JP3901318B2 - Optical component angle measurement method and apparatus - Google Patents

Optical component angle measurement method and apparatus Download PDF

Info

Publication number
JP3901318B2
JP3901318B2 JP34750397A JP34750397A JP3901318B2 JP 3901318 B2 JP3901318 B2 JP 3901318B2 JP 34750397 A JP34750397 A JP 34750397A JP 34750397 A JP34750397 A JP 34750397A JP 3901318 B2 JP3901318 B2 JP 3901318B2
Authority
JP
Japan
Prior art keywords
optical component
reference surface
holding jig
angle
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34750397A
Other languages
Japanese (ja)
Other versions
JPH11183148A (en
Inventor
浩太 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP34750397A priority Critical patent/JP3901318B2/en
Publication of JPH11183148A publication Critical patent/JPH11183148A/en
Application granted granted Critical
Publication of JP3901318B2 publication Critical patent/JP3901318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学部品の2つの面の頂角を測定する角度測定方法とその装置に関する。
【0002】
【従来の技術】
従来、光学部品の2つの面の頂角を測定する技術には、例えば、「面方位測定装置」として、特開平6−167325号公報所載の技術が開示されている。図7を用いて、この技術を説明する。図7において、基台121には、該基台121に略垂直な軸Oを中心として回転自在なように試料台103およびスウィーベルアーム104がそれぞれ設けられ、このスウィーベルアーム104に、試料台103上に載置された試料101の被測定面から反射されてくる光を観測するための望遠鏡151が取り付けられている。なお、試料台103には該試料台103上に載置された試料101の水平方向に対する傾斜角度を調整する傾斜ネジ103aを備えた傾斜角度調整機構が設けられており、一方、基台121上には、スウィーベルアーム104の回転角度を読み取る為のロータリーエンコーダ121aが内蔵されている。ロータリーエンコーダ121aは、試料台103およびスウィーベルアーム104の回転角度座標に対応する信号を発生して処理装置109に送出する。
【0003】
望遠鏡151は、オートコリメータと同様の構造となっており、試料101の被測定面に対向して配置される鏡筒前部に設けられた対物レンズ151aおよびこの対物レンズ151aの焦点位置であって鏡筒後部に設けられた撮像素子151bからなる観測光学系と、対物レンズ151aを共通にし、該対物レンズ151aと撮像素子151bとの間に設けられたビームスプリッタ151cによって観測光学系外に分岐して形成された光路上において撮像素子151bと光学的に共役な位置に設けられた投影用指標151d及び投影用光源151eからなる投影光学系とを有する。投影用指標151dの光はビームスプリッタ151cで反射して対物レンズ151aによって平行光にされて外部に出射され、試料面に入射する。試料101の被測定面で反射された光は、同じ対物レンズ151aで集光され、ビームスプリッタ151cを通過して投影用指標151eとは光学的に共役な位置に配置された撮像素子151b上に焦点を結ぶ。つまり、投影用指標151dの像が撮像素子151b上に結像される。
【0004】
撮像素子151bは、例えば、2次元CCDのように、多数の光検出素子を平面上に配列してそれぞれを画素としたもので、処理装置109によって制御され、対物レンズ151aによって結像された光の像を電気的信号に変換し、処理装置109に送出する。処理装置109は、マイクロプロセッサその他の情報処理用回路等の必要な回路を内蔵し、表示用のディスプレイ109aを有するもので、所定の指令によりあらかじめ記憶されている所定のプログラムに従ってロータリーエンコーダ121a、撮像素子151b及びレチクルジェネレータ110を制御するとともにこれらから送出される角度信号や画像信号その他の信号の処理、必要な演算、もしくは表示を行う処理を実行するものである。
【0005】
試料たるプリズム101の面方位を観測するには、望遠鏡151の対物レンズ151aの焦点面に位置検出型の撮像素子151bを配置し、該撮像素子151bによって得られる投影用指標像に処理装置109による画像処理を含む処理を施すことによって該投影用指標像の位置を求め、この位置とレチクルジェネレータ110によって形成されるレチクル(基準指標)の位置並びにロータリーエンコーダ121aによる角度測定値とから各面の方位を自動処理で求めるものである。
【0006】
【発明が解決しようとする課題】
しかるに、上記従来技術にはつぎのような問題点があった。すなわち、上記従来技術は、プリズムの2つの面の頂角を自動処理で求めることにより、測定精度を向上させている点では優れている。ところが、プリズム自体は、測定する頂角を形成する2つの面に隣接する第3の面を試料台上に載置して保持されている。このため、形状的に保持が困難なプリズム、例えば、微小プリズムや被測定頂角を形成する2つの面に隣接する第3の面が平面でない異形プリズム等を測定する場合、プリズムの保持が不安定となり、測定精度が低下するという問題点があった。
【0007】
本発明は、上記従来の問題点に鑑みてなされたもので、請求項1に係る発明の課題は、形状的に保持が困難な光学部品であっても、安定した保持を保証し、測定精度に優れた光学部品の角度測定方法を提供することである。
請求項2、3または4に係る発明の課題は、請求項1に係る発明の光学部品の角度測定方法を容易に実施するための角度測定装置を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明の光学部品の角度測定方法は、光学部品の2つの面で形成された被測定頂角を測定する光学部品の角度測定方法において、前記光学部品を保持する保持治具の基準面をオートコリメータに向ける工程と、前記オートコリメータを観察し前記保持治具の基準面の反射指標と前記オートコリメータの基準指標とを一致させる工程と、前記光学部品の2つの面のうちの一方である基準面を前記保持治具の基準面に当て付けて保持する工程と、前記保持治具の基準面と前記光学部品の基準面との干渉縞を観察する工程と、前記干渉縞の観察結果によって前記保持治具による前記光学部品の保持状態が良好であることを確認した後、前記保持治具を被測定頂角の称呼角度だけ回転させ前記光学部品の2つの面のうちの他方である被測定面の反射指標を前記オートコリメータで測定する工程と、前記測定した反射指標と前記オートコリメータの基準指標とを比較してズレ量を求め、そのズレ量を被測定頂角の誤差量とする工程とを有する。
【0009】
請求項2に係る発明の光学部品の角度測定装置は、光学部品の2つの面で形成された被測定頂角を測定する光学部品の角度測定装置において、前記光学部品の2つの面のうちの一方である基準面を当て付けて保持する保持治具と、前記保持治具を所定の角度回転させる回転ステージと、前記光学部品の2つの面のうちの他方である被測定面の面方位を測定するオートコリメータと、前記光学部品の基準面とその基準面を当て付けた保持治具の基準面との干渉縞を観察する観察手段とを具備するものである。
請求項3に係る発明の光学部品の角度測定装置は、請求項2に係る発明の光学部品の角度測定装置において、前記保持治具の基準面が鏡面加工されているものである。
請求項4に係る発明の光学部品の角度測定装置は、請求項2または請求項3に係る発明の光学部品の角度測定装置において、前記保持治具の基準面に、前記光学部品の基準面を吸着する吸着口を設けたものである。
【0010】
すなわち、請求項1に係る発明の光学部品の角度測定方法は、光学部品を保持する保持治具の基準面をオートコリメータに向ける。そして、オートコリメータを観察し、保持治具の基準面とオートコリメータの基準面とを一致させる。光学部品の2つの面のうちの一方である基準面を保持治具の基準面に当て付け保持し、保持治具の基準面と光学部品の基準面との干渉縞を観察する。さらに、干渉縞の観察結果によって保持治具による光学部品の保持状態が良好であることを確認した後、保持治具を被測定頂角の称呼角度だけ回転させ、光学部品の2つの面のうちの他方である被測定面の反射指標をオートコリメータで測定し、測定した反射指標とオートコリメータの基準指標とを比較してズレ量を求め、そのズレ量を被測定頂角の誤差量とする。これによって、光学部品の2つの面で形成された被測定頂角が測定される。
【0011】
また、請求項2に係る発明の光学部品の角度測定装置は、光学部品の2つの面のうちの一方である基準面を当て付けて保持治具に保持する。そして、光学部品の基準面とその基準面を当て付けた保持治具の基準面との干渉縞を干渉縞観察手段で観察する。回転ステージによって保持治具を所定の角度回転させ、光学部品の2つの面のうちの他方である被測定面の面方位をオートコリメータで測定する。これによって、光学部品の2つの面で形成された被測定頂角が測定される。
さらに、請求項3に係る発明の光学部品の角度測定装置は、鏡面加工されている保持治具の基準面で光学部品を保持する。
さらにまた、請求項4の発明に係る光学部品の角度測定装置は、保持治具に設けられた吸着口によって保持治具の基準面に光学部品を吸着する。
【0012】
【発明の実施の形態】
本発明の実施の形態における光学部品の角度測定装置は、主に、光学部品としてのプリズムの基準面を当て付けて保持する保持治具と、保持治具を所定の角度に回転させる回転ステージと、プリズムの被測定面の面方位を測定するオートコリメータと、プリズムの基準面と保持治具の基準面との干渉縞を観察する干渉縞観察手段とから構成される。
【0013】
また、上記構成の光学部品の角度測定装置を用いたプリズムの角度測定方法では、まず、保持治具のプリズムを当て付ける基準面の面方位をオートコリメータにより観察し、オートコリメータの基準指標に合わせてゼロ設定する。そして、プリズムの被測定頂角を形成する2つの面のうちの1つの面を基準面、他の面を被測定面とし、プリズムの基準面を保持治具の基準面に当て付けて保持する。その際に、干渉縞観察手段にて、保持治具の基準面とプリズムの基準面との干渉縞を観察し、密着度を観察する。干渉縞の観察結果が良好の場合は、プリズムの基準面と保持治具の基準面とを同一面とみなす。つぎに、回転ステージを被測定頂角の称呼角度分だけ回転させ、プリズムの被測定面の面方位をオートコリメータにより観察し、オートコリメータの基準指標とのズレ量を角度測定誤差として測定する。
【0014】
本発明の実施の形態においては、光学部品として、三角プリズムを例にして説明するが、三角プリズムの被測定頂角を形成する2つの面のうちの一方を基準面として測定できるので、ダハプリズムなどの異形プリズムや、レンズとプリズムとが一体化された複合光学部品などの頂角も測定可能である。また、保持が困難な微小プリズムの頂角でも本実施の形態で示す角度測定装置と方法により測定することができる。以下、具体的な実施の形態により説明する。
【0015】
(実施の形態1)
図1〜図2は実施の形態1を示し、図1は光学部品の角度測定装置の概略構成図、図2はプリズムの角度測定方法を示す工程図である。ここで、図2(b),(c),(d)は図1のA方向から保持治具を見た図である。
【0016】
図1において、光学部品の角度測定装置は、光学部品保持部11と、オートコリメータ部12と、干渉縞観察部13とから構成されている。光学部品保持部11は、光学部品を保持するガラス製の保持治具1と、光学部品を保持した保持治具1を水平方向に回転させる回転ステージ2と、保持治具1に接続された真空発生装置6とからなっている。保持治具1は回転ステージ2の上面に固着され、その上部には、回転ステージ2の回転軸Iを通って垂直方向に平面をなす基準面1aが形成されている。基準面1aは鏡面加工が施され、光学部品を当て付けることができる。基準面1aには、吸着穴1bが穿設され、吸着穴1bは基準面1aの背面に凸設された空圧継手6aおよび空圧チューブ6bを介して真空発生装置6に接続されており、真空圧によって光学部品を基準面1aに保持することができる。回転ステージ2は、回転軸Iを中心に、その上面に固着した保持治具1を手動で回転させ、その回転量を、内蔵するエンコーダ(図示省略)に接続された回転量表示装置2Aに表示する。
【0017】
光学部品保持部11の右側には、オートコリメータ部12が配置されている。オートコリメータ部12は、光学部品の頂角を測定するオートコリメータ4と、オートコリメータ4を支持する支持機構5とからなっている。オートコリメータ4は、保持治具1の基準面1aに正対するようにほぼ水平に支持され、支持機構5の2つの調整軸により、水平方向(矢印θ1 )および垂直方向(矢印θ2 )に回転しオートコリメータ4の向きを調整することができる。光学部品保持部11の左側には、干渉縞観察部13が配置されている。干渉縞観察部13は、干渉縞観察手段としての干渉縞観察カメラ3と、これに接続されたカメラモニタ3Aと、干渉縞を発生させるための光源7とからなっている。干渉縞観察カメラ3は、保持治具1の基準面1aの背面に正対して配設され、光源7からの光によって発生し、ガラス製の保持具1の基準面1aと光学部品の基準面との密着状態によって変化する干渉縞を観察することができる。その状況は、干渉縞観察カメラ3に接続されたカメラモニタ3Aに表示される。
【0018】
つぎに、上記構成の角度測定装置を用いた光学部品の角度測定方法について説明する。図2(a)に示すように、光学部品としてのプリズム8は、三角プリズムであり、本実施の形態では、A面とB面とにより形成された被測定頂角αの角度誤差を測定するものである。
【0019】
まず、図2(b)に示すように、保持治具1の基準面1aの法線方向をオートコリメータ4の方向に回転ステージ2を回転させて合わせる。そして。オートコリメータ4を観察して、基準面1aの反射指標がオートコリメータ4の基準指標と一致するように、支持機構5の2つの調整軸を矢印θ1 、θ2 の方向に回動して調整する(コリメータゼロ設定完了)。
【0020】
つぎに、図2(c)に示すように、光学部品としてのプリズム8の基準面であるA面を保持治具1の基準面1aに、吸着穴1bにより吸着させて保持させる。このとき、プリズム8のA面と保持治具1の基準面1aとの間にゴミや塵が挟まり、密着度を低下させる可能性があるので、干渉縞観察カメラ3によりプリズム8のA面と保持治具1の基準面1aとの間に発生する干渉縞を撮影する。測定者は、カメラモニタ3Aに写し出された干渉縞画像を見て密着度を確認する。干渉縞の状態による密着度の優劣判断は、干渉縞の整列状態や間隔により別途に定められた基準により判断される。密着度が低い場合は、再度プリズム8の吸着保持をやり直す。この作業により、保持治具1の基準面1aとプリズム8のA面とがオートコリメータ4に対する同一面とみなせる(プリズム保持完了)。
【0021】
つぎに、図2(d)に示すように、回転量表示装置2Aを確認しながら、回転ステージ2により保持治具1を被測定頂角αの称呼角度だけ正確に回転させる。するとプリズム8の被測定面であるB面の法線方向がオートコリメータ4の方向に向き、プリズム8のB面の面方位がオートコリメータ4により観察可能となる。そして、プリズム8のB面の反射指標とオートコリメータ4の基準指標とのズレ量を測定して、この値が被測定頂角αの誤差量となる(コリメータズレ量測定)。
【0022】
本実施の形態によれば、プリズムの基準面を保持治具の基準面に当て付けて保持し、被測定プリズムの保持状態を干渉縞により確認して測定を行うので、いかなるプリズム、例えば形状的に保持が困難なプリズムであっても確実に保持することができ、被測定プリズムの保持状態による測定誤差を抑制し、測定精度を向上させることができる。
【0023】
(実施の形態2)
図3〜図6は実施の形態2を示し、図3は光学部品の角度測定装置の概略構成図、図4は図3のB矢視図、図5は被測定プリズムの斜視図、図6はプリズムの角度測定方法を示す工程図である。図3において、光学部品の角度測定装置を構成する光学部品保持部21、オートコリメータ部12および干渉縞観察部13のうち、オートコリメータ部12と干渉縞観察部13とは、実施の形態1と同一であり、光学部品保持部21のみが異なるため、異なる部分のみ説明し、同一の部材には同一の符号を付し説明を省略する。
【0024】
図3および図4において、光学部品の角度測定装置の光学部品保持部21は、光学部品を保持するガラス製の保持治具1と、光学部品を保持した保持治具1を垂直方向に回転させる第2の回転ステージ10と、L字型アーム9を介して第2の回転ステージ10を水平方向に回転させる回転ステージ2と、保持治具1に接続された真空発生装置6とからなっている。実施の形態1と同様に、保持治具1には、垂直方向に平面をなす基準面1aが形成されており、基準面1aは鏡面加工が施され、光学部品を当て付けることができる。また、基準面1aには、吸着穴1bが穿設され、吸着穴1bは基準面1aの背面に凸設された空圧継手6aおよび空圧チューブ6bを介して真空発生装置6に接続されており、真空圧によって光学部品を基準面1aに保持することができる。
【0025】
回転ステージ2は、回転軸Iを中心に、その上面に配設したL字型アーム9に固着された第2回転ステージ10を手動で回転させ、その回転量を、内蔵するエンコーダ(図示省略)に接続された回転量表示装置2Aに表示する。第2回転ステージ10は、回転軸Oを中心に、その側面に配設した保持治具1を手動で回転させ、その回転量を、回転ステージ2と同様に内蔵するエンコーダ(図示省略)に接続された第2回転量表示装置10Aに表示する。また、回転軸Iと回転軸Oとは、保持治具1の基準面1a上に穿設された吸着穴1bの開口部の位置で直交するように構成されている。
【0026】
つぎに、上記構成の角度測定装置を用いた光学部品の角度測定方法について説明する。図5に示すように、光学部品としてのプリズム22は、三角プリズムであり、本実施の形態では、A面とB面とにより形成された被測定頂角αおよびA面とC面とにより形成された被測定頂角βのそれぞれの角度誤差を測定するものである。
【0027】
まず、被測定頂角αの測定を行う。その測定方法は、保持治具1の基準面1aをオートコリメータ4に正対させて(コリメータゼロ設定)、つぎにプリズム22のA面を保持治具1の基準面1aに吸着させて干渉縞が正常であることを確認してから(プリズム保持完了)、回転ステージ2を被測定角αの称呼角度だけ回転させ、B面をオートコリメータ4によって誤差量測定を行う(コリメータズレ量測定)ものであって、実施の形態1と同様なので、詳細な説明を省略する。
【0028】
つぎに、被測定頂角αの測定終了後、図6(a)に示すように、回転ステージ2を被測定頂角αの称呼角度だけ回転量表示装置2Aを確認しながら正確に戻す。つぎに、第2回転ステージ10を被測定頂角βの称呼角度だけ第2回転量表示装置10Aを確認しながら正確に回転させる。すると、図6(b)に示すように、プリズム22のC面の法線方向がオートコリメータ4の方向に向き、プリズム22のC面の面方位がオートコリメータ4により観察可能となる。そして、プリズム22のC面の反射指標とオートコリメータ4の基準指標とのズレ量を測定して、この値が被測定頂角βの誤差量となる。
【0029】
本実施の形態によれば、実施の形態1の効果に加え、被測定プリズムの共通面を持つ2つの頂角がプリズムを置き替えることなく測定可能となるので、測定時間を短縮することができる。
【0030】
なお、上述の具体的な実施の形態から、つぎのような構成の技術的思想が導き出される。
(付記)
(1) プリズムの被測定頂角を形成する2つの面のうちの1つの面を基準面、他の面を被測定面とし、プリズムの頂角を測定するプリズムの角度測定方法において、
プリズムを保持する保持治具の基準面の法線方向をオートコリメータの方向に合わせ、プリズムの基準面を前記保持治具の基準面に当て付けて保持し、プリズムの基準面と保持治具の基準面との干渉縞を観察し、前記保持治具を被測定頂角の称呼角度だけ回転させ、プリズムの被測定面の反射指標とオートコリメータの基準指標とのズレ量を測定し、ズレ量を測定頂角の誤差量とすることを特徴とするプリズムの角度測定方法。
形状的に保持が困難なプリズムであっても、安定した保持を保証し、測定精度を向上させることができる。
(2) プリズムの基準面を当て付けて保持する保持治具と、該保持治具を所定の角度回転させる回転ステージと、プリズムの被測定面の面方位を測定するオートコリメータと、前記プリズムの基準面と前記保持治具の基準面との干渉縞を観察する干渉縞観察手段とを具備することを特徴とするプリズムの角度測定装置。
付記(1)記載のプリズムの角度測定方法を容易に実施することができるとともに、測定精度の信頼性を高めることができる。
(3) プリズムの基準面を当て付けて保持する保持治具の基準面が、鏡面加工されていることを特徴とする付記(2)記載のプリズムの角度測定装置。
付記(2)記載の効果に加え、オートコリメータによるゼロ設定を容易にさせるとともに、干渉縞の発生を確実に行わせる。
(4) プリズムの基準面を当て付けて保持する保持治具の基準面に、プリズムの基準面を吸着する吸着口を設けたことを特徴とする付記(2)または(3)記載のプリズムの角度測定装置。
付記(2)または(3)記載の効果に加え、プリズムの保持を容易に行うことができる。
【0031】
【発明の効果】
請求項1に係る発明の光学部品の角度測定方法によれば、光学部品の基準面を保持治具の基準面に当て付けて保持し、光学部品の基準面と保持治具の基準面との保持状態を干渉縞により確認して測定を行うので、形状的に保持が困難な光学部品であっても、安定した保持を保証し、測定精度を向上させることができる。請求項2に係る発明の光学部品の角度測定装置によれば、請求項1に係る発明の光学部品の角度測定方法を容易に実施することができるとともに、測定精度の信頼性を高めることができる。
請求項3に係る発明の光学部品の角度測定装置によれば、請求項2に係る発明の効果に加え、オートコリメータによるゼロ設定を容易にさせるとともに、干渉縞の発生を確実に行わせる。
請求項4に係る発明の光学部品の角度測定装置によれば、請求項2または請求項3に係る発明の効果に加え、光学部品の保持を容易に行うことができる。
【図面の簡単な説明】
【図1】実施の形態1の光学部品の角度測定装置の概略構成図である。
【図2】実施の形態1のプリズムの角度測定方法を示す工程図である。
【図3】実施の形態2の光学部品の角度測定装置の概略構成図である。
【図4】実施の形態2の図3のB矢視図である。
【図5】実施の形態2の被測定プリズムの斜視図である。
【図6】実施の形態2のプリズムの角度測定方法を示す工程図である。
【図7】従来技術の面方位測定装置を示す概略構成図である。
【符号の説明】
1 保持治具
2 回転ステージ
3 干渉縞観察カメラ
4 オートコリメータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an angle measuring method and apparatus for measuring apex angles of two surfaces of an optical component.
[0002]
[Prior art]
Conventionally, as a technique for measuring the apex angles of two surfaces of an optical component, for example, a technique described in Japanese Patent Laid-Open No. 6-167325 is disclosed as a “plane orientation measuring device”. This technique will be described with reference to FIG. In FIG. 7, a base 121 is provided with a sample stage 103 and a swivel arm 104 so as to be rotatable about an axis O substantially perpendicular to the base 121, and the swivel arm 104 is mounted on the sample stage 103. The telescope 151 for observing the light reflected from the surface to be measured of the sample 101 placed on is attached. The sample stage 103 is provided with an inclination angle adjusting mechanism having an inclination screw 103a for adjusting the inclination angle of the sample 101 placed on the sample stage 103 with respect to the horizontal direction. Includes a rotary encoder 121 a for reading the rotation angle of the swivel arm 104. The rotary encoder 121 a generates a signal corresponding to the rotation angle coordinates of the sample stage 103 and the swivel arm 104 and sends it to the processing device 109.
[0003]
The telescope 151 has the same structure as the autocollimator, and is an objective lens 151a provided at the front of the lens barrel that is disposed to face the surface to be measured of the sample 101, and the focal position of the objective lens 151a. The observation optical system including the imaging element 151b provided at the rear part of the lens barrel and the objective lens 151a are used in common, and are branched out of the observation optical system by the beam splitter 151c provided between the objective lens 151a and the imaging element 151b. A projection optical system including a projection index 151d and a projection light source 151e provided at a position optically conjugate with the imaging element 151b on the optical path formed in this manner. The light of the projection index 151d is reflected by the beam splitter 151c, converted into parallel light by the objective lens 151a, emitted to the outside, and incident on the sample surface. The light reflected by the surface to be measured of the sample 101 is collected by the same objective lens 151a, passes through the beam splitter 151c, and is placed on the image sensor 151b disposed at a position optically conjugate with the projection index 151e. Focus. That is, an image of the projection index 151d is formed on the image sensor 151b.
[0004]
The imaging element 151b is a device in which a large number of light detection elements are arranged on a plane and each pixel is formed, such as a two-dimensional CCD, and is controlled by the processing device 109 and imaged by the objective lens 151a. The image is converted into an electrical signal and sent to the processing device 109. The processing device 109 incorporates necessary circuits such as a microprocessor and other information processing circuits, and has a display 109a for display. The processing device 109 is configured to take an image of the rotary encoder 121a according to a predetermined program stored in advance according to a predetermined command. It controls the element 151b and the reticle generator 110, and executes processing of angle signals, image signals, and other signals sent from them, and necessary calculations or processing for display.
[0005]
In order to observe the surface orientation of the prism 101 as the sample, a position detection type imaging device 151b is arranged on the focal plane of the objective lens 151a of the telescope 151, and the projection index image obtained by the imaging device 151b is obtained by the processing device 109. The position of the projection index image is obtained by performing processing including image processing, and the orientation of each surface is determined from this position, the position of the reticle (reference index) formed by the reticle generator 110, and the angle measurement value by the rotary encoder 121a. Is obtained by automatic processing.
[0006]
[Problems to be solved by the invention]
However, the above prior art has the following problems. That is, the above-described conventional technique is excellent in that the measurement accuracy is improved by obtaining the apex angles of the two surfaces of the prism by automatic processing. However, the prism itself is held by placing a third surface adjacent to the two surfaces forming the apex angle to be measured on the sample stage. For this reason, when measuring prisms that are difficult to hold in shape, such as microprisms or deformed prisms in which the third surface adjacent to the two surfaces forming the measured apex angle is not a flat surface, the prism is not retained. There was a problem that the measurement accuracy was lowered due to stability.
[0007]
The present invention has been made in view of the above-described conventional problems, and an object of the invention according to claim 1 is to ensure stable holding even if it is an optical component that is difficult to hold in shape, and to achieve measurement accuracy. It is an object to provide a method for measuring an angle of an optical component excellent in the above.
The subject of the invention which concerns on Claim 2, 3 or 4 is providing the angle measuring apparatus for enforcing the angle measuring method of the optical component of the invention which concerns on Claim 1 easily.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, an optical component angle measurement method according to the first aspect of the present invention is an optical component angle measurement method for measuring a measured apex angle formed by two surfaces of an optical component, wherein the optical component Directing a reference surface of a holding jig for holding a part to an autocollimator, observing the autocollimator, matching a reflection index of a reference surface of the holding jig with a reference index of the autocollimator, and the optical A step of holding a reference surface, which is one of the two surfaces of the component, against the reference surface of the holding jig, and observing interference fringes between the reference surface of the holding jig and the reference surface of the optical component And confirming that the holding state of the optical component by the holding jig is good based on the observation result of the interference fringes, and then rotating the holding jig by a nominal angle of the measured apex angle. Two of The step of measuring the reflection index of the surface to be measured, which is the other of the surfaces, with the autocollimator and the measured reflection index and the reference index of the autocollimator are obtained to obtain a deviation amount, and the deviation amount is measured. And an error amount of the measurement apex angle.
[0009]
An optical component angle measuring device according to a second aspect of the invention is an optical component angle measuring device for measuring a measured apex angle formed by two surfaces of an optical component, wherein the optical component angle measuring device includes: On the other hand, a holding jig that holds and holds a reference surface, a rotation stage that rotates the holding jig by a predetermined angle, and a surface orientation of a measurement surface that is the other of the two surfaces of the optical component An autocollimator to be measured and observation means for observing interference fringes between the reference surface of the optical component and the reference surface of the holding jig to which the reference surface is applied.
An optical component angle measuring apparatus according to a third aspect of the present invention is the optical component angle measuring apparatus according to the second aspect, wherein the reference surface of the holding jig is mirror-finished.
An optical component angle measuring device according to a fourth aspect of the present invention is the optical component angle measuring device according to the second or third aspect, wherein the reference surface of the optical component is provided on the reference surface of the holding jig. An adsorption port for adsorption is provided.
[0010]
That is, in the optical component angle measuring method according to the first aspect of the invention, the reference plane of the holding jig that holds the optical component is directed to the autocollimator. Then, the autocollimator is observed, and the reference surface of the holding jig is matched with the reference surface of the autocollimator. A reference surface which is one of the two surfaces of the optical component is held against the reference surface of the holding jig, and interference fringes between the reference surface of the holding jig and the reference surface of the optical component are observed. Further, after confirming that the holding state of the optical component by the holding jig is good based on the observation result of the interference fringes, the holding jig is rotated by the nominal angle of the apex angle to be measured, The reflection index of the surface to be measured, which is the other of the above, is measured with an autocollimator, the measured reflection index and the reference index of the autocollimator are compared to determine the amount of deviation, and the amount of deviation is taken as the error amount of the measured apex angle . As a result, the measured apex angles formed on the two surfaces of the optical component are measured.
[0011]
The optical component angle measuring apparatus according to the second aspect of the invention applies a reference surface, which is one of the two surfaces of the optical component, and holds the reference surface to the holding jig. Then, interference fringes between the reference surface of the optical component and the reference surface of the holding jig applied with the reference surface are observed by the interference fringe observation means. The holding jig is rotated by a predetermined angle by the rotation stage, and the surface orientation of the surface to be measured, which is the other of the two surfaces of the optical component, is measured with an autocollimator. As a result, the measured apex angles formed on the two surfaces of the optical component are measured.
Furthermore, the optical part angle measuring device according to the third aspect of the invention holds the optical part on the reference surface of the holding jig that is mirror-finished.
Furthermore, the optical component angle measuring device according to the invention of claim 4 sucks the optical component on the reference surface of the holding jig by the suction port provided in the holding jig.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An optical component angle measuring apparatus according to an embodiment of the present invention mainly includes a holding jig that holds and holds a reference surface of a prism as an optical component, and a rotary stage that rotates the holding jig to a predetermined angle. And an autocollimator for measuring the surface orientation of the surface to be measured of the prism, and interference fringe observation means for observing the interference fringe between the reference surface of the prism and the reference surface of the holding jig.
[0013]
In addition, in the prism angle measurement method using the optical component angle measurement apparatus having the above-described configuration, first, the surface orientation of the reference surface against which the prism of the holding jig is applied is observed with an autocollimator and matched with the reference index of the autocollimator. To zero. Then, one of the two surfaces forming the measured vertex angle of the prism is used as a reference surface, the other surface is used as a measured surface, and the reference surface of the prism is applied to the reference surface of the holding jig and held. . At that time, the interference fringe observation means observes the interference fringe between the reference surface of the holding jig and the reference surface of the prism, and observes the degree of adhesion. When the observation result of the interference fringes is good, the reference surface of the prism and the reference surface of the holding jig are regarded as the same surface. Next, the rotary stage is rotated by the nominal angle of the measured apex angle, the surface orientation of the measured surface of the prism is observed with an autocollimator, and the amount of deviation from the reference index of the autocollimator is measured as an angle measurement error.
[0014]
In the embodiment of the present invention, a triangular prism will be described as an example of an optical component. However, since one of two surfaces forming the measured apex angle of the triangular prism can be measured as a reference surface, a roof prism, etc. It is also possible to measure the apex angle of a deformed prism, or a composite optical component in which a lens and a prism are integrated. Further, even the apex angle of a minute prism that is difficult to hold can be measured by the angle measuring apparatus and method shown in this embodiment. Hereinafter, a specific embodiment will be described.
[0015]
(Embodiment 1)
1 to 2 show the first embodiment, FIG. 1 is a schematic configuration diagram of an optical component angle measuring device, and FIG. 2 is a process diagram showing a prism angle measuring method. Here, FIGS. 2B, 2C, and 2D are views of the holding jig viewed from the direction A in FIG.
[0016]
In FIG. 1, the optical component angle measuring device includes an optical component holding unit 11, an autocollimator unit 12, and an interference fringe observation unit 13. The optical component holding unit 11 includes a glass holding jig 1 that holds the optical component, a rotary stage 2 that rotates the holding jig 1 that holds the optical component in the horizontal direction, and a vacuum connected to the holding jig 1. It consists of the generator 6. The holding jig 1 is fixed to the upper surface of the rotary stage 2, and a reference surface 1 a that forms a plane in the vertical direction through the rotation axis I of the rotary stage 2 is formed thereon. The reference surface 1a is mirror-finished and can be applied with an optical component. A suction hole 1b is formed in the reference surface 1a, and the suction hole 1b is connected to the vacuum generator 6 via a pneumatic joint 6a and a pneumatic tube 6b protruding from the back surface of the reference surface 1a. The optical component can be held on the reference surface 1a by the vacuum pressure. The rotary stage 2 manually rotates the holding jig 1 fixed to the upper surface thereof around the rotation axis I, and displays the rotation amount on a rotation amount display device 2A connected to a built-in encoder (not shown). To do.
[0017]
An autocollimator unit 12 is disposed on the right side of the optical component holding unit 11. The autocollimator unit 12 includes an autocollimator 4 that measures the vertex angle of the optical component and a support mechanism 5 that supports the autocollimator 4. The autocollimator 4 is supported substantially horizontally so as to face the reference surface 1a of the holding jig 1, and is rotated in the horizontal direction (arrow θ1) and the vertical direction (arrow θ2) by the two adjusting shafts of the support mechanism 5. The orientation of the autocollimator 4 can be adjusted. An interference fringe observation unit 13 is arranged on the left side of the optical component holding unit 11. The interference fringe observation unit 13 includes an interference fringe observation camera 3 as interference fringe observation means, a camera monitor 3A connected thereto, and a light source 7 for generating interference fringes. The interference fringe observation camera 3 is disposed in front of the back surface of the reference surface 1a of the holding jig 1, and is generated by light from the light source 7, and is formed by the reference surface 1a of the glass holder 1 and the reference surface of the optical component. It is possible to observe interference fringes that change depending on the close contact state. The situation is displayed on the camera monitor 3 </ b> A connected to the interference fringe observation camera 3.
[0018]
Next, a method for measuring the angle of an optical component using the angle measuring apparatus having the above configuration will be described. As shown in FIG. 2A, the prism 8 as an optical component is a triangular prism, and in this embodiment, the angle error of the measured apex angle α formed by the A surface and the B surface is measured. Is.
[0019]
First, as shown in FIG. 2B, the normal direction of the reference surface 1 a of the holding jig 1 is adjusted by rotating the rotary stage 2 in the direction of the autocollimator 4. And then. The autocollimator 4 is observed, and the two adjustment axes of the support mechanism 5 are rotated and adjusted in the directions of arrows θ1 and θ2 so that the reflection index of the reference surface 1a matches the reference index of the autocollimator 4 ( Complete collimator zero setting).
[0020]
Next, as shown in FIG. 2C, the A surface, which is the reference surface of the prism 8 as an optical component, is adsorbed and held on the reference surface 1a of the holding jig 1 through the suction holes 1b. At this time, dust or dust may be caught between the A surface of the prism 8 and the reference surface 1a of the holding jig 1, and the degree of adhesion may be reduced. An interference fringe generated between the holding jig 1 and the reference surface 1a is photographed. The measurer looks at the interference fringe image projected on the camera monitor 3A and confirms the degree of adhesion. Whether the degree of adhesion is superior or inferior depending on the state of the interference fringes is determined based on a separately defined standard based on the alignment state and interval of the interference fringes. When the degree of adhesion is low, the suction holding of the prism 8 is performed again. By this operation, the reference surface 1a of the holding jig 1 and the A surface of the prism 8 can be regarded as the same surface with respect to the autocollimator 4 (prism holding completion).
[0021]
Next, as shown in FIG. 2D, the holding jig 1 is accurately rotated by the nominal angle α of the measured apex angle α by the rotary stage 2 while checking the rotation amount display device 2A. Then, the normal direction of the B surface, which is the surface to be measured of the prism 8, faces the direction of the autocollimator 4, and the surface orientation of the B surface of the prism 8 can be observed by the autocollimator 4. Then, the amount of deviation between the reflection index on the B surface of the prism 8 and the reference index of the autocollimator 4 is measured, and this value becomes the error amount of the measured apex angle α (collimator deviation amount measurement).
[0022]
According to the present embodiment, the prism reference surface is held against the reference surface of the holding jig, and the measurement is performed by checking the holding state of the measured prism with the interference fringes. Even if it is difficult to hold the prism, it can be securely held, measurement errors due to the holding state of the prism to be measured can be suppressed, and measurement accuracy can be improved.
[0023]
(Embodiment 2)
3 to 6 show the second embodiment, FIG. 3 is a schematic configuration diagram of an optical component angle measuring device, FIG. 4 is a view as viewed in the direction of arrow B in FIG. 3, FIG. 5 is a perspective view of a prism to be measured, and FIG. These are process drawings which show the angle measuring method of a prism. In FIG. 3, among the optical component holding unit 21, the autocollimator unit 12, and the interference fringe observation unit 13 constituting the optical component angle measurement device, the autocollimator unit 12 and the interference fringe observation unit 13 are the same as those in the first embodiment. Since they are the same and only the optical component holding part 21 is different, only different parts will be described, and the same members will be denoted by the same reference numerals and description thereof will be omitted.
[0024]
3 and 4, the optical component holding unit 21 of the optical component angle measuring device rotates the glass holding jig 1 holding the optical component and the holding jig 1 holding the optical component in the vertical direction. It consists of a second rotary stage 10, a rotary stage 2 that rotates the second rotary stage 10 in the horizontal direction via an L-shaped arm 9, and a vacuum generator 6 connected to the holding jig 1. . As in the first embodiment, the holding jig 1 is provided with a reference surface 1a that is flat in the vertical direction. The reference surface 1a is mirror-finished and can be applied with an optical component. Further, a suction hole 1b is drilled in the reference surface 1a, and the suction hole 1b is connected to the vacuum generator 6 via a pneumatic joint 6a and a pneumatic tube 6b protruding from the back surface of the reference surface 1a. Thus, the optical component can be held on the reference surface 1a by the vacuum pressure.
[0025]
The rotation stage 2 manually rotates the second rotation stage 10 fixed to the L-shaped arm 9 disposed on the upper surface thereof around the rotation axis I, and the rotation amount is stored in an encoder (not shown). Is displayed on the rotation amount display device 2A connected to. The second rotary stage 10 manually rotates the holding jig 1 disposed on the side surface around the rotation axis O, and the rotation amount is connected to a built-in encoder (not shown) like the rotary stage 2. Is displayed on the second rotation amount display device 10A. Further, the rotation axis I and the rotation axis O are configured to be orthogonal to each other at the position of the opening portion of the suction hole 1 b formed on the reference surface 1 a of the holding jig 1.
[0026]
Next, a method for measuring the angle of an optical component using the angle measuring apparatus having the above configuration will be described. As shown in FIG. 5, the prism 22 as an optical component is a triangular prism. In this embodiment, the prism 22 to be measured is formed by the measured apex angle α formed by the A surface and the B surface and the A surface and the C surface. The angle error of each measured apex angle β is measured.
[0027]
First, the measured vertex angle α is measured. The measuring method is such that the reference surface 1a of the holding jig 1 is directly opposed to the autocollimator 4 (collimator zero setting), and then the A surface of the prism 22 is attracted to the reference surface 1a of the holding jig 1 to cause interference fringes. Is confirmed to be normal (prism holding completed), and the rotation stage 2 is rotated by a nominal angle of the angle α to be measured, and the B surface is subjected to error amount measurement by the autocollimator 4 (collimator displacement amount measurement) And since it is the same as that of Embodiment 1, detailed description is abbreviate | omitted.
[0028]
Next, after the measurement of the measured apex angle α, as shown in FIG. 6A, the rotary stage 2 is accurately returned while confirming the rotation amount display device 2A by the nominal angle of the measured apex angle α. Next, the second rotation stage 10 is accurately rotated while confirming the second rotation amount display device 10A by the nominal angle of the measured apex angle β. Then, as shown in FIG. 6B, the normal direction of the C surface of the prism 22 faces the direction of the autocollimator 4, and the surface orientation of the C surface of the prism 22 can be observed by the autocollimator 4. Then, the amount of deviation between the reflection index of the C surface of the prism 22 and the reference index of the autocollimator 4 is measured, and this value becomes the error amount of the measured apex angle β.
[0029]
According to the present embodiment, in addition to the effects of the first embodiment, two apex angles having a common surface of the prism to be measured can be measured without replacing the prism, so that the measurement time can be shortened. .
[0030]
The technical idea of the following configuration is derived from the specific embodiment described above.
(Appendix)
(1) In the prism angle measuring method for measuring the apex angle of a prism, one of the two surfaces forming the measured apex angle of the prism is a reference surface and the other surface is the measured surface.
Align the normal direction of the reference surface of the holding jig that holds the prism with the direction of the autocollimator, hold the prism reference surface against the reference surface of the holding jig, and hold the prism reference surface and the holding jig Observe the interference fringe with the reference surface, rotate the holding jig by the nominal angle of the measured apex angle, measure the amount of deviation between the reflection index of the measured surface of the prism and the reference index of the autocollimator, and the amount of deviation A method for measuring the angle of a prism, characterized by:
Even prisms that are difficult to hold in shape can guarantee stable holding and improve measurement accuracy.
(2) A holding jig that holds and holds the reference surface of the prism, a rotation stage that rotates the holding jig by a predetermined angle, an autocollimator that measures the surface orientation of the surface to be measured of the prism, An prism fringe measuring device comprising interference fringe observation means for observing interference fringes between a reference surface and a reference surface of the holding jig.
The prism angle measurement method described in appendix (1) can be easily implemented, and the reliability of measurement accuracy can be increased.
(3) The prism angle measuring device according to appendix (2), wherein the reference surface of the holding jig that holds and holds the reference surface of the prism is mirror-finished.
In addition to the effect described in the supplementary note (2), the zero setting by the autocollimator is facilitated and interference fringes are reliably generated.
(4) The prism according to appendix (2) or (3), wherein a suction port that sucks the reference surface of the prism is provided on the reference surface of the holding jig that holds the reference surface of the prism against the reference surface. Angle measuring device.
In addition to the effects described in appendix (2) or (3), the prism can be easily held.
[0031]
【The invention's effect】
According to the optical component angle measuring method of the invention according to claim 1, the reference surface of the optical component is held against the reference surface of the holding jig, and the reference surface of the optical component and the reference surface of the holding jig are Since the measurement is performed by checking the holding state with the interference fringes, stable holding can be ensured and the measurement accuracy can be improved even for optical components that are difficult to hold in shape. According to the angle measurement apparatus for an optical component of the invention according to claim 2, the angle measurement method for the optical component of the invention according to claim 1 can be easily implemented, and the reliability of measurement accuracy can be improved. .
According to the angle measuring apparatus for an optical component of the invention of claim 3, in addition to the effect of the invention of claim 2, zero setting by an autocollimator is facilitated and interference fringes are reliably generated.
According to the optical component angle measuring apparatus of the invention of claim 4, in addition to the effect of the invention of claim 2 or claim 3, the optical component can be easily held.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical component angle measuring apparatus according to a first embodiment.
FIG. 2 is a process diagram illustrating a prism angle measuring method according to the first embodiment;
FIG. 3 is a schematic configuration diagram of an optical component angle measuring apparatus according to a second embodiment.
FIG. 4 is a view taken in the direction of arrow B in FIG. 3 of the second embodiment.
FIG. 5 is a perspective view of a prism to be measured according to a second embodiment.
6 is a process diagram illustrating a prism angle measurement method according to Embodiment 2. FIG.
FIG. 7 is a schematic configuration diagram showing a conventional surface orientation measuring apparatus.
[Explanation of symbols]
1 Holding jig 2 Rotating stage 3 Interference fringe observation camera 4 Autocollimator

Claims (4)

光学部品の2つの面で形成された被測定頂角を測定する光学部品の角度測定方法において、
前記光学部品を保持する保持治具の基準面をオートコリメータに向ける工程と、
前記オートコリメータを観察し前記保持治具の基準面の反射指標と前記オートコリメータの基準指標とを一致させる工程と、
前記光学部品の2つの面のうちの一方である基準面を前記保持治具の基準面に当て付けて保持する工程と、
前記保持治具の基準面と前記光学部品の基準面との干渉縞を観察する工程と、
前記干渉縞の観察結果によって前記保持治具による前記光学部品の保持状態が良好であることを確認した後、前記保持治具を被測定頂角の称呼角度だけ回転させ前記光学部品の2つの面のうちの他方である被測定面の反射指標を前記オートコリメータで測定する工程と、
前記測定した反射指標と前記オートコリメータの基準指標とを比較してズレ量を求め、そのズレ量を被測定頂角の誤差量とする工程と
を有することを特徴とする光学部品の角度測定方法。
In an optical component angle measuring method for measuring a measured apex angle formed by two surfaces of an optical component,
Directing a reference surface of a holding jig for holding the optical component to an autocollimator;
Observing the autocollimator and matching a reference index of the reference surface of the holding jig with a reference index of the autocollimator;
A step of holding a reference surface, which is one of the two surfaces of the optical component, against the reference surface of the holding jig;
Observing interference fringes between the reference surface of the holding jig and the reference surface of the optical component;
After confirming that the holding state of the optical component by the holding jig is good based on the observation result of the interference fringes, the holding jig is rotated by the nominal angle of the measured apex angle, and the two surfaces of the optical component are rotated. Measuring the reflection index of the surface to be measured, which is the other of the above, with the autocollimator,
An angle measurement method for an optical component, comprising: comparing the measured reflection index with a reference index of the autocollimator to obtain a deviation amount, and setting the deviation amount as an error amount of a measured vertex angle. .
光学部品の2つの面で形成された被測定頂角を測定する光学部品の角度測定装置において、
前記光学部品の2つの面のうちの一方である基準面を当て付けて保持する保持治具と、
前記保持治具を所定の角度回転させる回転ステージと、
前記光学部品の2つの面のうちの他方である被測定面の面方位を測定するオートコリメータと、
前記光学部品の基準面とその基準面を当て付けた保持治具の基準面との干渉縞を観察する観察手段と
を具備することを特徴とする光学部品の角度測定装置。
In an optical component angle measuring apparatus for measuring a measured apex angle formed by two surfaces of an optical component,
A holding jig that holds and holds a reference surface that is one of the two surfaces of the optical component;
A rotating stage for rotating the holding jig by a predetermined angle;
An autocollimator that measures the surface orientation of the surface to be measured which is the other of the two surfaces of the optical component;
An angle measuring device for an optical component, comprising: observation means for observing interference fringes between a reference surface of the optical component and a reference surface of a holding jig applied with the reference surface.
前記保持治具の基準面が鏡面加工されていることを特徴とする請求項2記載の光学部品の角度測定装置。  The angle measuring device for an optical component according to claim 2, wherein a reference surface of the holding jig is mirror-finished. 前記保持治具の基準面に、前記光学部品の基準面を吸着する吸着口を設けたことを特徴とする請求項2または請求項3記載の光学部品の角度測定装置。  4. The optical component angle measuring device according to claim 2, wherein a suction port for sucking the reference surface of the optical component is provided on the reference surface of the holding jig.
JP34750397A 1997-12-17 1997-12-17 Optical component angle measurement method and apparatus Expired - Fee Related JP3901318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34750397A JP3901318B2 (en) 1997-12-17 1997-12-17 Optical component angle measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34750397A JP3901318B2 (en) 1997-12-17 1997-12-17 Optical component angle measurement method and apparatus

Publications (2)

Publication Number Publication Date
JPH11183148A JPH11183148A (en) 1999-07-09
JP3901318B2 true JP3901318B2 (en) 2007-04-04

Family

ID=18390674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34750397A Expired - Fee Related JP3901318B2 (en) 1997-12-17 1997-12-17 Optical component angle measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3901318B2 (en)

Also Published As

Publication number Publication date
JPH11183148A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP3797704B2 (en) Optical measuring device
US20090096987A1 (en) Eye Measurement Apparatus and a Method of Using Same
TWI684020B (en) Probe device and probe method
JPWO2007141857A1 (en) Appearance inspection device
JP5951793B2 (en) Image sensor position detector
JP3837689B2 (en) Optical module testing machine, adjusting device and adjusting method
KR20070098697A (en) A component placement unit as well as a component placement device comprising such a component placement unit
JP4751156B2 (en) Autocollimator and angle measuring device using the same
JP3256286B2 (en) Optical connector core eccentricity measuring method and optical connector manufacturing method
JP3901318B2 (en) Optical component angle measurement method and apparatus
WO2013065418A1 (en) Light source unit adjustment device calibration method and standard
JP5120233B2 (en) Imaging module inspection apparatus, imaging module inspection method, and electronic device module manufacturing method
JP3813286B2 (en) Interferometer device
JP3254704B2 (en) Exposure apparatus and exposure method
JP4349937B2 (en) Ophthalmic equipment
JP3865459B2 (en) Semiconductor device mounting equipment
JPH11211426A (en) Surface form measuring device
JP2006242680A (en) Eccentricity measuring device and eccentricity measurement method
JP2007333525A (en) Distance measurement device
JP2006003489A (en) Lens eccentricity adjusting connector
JP3213140B2 (en) Method for measuring core eccentricity of optical connector and optical connector measured thereby
JPH08201430A (en) Method and device and aligning prober
JPH07120232A (en) Non-contact type 3-d shape measurement device
JPH1194700A (en) Measuring device and method for lens
JP2597711B2 (en) 3D position measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees