflavin phosphate The reaction was carried out in the same manner as in Example 1 except that 315 ml of recovered acetonitrile (containing 5% phosphorus oxychloride, corresponding to 15 ml as phosphorus oxychloride) and 135 ml phosphorus oxychloride were used. It was. After filtration, it was dried under reduced pressure to obtain 88.7 g of fine FMN. (Equivalent to 69.9% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 2.1%
Riboflavin-4-phosphate 7.7%
Riboflavin-5-phosphate 88.1%
Riboflavin 1.4%
The optical rotation was + 38.7 °.
[0012]
Example 6 Production of Riboflavin Phosphate 300 ml of acetonitrile, 150 ml of phosphorus oxychloride and 127 ml of pyridine are stirred in a 1 L four-necked flask equipped with a stirrer, calcium chloride tube, thermometer and baffle. Add 16.7 ml of water under ice cooling, add 100 g of riboflavin, and stir overnight at room temperature.
On the next day, the intermediate precipitated in Nutsche was collected by suction filtration and washed with 300 ml of acetonitrile. The obtained intermediate is transferred to a 1 L four-necked flask, 67 ml of concentrated hydrochloric acid and 133 ml of water are added, and the mixture is stirred at 40 ° C. for 21 hours. At this time, the solution changed from a clear brown solution to a yellow suspension solution, and showed an HPLC value of 91.2%. When 25% NaOH aqueous solution is gradually added to this reaction solution and 280 ml is added, pH is 9.3 and a clear brown solution is obtained. When 34 ml of concentrated hydrochloric acid is gradually added and pH is 5.5, a suspension reaction solution is obtained. After cooling, the mixture was filtered with suction, washed with alcohol, and dried under reduced pressure to obtain 104.2 g of the desired product. (Equivalent to 82% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 2.8%
Riboflavin-4-phosphate 5.4%
Riboflavin-5-phosphate 88.9%
Riboflavin 0.8%
The optical rotation was + 38.4 °.
[0013]
Example 7 Production of riboflavin phosphate Into a 1 L four-necked flask equipped with a stirrer, calcium chloride tube, thermometer and baffle, 300 ml of acetonitrile, 150 ml of phosphorus oxychloride and 127 ml of pyridine are added and stirred. Add 16.7 ml of water under ice cooling, add 100 g of riboflavin, and stir overnight at room temperature.
On the next day, the intermediate precipitated in Nutsche was collected by suction filtration and washed with 300 ml of acetonitrile. The obtained intermediate is transferred to a 1 L four-necked flask, 67 ml of concentrated hydrochloric acid and 133 ml of water are added, and the mixture is stirred at 40 ° C. for 21 hours. At this time, the solution changed from a clear brown solution to a yellow suspension solution, and showed an HPLC value of 90.2%. Concentrated hydrochloric acid is gradually added to the reaction solution, and when 110 ml is added, a clear brown solution is obtained. Furthermore, when 392 ml of 25% alkaline water is gradually added, pH = 5.5 is exhibited and a suspension reaction solution is obtained. After cooling, the mixture was filtered with suction, washed with alcohol, and dried under reduced pressure to obtain 108.8 g of the desired product. (Equivalent to 85.7% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 3.3%
Riboflavin-4-phosphate 6.1%
Riboflavin-5-phosphate 88.6%
Riboflavin 0.8%
The optical rotation was + 38.7 °.
[0014]
Example 8 Production of riboflavin phosphate The intermediate obtained in the same manner as in Example 6 was transferred to a 1 L four-necked flask, added with 53 ml of concentrated nitric acid and 167 ml of water, and stirred at 50 ° C for 16 hours. After cooling to room temperature, 220 ml of 25% NaOH water was added to adjust pH to 5.5. Further, 200 ml of methanol was added, and after cooling, suction filtered, washed with alcohol and dried under reduced pressure to obtain 111.3 g of the desired product. (Equivalent to 87.6% of theoretical amount)
From HPLC analysis, the product contained:
Riboflavin-3-phosphate 4.5%
Riboflavin-4-phosphate 6.1%
Riboflavin-5-phosphate 88.1%
Riboflavin 0.6%
The optical rotation was + 38.7 °.
[0015]
Example 9 Production of Riboflavin Phosphate
A 1000 mL 4-neck flask was charged with 250 mL of acetonitrile, 127 mL of pyridine, and 150 mL of phosphorus oxychloride, and cooled with ice water. A mixture of 16.6 mL of ion exchange water / 100 mL of acetonitrile was added over 1 hour, 100 g of riboflavin was added, and the mixture was stirred overnight. The next morning, the precipitate was filtered and washed with 150 mL of acetonitrile.
In a separate flask, 187.5 mL of ion exchange water and 62.5 mL of concentrated hydrochloric acid were taken in advance to prepare 9% aqueous HCl. The entire amount of the precipitate collected by filtration was added, and the mixture was stirred overnight in a 50 ° C. warm water bath. The solution was dissolved by adding 267 mL of 25% NaOH aqueous solution while cooling the next morning, and at a temperature of 31 ° C., 28.5 mL of concentrated hydrochloric acid was added to adjust to pH = 5.5, and the mixture was further stirred overnight under cooling.
The crystals precipitated the next morning were separated and washed with 200 mL of 10% water / methanol. The wet crystals were transferred into a 1000 mL eggplant flask, dried in a 20 ° C. water bath under reduced pressure of 60 mmHg overnight, and further dried in a 40 ° C. water bath at a vacuum of 10 mmHg or less to give 102 g of the title compound. (Yield; 77.4%, 5'-FMN purity; 90.3%, moisture; 3.6%, methanol; not detected)
[0016]
Example 10 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 187.5 mL of ion exchange water and 62.5 mL of concentrated hydrochloric acid were taken in advance to prepare 9% aqueous HCl. The whole amount of the precipitate collected by filtration was added, and the reaction was carried out in the same manner as in Example 9 in a 40 ° C. hot water tank.
After cooling in the morning, 292 mL of 25% NaOH water was added and dissolved, and then 40 mL of concentrated hydrochloric acid was added at an internal temperature of 34 ° C. to pH = 5.5. After cooling, the crystals were separated and washed with 15% water / 300 mL of methanol. Thereafter, drying was conducted in the same manner as in Example 9 to obtain 101 g of the title compound. (Yield; 77.1%, 5'-FMN purity; 88.4%, moisture; 3.1%, methanol; not detected)
[0017]
Example 11 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 187.5 mL of ion exchange water and 62.5 mL of concentrated hydrochloric acid were taken in advance to prepare 9% aqueous HCl. The whole amount of the precipitate collected by filtration was added, and the reaction was conducted in the same manner as in Example 9 in a 60 ° C. hot water tank.
After cooling in the morning, 288 mL of 25% NaOH water was added and dissolved, and then 40 mL of concentrated hydrochloric acid was added at an internal temperature of 34 ° C. to pH = 5.5. After cooling, the crystals were separated and washed with 15% water / 300 mL of methanol.
The wet crystals were transferred into a 1000 mL eggplant flask and dried overnight at 40 mmHg in a 20 ° C. water bath and further in a 40 ° C. water bath at a vacuum of 10 mmHg or less to give 100.7 g of the title compound. (Yield; 76.4%, 5'-FMN purity; 87.5%, moisture; 3.7% ;, methanol; not detected)
[0018]
Example 12 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 195 mL of ion exchange water and 55 mL of concentrated hydrochloric acid were taken in advance to prepare 8% HCl water. The whole amount of the precipitate collected by filtration was added, and the reaction was carried out in the same manner as in Example 9 in a 40 ° C. hot water tank.
After cooling the next morning, 276 mL of 25% NaOH water was added and dissolved, and 36.8 mL of concentrated hydrochloric acid was added at an internal temperature of 29 ° C. to pH = 5.5. After cooling, the crystals were separated and washed with 300 mL of 10% water / methanol. The wet crystals were transferred to a dryer, dried by ventilation overnight, and further dried at a vacuum of 40 ° C./10 mmHg or less to obtain 99 g of the title compound. (Yield: 75.5%, 5'-FMN purity: 90.7%, moisture 3.1%, methanol; not detected)
[0019]
Example 13 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 180.4 mL of ion exchange water and 69.6 mL of concentrated hydrochloric acid were taken in advance to prepare 10% aqueous HCl. The whole amount of the precipitate collected by filtration was added, and the reaction was conducted in warm water at 40 ° C. in the same manner as in Example 9.
After cooling the next morning with 308 mL of 25% NaOH water, the solution was dissolved at an internal temperature of 27 ° C. to add 38.4 mL of concentrated hydrochloric acid to pH = 5.5. After cooling, the crystals were separated and washed with 300 mL of 10% water / methanol. Thereafter, drying was conducted in the same manner as in Example 12 to obtain 101 g of the title compound. (Yield; 77.1%, 5'-FMN purity; 88.6%, moisture; 3.1%, methanol; not detected)
[0020]
Example 14 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 133 mL of ion-exchanged water and 67 mL of concentrated hydrochloric acid were taken in advance to prepare 12% HCl aqueous solution. The whole amount of the precipitate collected by filtration was added, and the reaction was carried out in the same manner as in Example 9 in a 40 ° C. hot water tank.
The solution was dissolved by adding 280 mL of 25% NaOH water the next day while cooling, and then adjusted to pH = 5.5 by adding concentrated hydrochloric acid 34 mL at an internal temperature of 25 ° C. After cooling, the crystals were separated and washed with 200 mL of 5% water / methanol. Thereafter, drying was conducted in the same manner as in Example 12 to obtain 106.2 g of the title compound. (Yield; 80.4%, 5'-FMN purity; 88.9%, moisture; 3.9%, methanol; not detected)
[0021]
Example 15 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 133 mL of ion-exchanged water and 67 mL of concentrated hydrochloric acid were taken in advance to prepare 12% HCl aqueous solution. The whole amount of the precipitate collected by filtration was added, and the reaction was carried out in the same manner as in Example 9 in a 40 ° C. hot water tank.
Concentrated hydrochloric acid (110 mL) was added and dissolved by stirring the following day while cooling, and then 392 mL of 25% NaOH water was added to adjust the pH to 5.5. After cooling, the crystals were separated and washed with 5% water / 200 mL methanol. Thereafter, drying was conducted in the same manner as in Example 12 to obtain 111 g of the title compound. (Yield; 83.9%, 5'-FMN purity; 88.6%, moisture; 4.0%, methanol; not detected)
[0022]
Example 16 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 182.5 mL of ion-exchanged water and 61.5 mL of concentrated nitric acid were taken in advance to prepare 15% aqueous nitric acid. The whole amount of the precipitate collected by filtration was added and reacted in the same manner as in Example 9 in a 50 ° C. hot water tank.
Add 280 mL of 25% aqueous NaOH while cooling the next day, dissolve, add 24.8 mL of concentrated nitric acid at an internal temperature of 28 ° C to pH = 5.5, add methanol 100 mL, cool, separate crystals, and wash with 200 mL of methanol did. Thereafter, drying was conducted in the same manner as in Example 12 to obtain 98.8 g of the title compound. (Yield; 74.7%, 5'-FMN purity; 89.1%, moisture; 3.0%, methanol; not detected)
[0023]
Example 17 Production of riboflavin phosphate Riboflavin and phosphorus oxychloride were reacted in the same manner as in Example 9.
In a separate flask, 187 mL of ion-exchanged water and 53 mL of concentrated nitric acid were taken in advance to prepare 13% nitric acid solution. The whole amount of the precipitate collected by filtration was added and reacted in the same manner as in Example 9 in a 50 ° C. hot water tank.
While cooling the next day, 220 mL of 25% NaOH water was added to adjust the pH to 5.5, 200 mL of methanol was added and the mixture was cooled, and then the crystals were separated and washed with 500 mL of methanol. Thereafter, drying was conducted in the same manner as in Example 9 to obtain 111.3 g of the title compound. (Yield; 85.8%, 5'-FMN purity; 86.5%, moisture; 2.1%, methanol; not detected)
[0024]
Comparative Example 1 Production of Riboflavin Phosphate (Additional Examination of JP-A-48-54099)
In a 1 L four-necked flask equipped with a stirrer, calcium chloride tube, thermometer and baffle, 80 ml of acetonitrile, 22.5 ml of phosphorus oxychloride and 19 ml of pyridine are added and stirred. Under ice cooling, 2.5 ml of water was added dropwise, 10 g of riboflavin was added, and the mixture was stirred at room temperature for 5 hours. After adding 500 ml of water, the solvent was distilled off under reduced pressure. The aqueous solution in which the crystals were precipitated was dissolved by heating and then cooled, and the pH was adjusted to 5.5 with 25% NaOH water. The solution was concentrated to dryness, water was added to the residue to make 300 ml, and the mixture was heated and dissolved again. After cooling, the precipitated crystals were collected by filtration, washed with water, alcohol and ether and dried under reduced pressure to obtain 11.0 g of the desired product. (Equivalent to 86.6% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 5.7%
Riboflavin-4-phosphate 12.6%
Riboflavin-5-phosphate 78.2%
Riboflavin 0.4%
The optical rotation was + 39.5 °.
[0025]
Comparative Example 2 Production of Riboflavin Phosphate (Additional Examination of JP-A-48-54099)
The same procedure as in Comparative Example 1 was carried out except that pyridine was changed to 33 ml of triethylamine to obtain 10.3 g of the desired product. (Equivalent to 81.1% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 6.0%
Riboflavin-4-phosphate 12.0%
Riboflavin-5-phosphate 73.8%
Riboflavin 2.1%
The optical rotation was + 39.4 °.
[0026]
Comparative Example 3 Production of Riboflavin Phosphate (Additional Examination of JP-A-3-109394)
42 ml of γ-butyrolactone was put in a 500 ml brown eggplant flask, and 10.8 g of riboflavin and 6.4 ml of phosphorus oxychloride were sequentially added with stirring. The solution in the flask was slowly heated to 35 ° C. and stirred at this temperature for 1 hour. The reaction solution was rapidly charged with 18 ml of water and then heated to 90 ° C., and further 25 ml of water was added and kept at 90 ° C. internal temperature for 10 minutes. Further, 43 ml of water was added and cooled to room temperature. The solution was cooled to pH = 5.5 with 25% NaOH aqueous solution, filtered, washed and dried under reduced pressure to obtain 10.4 g of the desired product. (Equivalent to 81.9% of theoretical amount)
By HPLC analysis, the product contained:
Riboflavin-3-phosphate 5.5%
Riboflavin-4-phosphate 12.0%
Riboflavin-5-phosphate 73.1%
Riboflavin 3.8%
The optical rotation was + 38.9 °.
From the above Examples and Comparative Examples, the excellent effects of the present invention are clear.

Claims (4)

下記式(I)で表されるリボフラビンから下記式(III)で表されるリボフラビン−5’−リン酸を製造する製造方法であって、
Figure 0003901321
前記リボフラビンとオキシ塩化リンとをピリジン又はトリエチルアミンの存在下に反応させて、式(II)で表されるリボフラビン・サイクリック4’,5’−ホスホリデートを得る工程と、
前記リボフラビン・サイクリック4’,5’−ホスホリデートを系外に取り出す工程と、
系外に取り出した前記リボフラビン・サイクリック4’,5’−ホスホリデートを分解・異性化させるように、酸性条件下における加水分解する工程と、を含み、
前記酸性条件下における加水分解は、1〜35.5(w/v)%の濃度の酸を前記リボフラビンに対し1〜10倍容量用いて実行する製造方法。
A production method for producing riboflavin-5′-phosphate represented by the following formula (III) from riboflavin represented by the following formula (I),
Figure 0003901321
Reacting the riboflavin with phosphorus oxychloride in the presence of pyridine or triethylamine to obtain a riboflavin cyclic 4 ′, 5′-phosphoridate represented by the formula (II);
Extracting the riboflavin cyclic 4 ′, 5′-phosphoridate out of the system;
Hydrolyzing under acidic conditions so as to decompose and isomerize the riboflavin cyclic 4 ′, 5′-phosphoridate taken out of the system,
Hydrolysis under the acidic condition is a production method in which an acid having a concentration of 1 to 35.5 (w / v)% is used at a volume of 1 to 10 times that of the riboflavin.
前記酸は、塩酸、硝酸又は硫酸である、請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the acid is hydrochloric acid, nitric acid, or sulfuric acid. 下記式(I)で表されるリボフラビンからリボフラビン−5’−リン酸ナトリウム塩を製造する製造方法であって、
Figure 0003901321
前記リボフラビンとオキシ塩化リンとをピリジン又はトリエチルアミンの存在下に反応させて、式(II)で表されるリボフラビン・サイクリック4’,5’−ホスホリデートを得る工程と、
前記リボフラビン・サイクリック4’,5’−ホスホリデートを系外に取り出す工程と、
系外に取り出した前記リボフラビン・サイクリック4’,5’−ホスホリデートを分解・異性化させるように、酸性条件下における加水分解する工程と、
前記式(III)で表される化合物を、水酸化ナトリウムで処理する工程と、を含み、
前記酸性条件下における加水分解は、1〜35.5(w/v)%の濃度の酸を前記リボフラビンに対し1〜10倍容量用いて実行する製造方法。
A production method for producing riboflavin-5′-phosphate sodium salt from riboflavin represented by the following formula (I):
Figure 0003901321
Reacting the riboflavin with phosphorus oxychloride in the presence of pyridine or triethylamine to obtain a riboflavin cyclic 4 ′, 5′-phosphoridate represented by the formula (II);
Extracting the riboflavin cyclic 4 ′, 5′-phosphoridate out of the system;
Hydrolyzing under acidic conditions so as to decompose and isomerize the riboflavin cyclic 4 ′, 5′-phosphoridate taken out of the system;
Treating the compound represented by the formula (III) with sodium hydroxide,
Hydrolysis under the acidic condition is a production method in which an acid having a concentration of 1 to 35.5 (w / v)% is used at a volume of 1 to 10 times that of the riboflavin.
前記酸は、塩酸、硝酸又は硫酸である、請求項3に記載の製造方法。  The manufacturing method according to claim 3, wherein the acid is hydrochloric acid, nitric acid, or sulfuric acid.
JP35657397A 1997-06-05 1997-12-25 Method for producing riboflavin-5'-phosphate or a sodium salt thereof Expired - Lifetime JP3901321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35657397A JP3901321B2 (en) 1997-06-05 1997-12-25 Method for producing riboflavin-5'-phosphate or a sodium salt thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14833997 1997-06-05
JP9-148339 1997-06-05
JP35657397A JP3901321B2 (en) 1997-06-05 1997-12-25 Method for producing riboflavin-5'-phosphate or a sodium salt thereof

Publications (2)

Publication Number Publication Date
JPH1149790A JPH1149790A (en) 1999-02-23
JP3901321B2 true JP3901321B2 (en) 2007-04-04

Family

ID=26478574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35657397A Expired - Lifetime JP3901321B2 (en) 1997-06-05 1997-12-25 Method for producing riboflavin-5'-phosphate or a sodium salt thereof

Country Status (1)

Country Link
JP (1) JP3901321B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010172A1 (en) * 2001-07-23 2003-02-06 Eisai Co., Ltd. Process for producing highly pure riboflavin-5’-phosphate sodium
CN102617643B (en) * 2012-03-06 2013-04-10 黄金秀 Riboflavin sodium phosphate compound
CN103396452B (en) * 2013-08-19 2015-09-30 周晓东 A kind of Riboflavin sodium phosphate compound and composition thereof
CN107286194A (en) * 2017-06-07 2017-10-24 山西集翔生物工程有限公司 A kind of riboflavin phosphate process for producing sodium

Also Published As

Publication number Publication date
JPH1149790A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
EP2046804B1 (en) Synthesis of diethyl{[5-(3-fluorophenyl)-pyridine-2-yl]methyl} phosphonate used in the synthesis of himbacine analogs
JP5015006B2 (en) [1-Hydroxy-2- (3-pyridinyl) ethylidene] bisphosphonic acid and its 2.5 hydrate monosodium salt
JP2921580B2 (en) Method for producing ascorbic acid-2-phosphate, method for producing K1 ± 0.3 Mg1 ± 0.15-L-ascorbate-2-phosphate and 5,6-isopropylidene-ascorbic acid
JP3901321B2 (en) Method for producing riboflavin-5'-phosphate or a sodium salt thereof
KR20080007347A (en) Generation of phosphorus oxychloride as by-product from phosphorus pentachloride and dmf and its use for chlorination reaction by converting into vilsmeier-haack reagent
US5245069A (en) Process for the preparation of bis(aryl)-phosphorohalidates
US4931585A (en) Process for preparing N-phosphono-methyl-imino-diacetic acid
EP1981896B1 (en) An improved process for the preparation of risedronate sodium hemi-pentahydrate
WO2016079576A1 (en) A process for the preparation of a thiamine derivative and salt thereof
KR101330814B1 (en) Preparation of Choline alfoscerate
JPH03181493A (en) Preparation of pure cyclic diarylester phophate
CA2280381C (en) Improved process for the production of an n-acyl derivative of o,s-dialkyl phosphoroamidothioate
JPH05202079A (en) Production of filtrable, roughly crystalline 1-sodium riboflavin-5'9-phosphate
KR101195631B1 (en) New Synthetic Method of 9-[2-phosphonomethoxyethyl]adenine
Boduszek et al. Synthesis of novel pyrone, chromone and coumarin derivatives of aminomethanephosphonic acid
WO2008152518A2 (en) Process for the preparation of risedronic acid or risedronate sodium
JP2546067B2 (en) Method for producing methanediphosphonic acid compound
EP0090202B1 (en) Process for preparing p.chlorophenoxyacetyl-piperonylpiperazine
CN109384814B (en) Purification method of novel tenofovir prodrug
KR900003410B1 (en) Preparing method for n.n.n.-trimethyl-2-(phospooxy) ethaneammonium chloride methal salts
KR100193368B1 (en) Method for preparing riboflavin 5'-phosphate salt
JP2759087B2 (en) Purification method of 1,4-dihydroxy-2-naphthoic acid aryl ester
JP2522931B2 (en) Quaternary ammonium salt
SU429585A3 (en) METHOD OF OBTAINING SUBSTITUTED a-NAFTOXYACETAMIDE
EA027231B1 (en) Process for the preparation of bisphosphonic acids

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term