JP3900224B2 - Filter material for catalytic denitration filter bug - Google Patents

Filter material for catalytic denitration filter bug Download PDF

Info

Publication number
JP3900224B2
JP3900224B2 JP10300598A JP10300598A JP3900224B2 JP 3900224 B2 JP3900224 B2 JP 3900224B2 JP 10300598 A JP10300598 A JP 10300598A JP 10300598 A JP10300598 A JP 10300598A JP 3900224 B2 JP3900224 B2 JP 3900224B2
Authority
JP
Japan
Prior art keywords
catalyst
filter
heat
resistant
filter material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10300598A
Other languages
Japanese (ja)
Other versions
JPH11290625A (en
Inventor
博文 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10300598A priority Critical patent/JP3900224B2/en
Publication of JPH11290625A publication Critical patent/JPH11290625A/en
Application granted granted Critical
Publication of JP3900224B2 publication Critical patent/JP3900224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼排ガス中のダストの濾過とNOxの脱硝を同時に処理できる触媒脱硝フィルターバグに使用するフィルター材料に関する。
【0002】
【従来の技術】
一般都市ゴミ焼却場や産業廃棄物等の焼却炉では、煤塵のみならず、燃料の燃焼や高温時の窒素と酸素の反応によって窒素酸化物(NOx)が生成する。排ガス排出時のNOxは殆どがNOであるが、NOは反応性に乏しいので、排ガスからの除去が非常に難しく、様々な除去方法が検討されている。
【0003】
脱硝方法としては、NH3を還元剤として用いる選択接触還元法が知られている。これは、触媒とNH3を用いて選択的にNOを還元する方法であるが、燃焼排ガス中のダストを除去するためには別に除塵バグフィルターを設置する必要がある。このような装置では、脱硝装置と除塵バグフィルターが別々に構成されるために、広い設置面積を必要とするだけでなく、コストが高くなるという問題点もある。
【0004】
そこで、脱硝装置と除塵バグフィルターを分けることなく、ダスト濾過と脱硝を同時に行う試みがなされており、例えば、i)脱硝触媒を担持したハニカム状保持体にバグフィルターを装着してなる除塵脱硝フィルター(特開平6−334号公報)、ii)無機質繊維に酸化チタンをコーティングしてなる燃焼ガス処理用触媒フィルター(特開平3−221146号公報)等を用いる方法等が知られている。
【0005】
しかしながら、i)の方法では、バグフィルターとは別に脱硝触媒を担持したハニカム状保持体を作製設置する必要があり、コストアップや作業性の問題、さらには設置面積の拡大等の問題がある。
【0006】
また、ii)の方法では、バグフィルター上でダスト濾過と脱硝を同時に行なうことが可能であるが、フィルター材料となる布帛への触媒の付与方法に問題がある。即ち、ガラス繊維からなる布帛に酸化チタンをコーティングする場合には、500℃程度で焼成することによって、触媒を安定に付与することが可能であるが、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイト等の耐熱性繊維からなるフィルター材料では、繊維の常用使用温度が260℃以下であり、それ以上の温度に加熱すると強力等の性能が低下するので、焼成による酸化チタンの付与を行うことができない。このため、触媒の付着力が不足し、フィルターを定期的に掃除してダストを除去する際に、高圧空気を利用してダストを除去する、いわゆるパルスジェット払い落としを行う場合には、触媒が多量に脱落するという問題点がある。
【0007】
そこで、有機耐熱性繊維を用いてダスト濾過と脱硝を同時に行うことが可能なフィルター材料を得るには、パルスジェット払い落としに耐え得る触媒付与を行う必要がある。
【0008】
【発明が解決しようとする課題】
本発明は、当該分野における上記技術に鑑みてなされたものであり、有機耐熱性繊維からなるフィルターであって、排ガス中のダスト濾過とNOx脱硝を同時に行うことが出来、しかもパルスジェット方式のダスト払い落としにおいても触媒脱落がほとんどない排ガス処理用のフィルター材料を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明者は、上記課題に鑑みて鋭意研究を重ねた結果、不織布からなる上層、スクリムからなる中間層及び不織布からなる下層の三層構造の有機耐熱性繊維材料にNOx選択性接触触媒を担持させた後、耐熱性ポリマーを含有する有機溶媒溶液を用いて、浸漬、塗布などの方法で有機耐熱性繊維材料に担持された触媒を固定化する方法によれば、触媒保持力が高く脱硝率に優れ、しかもダスト保持量等の濾過特性についても良好な特性を有する、フィルターバグ用として適したフィルター材料が得られることを見出し、ここに本発明を完成するに至った。
【0010】
即ち、本発明は、以下に示す触媒脱硝フィルターバグ用フィルター材料及び触媒脱硝フィルターバグを提供するものである。
【0011】
1.不織布からなる上層、スクリムからなる中間層及び不織布からなる下層から構成される三層構造の有機耐熱性繊維材料にNOx選択性接触触媒を担持させた材料を、耐熱性ポリマーを含有する有機溶媒溶液と接触させ、有機溶媒を除去して得られる触媒脱硝フィルターバグ用フィルター材料。
【0012】
2.有機耐熱性繊維が、ポリイミド及びポリアミドイミドから選ばれた少なくとも一種である上記項1に記載のフィルター材料。
【0013】
3.有機耐熱性繊維材料にNOx選択性接触触媒を担持させた材料が、下層ウエブ、スクリム及び上層ウエブの三層を積層する際に、下層ウエブとスクリム間、及び上層ウエブとスクリム間のいずれか又は両方に触媒粉体を付与した後、ニードルパンチ加工を行って各層をボンディングして層間に触媒を担持させたものである上記項1又は2に記載のフィルター材料。
【0014】
4.耐熱性ポリマーを含有する有機溶媒溶液における耐熱性ポリマーがポリイミド系ポリマー及びポリアミドイミド系ポリマーの少なくとも一種であり、ポリマー濃度が0.1〜50重量%である上記項1〜3のいずれかに記載のフィルター材料。
【0015】
5.耐熱性ポリマー溶液が、更に、NOx選択性接触触媒を50重量%以下含有する上記項1〜4のいずれかに記載のフィルター材料。
【0016】
6.耐熱性ポリマーの付着量が、有機耐熱性繊維材料の重量を基準として、0.01〜100重量%である上記項1〜5のいずれかに記載のフィルター材料。
【0017】
7.NOx選択性接触触媒の付与量が最終的に10〜500g/m2である上記項1〜6のいずれかに記載のフィルター材料。
【0018】
8.上記項1〜7のいずれかに記載のフィルター材料からなる触媒脱硝フィルターバグ。
【0019】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0020】
本発明のフィルター材料は、不織布からなる上層、スクリムからなる中間層及び不織布からなる下層の三層構造の有機耐熱性繊維材料からなるものである。このような構造の材料は、通常、バグフィルター用フィルターバグの材料として用いられているものであり、各層の材料は、常法に従って作製することができる。スクリムとしては、通常、布帛耐久性が優れていることから、織物が用いられる。
【0021】
本発明で使用し得る有機耐熱性繊維の例としては、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイト、ポリテトラフルオロエチレン、ポリエステル、ポリプロピレン等を挙げることができる。これらの内で、ポリイミド繊維及びポリアミドイミド繊維は、有機繊維の中では最も高い耐熱性を示すために、一般焼却場や産業廃棄物等のバグフィルターの材料として適したものである。しかも、これらの繊維は、ガラス繊維とは異なり、焼却可能であるため使用後は焼却処分が可能であり、さらにポリテトラフルオロエチレン繊維の様にフッ化水素等の有害ガスの発生がない点で優れた特性を有する。
【0022】
本発明では、まず、上記三層構造の有機耐熱性繊維材料にNOx選択性接触触媒を担持させることが必要である。NOx選択性接触触媒を担持させる方法については、特に限定的ではないが、例えば、以下の方法を例示できる。
【0023】
(1)下層ウエブ、スクリム及び上層ウエブをそれぞれ作製し、これら積層する際に、層間、即ち、下層ウエブとスクリム間、及び上層ウエブとスクリム間のいずれか又は両方に触媒粉体を付与した後、ニードルパンチ加工を行って各層をボンディングして、層間に触媒を担持させる。その後、必要に応じて触媒を定着させるために、有機溶剤に浸漬する。溶剤としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ビロリドン(NMP)等を用いることができる。
【0024】
(2)下層ウエブ、スクリム及び上層ウエブをそれぞれ作製し、各層を積層してニードルパンチ加工を行ったものを、触媒を含有する溶液に浸漬する。溶剤としては、DMF、DMAc、NMP等が適当である。この方法によれば、触媒は、三層構造の有機耐熱性繊維材料の全体に付与される。
【0025】
(3)各層の材料を作製し、積層前に、個別に、上記(2)と同様にして、触媒を含有する溶液に浸漬し、その後、積層してニードルパンチ加工をする。
【0026】
これらの方法の内で、特に、上記(1)の方法では、触媒が層間に担持されるために、触媒が脱落し難い点で有利である。
【0027】
このようにして、NOx選択性接触触媒を担持させた後、カレンダー加工により厚み調整し、毛焼き等を行なうことによって、触媒を担持した三層構造の有機耐熱性繊維材料が得られる。
【0028】
NOx選択性触媒としては、還元剤としてNH3を用い、酸素の存在下でNOを選択的に還元できるものであれば特に限定なく使用できる。例えば、TiO2、Al23などを担体とし、V25、Pt、Fe23、CuO、Mn23、Cr23、MoO3等を活性体とするものが挙げられ、使用条件等により適時選定すればよい。これらの内で、特に、触媒の特性、活性、SOxやダストによる被毒、値段等の観点から、TiO2を担体としV25を活性体とする触媒が好ましい。
【0029】
次いで、触媒を担持した有機耐熱性繊維材料を、耐熱性ポリマーを含有する有機溶媒溶液に接触させた後、溶媒を除去することによって、該有機耐熱性繊維材料に担持された触媒を耐熱性ポリマーで固定化する。該有機耐熱性繊維材料と耐熱性ポリマー溶液とを接触させる方法については特に限定的ではないが、例えば、耐熱性ポリマー溶液に有機耐熱性繊維材料を浸漬する方法、耐熱性ポリマー溶液を有機耐熱性繊維材料に塗布する方法等を採用できる。溶媒を除去するには、通常、乾燥して溶媒を蒸発させればよい。このような方法で、耐熱性ポリマーで触媒を固定化することによって、有機耐熱性繊維材料に触媒が固定化されて安定に担持され、パルスジェットによるダスト払い落としを行う場合にも、触媒が脱落し難いフィルター材料となる。
【0030】
触媒を固定化するために用いる耐熱性ポリマーの具体例としては、ポリイミド系ポリマー、ポリアミドイミド系ポリマー等を挙げることができる。有機溶媒としては、耐熱性ポリマーを溶解できるものであれば良く、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等を用いることができる。耐熱性ポリマー溶液中のポリマー濃度は、0.1〜50重量%程度が適当であり、0.1〜30重量%程度が好ましい。ポリマー濃度が高くなる程触媒を強固に固定できるが、高くなり過ぎると乾燥して有機溶剤を取り除いても、ポリマーが触媒を完全に被覆して、触媒の効果が失われるので好ましくない。
【0031】
耐熱性ポリマーの付与量は、不織布からなる上層、スクリムからなる中間層及び不織布からなる下層の三層構造の有機耐熱性繊維材料の重量を基準として、0.01〜100重量%程度が適当である。耐熱性ポリマーの付与量が多くなりすぎると、不織布の空隙部を該ポリマーが埋め尽くしてしまうため、不織布の通気度が低下しフィルターの濾過性能が低下するので好ましくない。
【0032】
本発明では、必要に応じて、上記耐熱性ポリマー溶液中に、NOx選択性触媒を添加しても良い。このようなNOx選択性触媒を添加した耐熱性ポリマー溶液を用いて触媒を固定化する場合には、予めフィルター材料に担持した触媒を耐熱性ポリマーによって固定化すると同時に、フィルター材料の表面に触媒が付与され、これが耐熱性ポリマーによって固定化されて、触媒担持量が増加してより触媒性能が向上する。耐熱性ポリマー溶液中への触媒の添加量は、50重量%程度までの範囲内で適宜調整すればよい。
【0033】
本発明のフィルター材料において、良好な触媒性能を発揮させるためには、触媒の付与量は、材料内部及び表面に存在する触媒量を合計して、最終的に、10〜500g/m2程度が適当である。
【0034】
本発明のフィルター材料は、排ガス処理用バグフィルターにおいて用いるフィルターバグ用の材料として使用するものであり、常法に従って、フィルターバグとすることができる。本発明材料より得られたフィルターバグを用いることによって、排ガスのダスト濾過と脱硝を同時に行うことができる。脱硝を行うためには、NH3を注入することが必要であり、その注入量は使用条件によって異なるが、NH3/NOを0.8〜1程度とすればよい。また、NO2以外にもHCl、SO2等の酸性ガスを除去するため、Ca(OH)2を中和剤として注入する。
【0035】
該フィルターバグは、パルスジェット型や逆圧払い落とし型等のダスト除去方法に適用でき、これらの方法でダストを除去する際にも、触媒の脱落がほとんど生じることがない。
【0036】
本発明によるフィルターバグを一般的な焼却設備で使用する際の通常使用条件は、平均濾過速度0.1〜5m/分程度、温度260℃程度以下である。
【0037】
【発明の効果】
本発明のフィルター材料は、触媒保持力が高く脱硝率に優れ、しかもダスト保持量等の濾過特性についても良好な特性を有するものであり、排ガス処理用フィルターバグ用の材料として有用性が高いものである。該フィルター材料から形成されるフィルターバグによれば、排ガス中のダスト濾過と脱硝をフィルター上で同時に行うことができ、しかも、パルスジェット払い落としにおいてもNOx選択接触触媒の脱落がほとんど生じることがない。
【0038】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0039】
実施例1〜5
有機耐熱性繊維として、ポリイミド繊維(東洋紡績(株)製、商標:P84)を使用し、常法により960デニール480フィラメント糸により平織りスクリム作製し、更に、以下の工程で触媒担持有機耐熱性繊維材料を作製した。
【0040】
まず、予備開繊を経た短繊維(ポリイミド繊維(東洋紡績(株)製、商標:P84)、6デニール61mm)をローラーカードに供し、細かな開繊、繊維配列を行った後、クロスラッパーによりウエブを積層し、プレニーパン、仕上げパンチをして下層ウエブを作製した。そして、この下層ウエブの上にスクリムを置き、この際、同時にスクリム上にTiO2−V25触媒を300g/m3散布し、更に、下層ウエブと同様にして得た上層ウエブと積層してプレニーパン、仕上げパンチを行い、スクリムと上層ウエブの間に触媒を担持させた。そして、フラット熱カレンダーにて厚み調整を行い、ガス毛焼き機にて毛焼きを行うことによって触媒を担持した三層構造の有機耐熱性繊維材料を得た。
【0041】
一方、トリメリット酸無水物1モルとN,N−ジフェニルメタン−ジイソシアネート1モルをN−メチル−2−ピロリドン(NMP)に溶解し(30wt%)、120℃で1時間経過後、160℃で3時間反応させて30重量%ポリアミドイミドポリマー溶液を作製した。得られたポリアミドイミドポリマーのガラス転移点Tgは280℃であった。
【0042】
このようにして得たポリマー溶液をNMPにて希釈し、ポリマー濃度を1〜50重量%の間で変化させた4種類の耐熱性ポリマー溶液を作製した。ポリマー濃度10%の溶液については、TiO2−V25触媒を10重量%の濃度で添加したものも調製した。
【0043】
このようにして得た各耐熱性ポリマー溶液に、上記方法で得た触媒担持有機耐熱性繊維材料を浸漬し、マングルで絞って付着量を調整し、240℃で乾燥して、有機耐熱性繊維材料に担持された触媒を耐熱性ポリマーで固定化した。得られた各材料について、触媒付与量、ポリマー付与量、及び通気度を下記表1に示す。又、比較例1として耐熱性ポリマー溶液による触媒固定化をしていない材料を用い、比較例2として触媒を付与していない材料を用いて同様に試験を行った。
【0044】
【表1】

Figure 0003900224
【0045】
上記の方法で得られたフィルターバグ用材料を、図1に示す濾過試験装置に設置し、0.04m2の濾過面積当たり3kg/cm2のパルスジェット逆洗を10万回行ない、触媒の脱落量を調べた。また、脱硝率については、図2のようなガス暴露試験器にて、温度240℃、NOx100ppm、NH3100ppm、水20%の条件でろ過試験を行い、200時間後の脱硝率を測定した。さらに、図1の濾過試験器を用いて、ダスト:フライアッシュ10種、ダスト濃度:15g/m3、濾過面積:0.04m2、濾過速度:3m/分の条件で濾過試験を行い、圧力損失が150mmH2Oに達した時点でパルス圧3kg/cm3でパルスジェットダスト払い落としを行い、これを300回繰り返して、ダスト保持量、吹き漏れ量を評価した。これらの結果を表2に示す。
【0046】
【表2】
Figure 0003900224
【0047】
表2から明らかなように、実施例1〜5では、有機耐熱性繊維からなる材料にNOx選択性接触触媒をニードルパンチ(NP)工程で付与し、その後耐熱性ポリマーの有機溶媒溶液に浸漬し乾燥して、触媒を固定化することによって、触媒保持が高く脱硝率に優れたフィルターバグ用材料が得られた。さらに、これらの材料は、ダスト保持量等の濾過特性についても従来もっている優れた特性を損なうことなく、ダスト濾過と脱硝を同時に行うことができるフィルターバグ用材料であった。尚、実施例5では、耐熱性ポリマー付着量が多いために、脱硝率、ダスト保持量が若干劣る結果であった。
【0048】
一方、比較例1のフィルター材料は、耐熱性ポリマーによる触媒の固定化をしていないために触媒の付着力が小さく、パルスジェツトによる触媒の脱落が非常に多かった。
【図面の簡単な説明】
【図1】濾過試験装置の概略図
【図2】ガス曝露試験機の断面図
【符号の説明】
1 フィルターテストピース 2 クリーンサイドチャンバー
3 エキゾーストパイプ 4 リバースエアーパイプ
5 反転レバー 6 ダストサイドチャンバー
7 フィルター装着時の反転 8 スクリューフィダー
9 イコライザー 10 ディフューザーブラシ
11 フィーダー層インバーターモーター
12 ディフューザーモーター 13 オーバーフローフィルター
14 シェーキングモーター 15 ファン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter material used for a catalytic denitration filter bug capable of simultaneously treating dust filtration and NOx denitration in combustion exhaust gas.
[0002]
[Prior art]
In an incinerator such as a general municipal waste incineration plant or industrial waste, nitrogen oxides (NOx) are generated not only by soot dust but also by combustion of fuel and reaction of nitrogen and oxygen at high temperatures. Most of NOx at the time of exhaust gas discharge is NO, but since NO is poor in reactivity, removal from the exhaust gas is very difficult, and various removal methods are being studied.
[0003]
As a denitration method, a selective catalytic reduction method using NH 3 as a reducing agent is known. This is a method of selectively reducing NO using a catalyst and NH 3 , but it is necessary to separately install a dust removal bag filter in order to remove dust in the combustion exhaust gas. In such an apparatus, since the denitration device and the dust removal bag filter are separately configured, there is a problem that not only a large installation area is required but also the cost is increased.
[0004]
Therefore, attempts have been made to simultaneously perform dust filtration and denitration without separating the denitration device and the dust removal bag filter. For example, i) a dust removal denitration filter formed by attaching a bag filter to a honeycomb-shaped holding body supporting a denitration catalyst. (Japanese Patent Laid-Open No. 6-334), ii) A method using a catalytic filter for treating a combustion gas (Japanese Patent Laid-Open No. 3-221146) obtained by coating inorganic fibers with titanium oxide is known.
[0005]
However, in the method i), it is necessary to prepare and install a honeycomb-shaped holding body supporting a denitration catalyst separately from the bag filter, which causes problems such as cost increase, workability, and expansion of the installation area.
[0006]
In the method ii), it is possible to simultaneously perform dust filtration and denitration on the bag filter, but there is a problem in the method of applying the catalyst to the fabric as the filter material. That is, when titanium oxide is coated on a fabric made of glass fiber, the catalyst can be stably provided by baking at about 500 ° C., but heat resistance such as polyimide, polyamideimide, polyphenylene sulfite, etc. In a filter material made of a conductive fiber, the normal use temperature of the fiber is 260 ° C. or lower, and when heated to a temperature higher than that, the performance such as strength deteriorates, so that titanium oxide cannot be applied by firing. For this reason, when the catalyst adheres insufficiently and the so-called pulse jet removal, in which dust is removed using high-pressure air when the filter is periodically cleaned to remove dust, the catalyst is There is a problem that it drops out in large quantities.
[0007]
Therefore, in order to obtain a filter material that can simultaneously perform dust filtration and denitration using organic heat-resistant fibers, it is necessary to apply a catalyst that can withstand pulse jet removal.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above technology in the field, and is a filter made of organic heat-resistant fiber, which can simultaneously perform dust filtration and NOx denitration in exhaust gas, and can also perform pulse jet dust. An object of the present invention is to provide a filter material for exhaust gas treatment that causes almost no catalyst removal even in the case of disbursement.
[0009]
[Means for Solving the Problems]
As a result of intensive research in view of the above problems, the present inventor supported a NOx selective catalytic catalyst on an organic heat resistant fiber material having a three-layer structure of an upper layer made of nonwoven fabric, an intermediate layer made of scrim, and a lower layer made of nonwoven fabric. Then, by using an organic solvent solution containing a heat-resistant polymer, the catalyst supported on the organic heat-resistant fiber material is fixed by a method such as dipping or coating. In addition, the inventors have found that a filter material suitable for filter bugs can be obtained, which has excellent characteristics in terms of filtration characteristics such as dust retention, and has thus completed the present invention.
[0010]
That is, the present invention provides the following filter material for catalytic denitration filter bug and catalyst denitration filter bug.
[0011]
1. An organic solvent solution containing a heat-resistant polymer comprising a material in which a NOx-selective contact catalyst is supported on a three-layer organic heat-resistant fiber material composed of an upper layer made of nonwoven fabric, an intermediate layer made of scrim, and a lower layer made of nonwoven fabric Filter material for catalytic denitration filter bugs, obtained by contacting with Pt and removing organic solvent.
[0012]
2. Item 2. The filter material according to Item 1, wherein the organic heat-resistant fiber is at least one selected from polyimide and polyamideimide.
[0013]
3. When the material in which the NOx-selective contact catalyst is supported on the organic heat-resistant fiber material is laminated with three layers of the lower layer web, the scrim and the upper layer web, either between the lower layer web and the scrim, and between the upper layer web and the scrim, or Item 3. The filter material according to Item 1 or 2, wherein the catalyst powder is applied to both, needle punching is performed, the layers are bonded, and the catalyst is supported between the layers.
[0014]
4). The heat-resistant polymer in the organic solvent solution containing the heat-resistant polymer is at least one of a polyimide-based polymer and a polyamide-imide-based polymer, and the polymer concentration is 0.1 to 50% by weight, Filter material.
[0015]
5). Item 5. The filter material according to any one of Items 1 to 4, wherein the heat-resistant polymer solution further contains 50% by weight or less of a NOx selective contact catalyst.
[0016]
6). Item 6. The filter material according to any one of Items 1 to 5, wherein the adhesion amount of the heat-resistant polymer is 0.01 to 100% by weight based on the weight of the organic heat-resistant fiber material.
[0017]
7). Filter material according to any one of claim 1 to 6 applied amount of NOx selective contact catalyst is finally 10 to 500 g / m 2.
[0018]
8). A catalytic denitration filter bug made of the filter material according to any one of Items 1 to 7.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0020]
The filter material of the present invention comprises an organic heat resistant fiber material having a three-layer structure of an upper layer made of nonwoven fabric, an intermediate layer made of scrim, and a lower layer made of nonwoven fabric. The material having such a structure is usually used as a material for a filter bag for a bag filter, and the material of each layer can be manufactured according to a conventional method. As the scrim, a woven fabric is usually used because the fabric durability is excellent.
[0021]
Examples of the organic heat resistant fiber that can be used in the present invention include polyimide, polyamideimide, polyphenylene sulfite, polytetrafluoroethylene, polyester, and polypropylene. Among these, polyimide fibers and polyamideimide fibers are suitable as materials for bag filters such as general incineration plants and industrial waste because they exhibit the highest heat resistance among organic fibers. Moreover, unlike glass fibers, these fibers can be incinerated, so that they can be incinerated after use. Furthermore, unlike polytetrafluoroethylene fibers, there is no generation of harmful gases such as hydrogen fluoride. Has excellent properties.
[0022]
In the present invention, first, it is necessary to support the NOx selective catalytic catalyst on the organic heat resistant fiber material having the three-layer structure. The method for supporting the NOx selective catalytic catalyst is not particularly limited, but for example, the following method can be exemplified.
[0023]
(1) After producing a lower layer web, a scrim and an upper layer web, and laminating them, after applying catalyst powder to one or both of the layers, that is, between the lower layer web and the scrim and between the upper layer web and the scrim Then, needle punching is performed to bond each layer, and a catalyst is supported between the layers. Then, in order to fix a catalyst as needed, it is immersed in the organic solvent. As the solvent, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) or the like can be used.
[0024]
(2) A lower layer web, a scrim, and an upper layer web are respectively produced, and each layer is laminated and subjected to needle punch processing is immersed in a solution containing a catalyst. As the solvent, DMF, DMAc, NMP and the like are suitable. According to this method, the catalyst is applied to the entire organic heat resistant fiber material having a three-layer structure.
[0025]
(3) The material of each layer is produced, and before lamination | stacking, it immerses in the solution containing a catalyst individually similarly to said (2), Then, it laminates | stacks and performs a needle punch process.
[0026]
Among these methods, the method (1) is advantageous in that the catalyst is not easily dropped because the catalyst is supported between the layers.
[0027]
In this manner, after supporting the NOx selective contact catalyst, the thickness is adjusted by calendering, and then the roasting or the like is performed to obtain a three-layered organic heat resistant fiber material supporting the catalyst.
[0028]
Any NOx selective catalyst can be used without particular limitation as long as NH 3 is used as a reducing agent and NO can be selectively reduced in the presence of oxygen. For example, TiO 2 , Al 2 O 3 or the like is used as a support, and V 2 O 5 , Pt, Fe 2 O 3 , CuO, Mn 2 O 3 , Cr 2 O 3 , MoO 3 or the like is used as an active material. The selection may be made in a timely manner according to usage conditions. Among these, a catalyst having TiO 2 as a carrier and V 2 O 5 as an active substance is particularly preferable from the viewpoints of catalyst characteristics, activity, poisoning with SOx and dust, price, and the like.
[0029]
Subsequently, the organic heat resistant fiber material carrying the catalyst is brought into contact with an organic solvent solution containing the heat resistant polymer, and then the solvent is removed to remove the catalyst supported on the organic heat resistant fiber material from the heat resistant polymer. Immobilize with. The method of bringing the organic heat-resistant fiber material into contact with the heat-resistant polymer solution is not particularly limited. For example, a method of immersing the organic heat-resistant fiber material in the heat-resistant polymer solution, The method etc. which apply | coat to a fiber material are employable. In order to remove the solvent, it is usually sufficient to dry and evaporate the solvent. In this way, by immobilizing the catalyst with a heat-resistant polymer, the catalyst is immobilized and stably supported on the organic heat-resistant fiber material. It becomes a difficult filter material.
[0030]
Specific examples of the heat-resistant polymer used for immobilizing the catalyst include polyimide polymers and polyamideimide polymers. Any organic solvent may be used as long as it can dissolve the heat-resistant polymer. For example, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and the like. Can be used. The polymer concentration in the heat resistant polymer solution is suitably about 0.1 to 50% by weight, preferably about 0.1 to 30% by weight. The higher the polymer concentration, the more firmly the catalyst can be fixed. However, when the polymer concentration is too high, the polymer is completely covered with the catalyst even if the organic solvent is removed and the effect of the catalyst is lost.
[0031]
The amount of the heat resistant polymer applied is suitably about 0.01 to 100% by weight based on the weight of the organic heat resistant fiber material having a three-layer structure of an upper layer made of nonwoven fabric, an intermediate layer made of scrim and a lower layer made of nonwoven fabric. is there. If the amount of the heat-resistant polymer is excessively large, the voids of the nonwoven fabric are filled with the polymer, which is not preferable because the air permeability of the nonwoven fabric is lowered and the filtration performance of the filter is lowered.
[0032]
In this invention, you may add a NOx selective catalyst in the said heat resistant polymer solution as needed. When the catalyst is immobilized using the heat-resistant polymer solution to which such a NOx selective catalyst is added, the catalyst previously supported on the filter material is immobilized by the heat-resistant polymer, and at the same time, the catalyst is placed on the surface of the filter material. This is applied and is fixed by the heat-resistant polymer, so that the amount of the catalyst supported is increased and the catalyst performance is further improved. What is necessary is just to adjust suitably the addition amount of the catalyst in a heat resistant polymer solution within the range to about 50 weight%.
[0033]
In the filter material of the present invention, in order to exhibit good catalytic performance, the amount of catalyst applied is the sum of the amount of catalyst present in the material and on the surface, and finally it is about 10 to 500 g / m 2. Is appropriate.
[0034]
The filter material of the present invention is used as a material for a filter bag used in an exhaust gas treatment bag filter, and can be made into a filter bug according to a conventional method. By using a filter bug obtained from the material of the present invention, dust filtration and denitration of exhaust gas can be performed simultaneously. In order to perform denitration, it is necessary to inject NH 3 , and the injection amount varies depending on use conditions, but NH 3 / NO may be about 0.8 to 1. In addition to NO 2 , Ca (OH) 2 is injected as a neutralizing agent to remove acidic gases such as HCl and SO 2 .
[0035]
The filter bug can be applied to a dust removing method such as a pulse jet type or a counter pressure wiping type, and when the dust is removed by these methods, the catalyst hardly falls off.
[0036]
The normal use conditions when the filter bug according to the present invention is used in a general incineration facility are an average filtration rate of about 0.1 to 5 m / min and a temperature of about 260 ° C. or less.
[0037]
【The invention's effect】
The filter material of the present invention has a high catalyst holding power and an excellent NOx removal rate, and also has good filtering characteristics such as dust holding amount, and is highly useful as a material for filter bugs for exhaust gas treatment. It is. According to the filter bug formed from the filter material, dust filtration and denitration in exhaust gas can be simultaneously performed on the filter, and NOx selective contact catalyst is hardly dropped even when the pulse jet is dropped off. .
[0038]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited only to these Examples.
[0039]
Examples 1-5
Polyimide fiber (trade name: P84, manufactured by Toyobo Co., Ltd.) is used as the organic heat resistant fiber, and a plain weave scrim is prepared from 960 denier 480 filament yarn by a conventional method. The material was made.
[0040]
First, a short fiber (polyimide fiber (trade name: P84, manufactured by Toyobo Co., Ltd., trademark: P84), 6-denier 61 mm) that has undergone preliminary opening is used for a roller card, and after fine opening and fiber arrangement, The webs were laminated and the lower layer web was produced by plenary panning and finishing punching. Then, a scrim is placed on the lower layer web. At this time, 300 g / m 3 of TiO 2 —V 2 O 5 catalyst is simultaneously sprayed on the scrim, and further laminated with the upper layer web obtained in the same manner as the lower layer web. Then, a penny pan and a finish punch were performed, and the catalyst was supported between the scrim and the upper layer web. Then, the thickness was adjusted with a flat heat calender, and the mixture was baked with a gas baked machine to obtain an organic heat resistant fiber material having a three-layer structure carrying a catalyst.
[0041]
On the other hand, 1 mol of trimellitic anhydride and 1 mol of N, N-diphenylmethane-diisocyanate were dissolved in N-methyl-2-pyrrolidone (NMP) (30 wt%). After 1 hour at 120 ° C., 3 mol at 160 ° C. A 30% by weight polyamideimide polymer solution was prepared by reacting for a period of time. The obtained polyamide-imide polymer had a glass transition point Tg of 280 ° C.
[0042]
The polymer solution thus obtained was diluted with NMP to prepare four types of heat-resistant polymer solutions with the polymer concentration varied between 1 and 50% by weight. A solution having a polymer concentration of 10% was also prepared by adding a TiO 2 —V 2 O 5 catalyst at a concentration of 10% by weight.
[0043]
The catalyst-carrying organic heat-resistant fiber material obtained by the above method is immersed in each heat-resistant polymer solution obtained in this manner, and the amount of adhesion is adjusted by mangle and dried at 240 ° C. The catalyst supported on the material was fixed with a heat-resistant polymer. Table 1 below shows the amount of catalyst applied, the amount of polymer applied, and the air permeability of each material obtained. Further, a test was conducted in the same manner by using a material not fixed with a catalyst by a heat-resistant polymer solution as Comparative Example 1 and using a material without a catalyst as Comparative Example 2.
[0044]
[Table 1]
Figure 0003900224
[0045]
The filter bag material obtained by the above method is installed in the filtration test apparatus shown in FIG. 1, and pulse jet backwashing of 3 kg / cm 2 per filtration area of 0.04 m 2 is performed 100,000 times to remove the catalyst. The amount was examined. As for the denitration rate, a filtration test was conducted using a gas exposure tester as shown in FIG. 2 under conditions of a temperature of 240 ° C., NOx 100 ppm, NH 3 100 ppm, and water 20%, and the denitration rate after 200 hours was measured. Further, using the filtration tester of FIG. 1, a filtration test was conducted under the conditions of dust: 10 fly ash, dust concentration: 15 g / m 3 , filtration area: 0.04 m 2 , filtration rate: 3 m / min, pressure When the loss reached 150 mmH 2 O, pulse jet dust was wiped off at a pulse pressure of 3 kg / cm 3 , and this was repeated 300 times to evaluate the amount of dust retained and the amount of blown leakage. These results are shown in Table 2.
[0046]
[Table 2]
Figure 0003900224
[0047]
As apparent from Table 2, in Examples 1 to 5, a NOx-selective contact catalyst was applied to a material composed of organic heat-resistant fibers in a needle punch (NP) process, and then immersed in an organic solvent solution of a heat-resistant polymer. By drying and immobilizing the catalyst, a filter bag material having high catalyst retention and excellent denitration rate was obtained. Further, these materials are filter bag materials that can simultaneously perform dust filtration and denitration without impairing the excellent properties such as dust retention amount that have been conventionally used. In Example 5, the amount of heat-resistant polymer attached was large, so the denitration rate and the dust holding amount were slightly inferior.
[0048]
On the other hand, the filter material of Comparative Example 1 did not fix the catalyst with a heat-resistant polymer, so the adhesion of the catalyst was small, and the catalyst dropped off due to the pulse jet.
[Brief description of the drawings]
[Fig. 1] Schematic diagram of filtration test equipment [Fig. 2] Cross section of gas exposure tester [Explanation of symbols]
1 Filter test piece 2 Clean side chamber 3 Exhaust pipe 4 Reverse air pipe 5 Reversing lever 6 Dust side chamber 7 Reversing when filter is installed 8 Screw feeder 9 Equalizer 10 Diffuser brush
11 Feeder layer inverter motor
12 Diffuser motor 13 Overflow filter
14 Shaking motor 15 Fan

Claims (6)

不織布からなる上層、スクリムからなる中間層及び不織布からなる下層から構成される三層構造の有機耐熱性繊維材料にNOx選択性接触触媒を担持させた材料を、耐熱性ポリマーを含有する有機溶媒溶液と接触させ、有機溶媒を除去して得られる触媒脱硝フィルターバグ用フィルター材料であって、有機耐熱性繊維がポリイミド繊維であり、耐熱性ポリマーを含有する有機溶媒溶液における耐熱性ポリマーがポリアミドイミド系ポリマーであって、該溶媒中のポリマー濃度が1〜20重量%である触媒脱硝フィルターバグ用フィルター材料An organic solvent solution containing a heat-resistant polymer comprising a material in which a NOx-selective contact catalyst is supported on a three-layer organic heat-resistant fiber material composed of an upper layer made of nonwoven fabric, an intermediate layer made of scrim, and a lower layer made of nonwoven fabric Is a filter material for catalytic denitration filter bugs obtained by contacting an organic solvent and removing the organic solvent , wherein the organic heat-resistant fiber is a polyimide fiber, and the heat-resistant polymer in the organic solvent solution containing the heat-resistant polymer is a polyamideimide type A filter material for a catalytic denitration filter bag, which is a polymer and has a polymer concentration in the solvent of 1 to 20% by weight . 有機耐熱性繊維材料にNOx選択性接触触媒を担持させた材料が、下層ウエブ、スクリム及び上層ウエブの三層を積層する際に、下層ウエブとスクリム間、及び上層ウエブとスクリム間のいずれか又は両方に触媒粉体を付与した後、ニードルパンチ加工を行って各層をボンディングして層間に触媒を担持させたものである請求項1に記載のフィルター材料。When the material in which the NOx-selective contact catalyst is supported on the organic heat-resistant fiber material is laminated with three layers of the lower layer web, the scrim and the upper layer web, either between the lower layer web and the scrim, and between the upper layer web and the scrim, or 2. The filter material according to claim 1, wherein after applying catalyst powder to both, needle punching is performed to bond each layer to carry a catalyst between the layers. 耐熱性ポリマー溶液が、更に、NOx選択性接触触媒を50重量%以下含有する請求項1又は2に記載のフィルター材料。The filter material according to claim 1 or 2 , wherein the heat-resistant polymer solution further contains 50% by weight or less of a NOx selective catalytic catalyst. 耐熱性ポリマーの付着量が、有機耐熱性繊維材料の重量を基準として、0.01〜100重量%である請求項1〜のいずれかに記載のフィルター材料。The filter material according to any one of claims 1 to 3 , wherein an adhesion amount of the heat-resistant polymer is 0.01 to 100% by weight based on the weight of the organic heat-resistant fiber material. NOx選択性接触触媒の付与量が最終的に10〜500g/m2である請求項1〜のいずれかに記載のフィルター材料。Filter material according to any one of claims 1-4 applied amount of NOx selective contact catalyst is finally 10 to 500 g / m 2. 請求項1〜のいずれかに記載のフィルター材料からなる触媒脱硝フィルターバグ。Catalytic denitration filter bug that the filter material according to any one of claims 1-5.
JP10300598A 1998-04-14 1998-04-14 Filter material for catalytic denitration filter bug Expired - Fee Related JP3900224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300598A JP3900224B2 (en) 1998-04-14 1998-04-14 Filter material for catalytic denitration filter bug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10300598A JP3900224B2 (en) 1998-04-14 1998-04-14 Filter material for catalytic denitration filter bug

Publications (2)

Publication Number Publication Date
JPH11290625A JPH11290625A (en) 1999-10-26
JP3900224B2 true JP3900224B2 (en) 2007-04-04

Family

ID=14342555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300598A Expired - Fee Related JP3900224B2 (en) 1998-04-14 1998-04-14 Filter material for catalytic denitration filter bug

Country Status (1)

Country Link
JP (1) JP3900224B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210316A (en) * 2001-01-19 2002-07-30 Toray Coatex Co Ltd Filter bag medium and filter bag using the same
JP4582475B2 (en) * 2004-10-26 2010-11-17 日本フエルト株式会社 Felt manufacturing method
JP4890106B2 (en) * 2006-06-05 2012-03-07 株式会社フジコー Production method of functional filter materials
JP2010201329A (en) * 2009-03-03 2010-09-16 Ryuki Engineering:Kk Dust collector
EP2772293B1 (en) * 2013-03-01 2020-06-03 W. L. Gore & Associates GmbH Textile Filter System and method for regenerating a textile filter
CN105396376A (en) * 2015-11-30 2016-03-16 安徽省元琛环保科技有限公司 Functional nano spinning filter material with denitration catalyst and preparation method of functional nano spinning filter material
CN108472567B (en) 2015-12-17 2021-05-25 W.L.戈尔及同仁股份有限公司 Catalytic filter material
CN109432892B (en) * 2018-12-12 2023-09-01 中国地质大学(武汉) Carbon nano tube fiber filter layer gas purification and thermal power generation integrated renewable device
CN111714964B (en) * 2020-06-29 2021-08-17 浙江严牌过滤技术股份有限公司 Dedusting and dioxin removing integrated filter material and preparation method thereof

Also Published As

Publication number Publication date
JPH11290625A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JP3900224B2 (en) Filter material for catalytic denitration filter bug
US8728217B2 (en) Filtration media and applications thereof
JP6027041B2 (en) Fiber cloth filter system, method for regenerating fiber cloth filter, and regenerator thereof
US11668222B2 (en) Catalytic composite
CN106215546A (en) A kind of self assembly catalyst coat filtrate and preparation method thereof
JP3627449B2 (en) Catalytic denitration filter bug and manufacturing method thereof
CN109173436A (en) A kind of dedicated filtrate of waste incineration dedusting
CN110841376A (en) Ternary low-temperature catalytic denitration, desulfurization and dust removal integrated high-efficiency filter material and production method thereof
JP4582475B2 (en) Felt manufacturing method
CN109847807A (en) Denitration filtrate and preparation method thereof based on corona treatment and in situ deposition method
CN109550313A (en) A kind of silicone oil processing glass fibre filtrate
JP2008161803A (en) Filter
JP2001227332A (en) Exhaust gas denitrification system for ship
JP2008012494A (en) Sheet for filter, filter member, and bag filter
JP3722259B2 (en) Filter fabric for highly filterable bag filter and method for producing the same
JP4318620B2 (en) Filter and filter surface processing method
JPH04219124A (en) Treatment of waste gas
KR101058173B1 (en) Bag filter media of nonwoven fabric using sea-island and/or segmented polyphenylene sulfide microfiber and method for preparing the same
KR100394849B1 (en) Catalytic Non-woven Fabric Filters used for a Temperature Range of 150∼250℃ and Methods for Applying Catalysts to Non-woven Fabric
CN115382387A (en) Manufacturing process of formaldehyde-removing felt and formaldehyde-removing felt
JP2002282627A (en) Bag filter
CN115193160B (en) Dedusting and denitration integrated filter material and preparation method thereof
CN217511378U (en) PTFE filter material and air purifier
TWI771685B (en) Desulfurization, nitrification catalyst and catalyst device, and preparation, activation and regeneration method thereof
JP2002045629A (en) Filter for removing suspended fine particle in waste gas and device for removing suspended fine particle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees