JP3899730B2 - Fault location method - Google Patents

Fault location method Download PDF

Info

Publication number
JP3899730B2
JP3899730B2 JP15759399A JP15759399A JP3899730B2 JP 3899730 B2 JP3899730 B2 JP 3899730B2 JP 15759399 A JP15759399 A JP 15759399A JP 15759399 A JP15759399 A JP 15759399A JP 3899730 B2 JP3899730 B2 JP 3899730B2
Authority
JP
Japan
Prior art keywords
current
transmission
power supply
data collection
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15759399A
Other languages
Japanese (ja)
Other versions
JP2000346900A (en
Inventor
雅則 戸井
浩次 湯谷
永二朗 伊原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP15759399A priority Critical patent/JP3899730B2/en
Publication of JP2000346900A publication Critical patent/JP2000346900A/en
Application granted granted Critical
Publication of JP3899730B2 publication Critical patent/JP3899730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送配電線上の複数のデータ収集装置により収集された電圧や電流を用いて故障点を標定する故障点標定方法に関するものである。
【0002】
【従来の技術】
送配電線の故障点標定に関する技術としては、1地点または複数地点の変電所におけるCT・PT等の電気量収集手段により得た電圧・電流を用い、距離継電器原理や故障電流の分流比に着目した故障点標定原理を使用するものが実用化されている(特公平6−68535号公報、特開平8−122395号公報等)。また、故障発生に起因するサージの送電線各端における到達時間差に着目した方式(以下、サージ方式という)やパルスを送電線上に印加し、その反射波の到達時間に着目した方式(以下、パルス方式という)が実用化されている。
【0003】
【発明が解決しようとする課題】
特公平6−68535号公報、特開平8−122395号公報等に示された送電線各端の電気量を用いる方式は、以下の問題がある。
特開平8−122395号公報に代表される送電線1端の電気量を用いた標定方法(以下、1端子判定形という)は、送電線に複数の電源や負荷が分岐接続されている場合、故障点に流れる電流や負荷に流れる電流に未知量が含まれるために、原理的な標定誤差を生じる。
【0004】
特公平6−68535号公報、特開昭58−208676号公報等に代表される送電線各端の電気量を収集して標定するシステム(以下、多端子判定形という)は、電源から故障点に流れる電流や負荷に流れる電流が測定量となるために、1端子判定形より標定誤差が軽減されるという利点がある。
しかし、電線各端子での収集電気量を1ヶ所に集めるための通信手段に、電力会社の専用回線設備等の長距離通信インフラが必要になるという問題がある。また、送電線の一部の端が需要家である場合、需要家の都合等によりデータ収集設備が設置できない場合がある。電気量を収集できない端があるということは、その端に流入・流出する電流は未知量となり、故障点標定精度に大きく影響する。更に、多数の分岐を含む送電線では標定が複雑になり、電線の途中で発生する対地充電電流が各端で検出できずに標定精度を低下させるという問題もある。
【0005】
また、サージ方式やパルス方式は、1端子判定形、多端子判定形と比較して、一般的に故障点標定のための設備規模が大きくなる。更に、多端子送配電線ではサージやパルスの反射点が多数存在するので、正確な故障点標定が困難である。
【0006】
そこで本発明は、送配電線の複数の電源端や送配電線の途中地点から同期させて収集した電気量を用いることにより多端子判定形の利点を活かし、しかも大規模かつ長距離の通信設備、伝送手段等を用いることなく高精度な標定が行えるようにした故障点標定方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、送配電線のすべての電源端に電気量を同期させて収集可能なデータ収集装置をそれぞれ配置し、故障発生時に一つの電源端にて収集した電圧及び電流と、他のすべての電源端にて収集した電流と、既知である送配電線インピーダンスとを用いて、送配電線上の電圧の、すべての電源端にて収集した故障相電流の和のベクトルに直交する成分が最小(ほぼゼロ)となる地点を故障点として標定するものである。
【0009】
請求項記載の発明は、送配電線上のすべての電源端及び送配電線の途中に電気量を同期させて収集可能なデータ収集装置を複数配置し、故障発生時に一つの電源端にて収集した電圧及び電流と、送配電線の途中にて収集した電流と、既知である送配電線インピーダンスとを用いて、送配電線上の電圧分布を求め、送配電線上の電圧の、すべての電源端にて収集した故障相電流の和のベクトルに直交する成分が最小となる地点を故障点として標定するものである。つまり、この発明では、請求項1の発明と異なり、送配電線の途中地点における電流量も使用するため、送配電線上の各地点における電圧計算精度を向上させることができ、この電圧の直交成分が最小となる地点を探す標定処理の高精度化に寄与する。
【0010】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の実施形態におけるデータ収集装置の設置例を示す図である。図1において、100は変電所(A端)、200は変電所(B端)、300は変電所(C端)、401〜407はデータ収集装置、501,502は送配電線である。
上記データ収集装置は何れも同一の構成であるものとし、その大きさは変電所構内や送配電線の任意地点の鉄塔または電柱上に設置可能なコンパクトなサイズとする。ここで、データ収集装置の設置地点は図示例に何ら限定されるものではないが、請求項1の発明では少なくともすべての電源端に、請求項2の発明では送配電線上の所定間隔おきに、請求項3の発明では少なくとも一つの電源端と送配電線上の任意の位置に配置される。
【0011】
データ収集装置401〜407は、送配電線からPT・CT等の電気量検出手段により電圧や電流を検出して取り込み、これらのアナログ電気量をディジタル値に変換して振幅値・実効値・位相差・インピーダンス・変化幅等の諸電気量を演算する。これらの電気量は必要に応じてメモリに保存されると共に、前区間のデータ収集装置から伝送された電気量に付加して次区間のデータ収集装置に伝送される。そして、図1では変電所100のデータ収集装置401にすべての収集電気量が集約され、例えばディジタルリレーのハードウェアを流用した故障点標定装置に伝送される。
データ収集装置間の伝送手段としては、携帯電話やPHS等の公衆無線電話通信、あるいは小電力無線通信等が利用可能であり、これにより通信設備、伝送手段の簡素化、省電力化を図ることができる。
【0012】
データ収集装置による電気量の収集動作は、予め設定された周期や操作員による操作入力、遠隔からの指令によって起動される。
また、データ収集装置に過電流継電器・変化幅過電流継電器・過電圧継電器・不足電圧継電器等の故障検出継電器機能や過電流検出機能を備え、故障検出時にのみ電気量を伝送したり、過電流検出時にのみ電源を供給して電気量の収集、伝送を行わせても良い。これにより、省電力化、伝送容量の低減、周囲環境へのノイズの影響低減等が可能である。
【0013】
更に、各データ収集装置401〜407にGPS(グローバルポジショニングシステム)を用いた時計機能を持たせても良い。現在のGPSでは、1秒周期で高精度の時刻データを人工衛星から発信している。従って、この時刻データを送配電線上の各データ収集装置401〜407が検知することにより、すべての収集装置が同一の時刻情報を取得することができる。
【0014】
上記GPSにより、各データ収集装置401〜407が電気量収集時にその時刻データを電気量に付加して収集時刻付きの電気量を1ヶ所に集約すれば、集約先で各収集データ間のタイミング差、つまり時刻差の補正が可能である。例えば、第1、第2の二つのデータ収集装置による収集データが各々時刻(t1,t2)に収集されたデータである場合、時刻差(△t=t2−t1)と電気量の周波数fとを用い、第2のデータ収集装置の電気量に対して2πf△t〔rad〕(πは円周率)の位相補正(加算)を行うことにより、第2のデータ収集装置の電気量があたかも時刻t1に収集されたかの如く取り扱うことができる。
このような技術は例えば特開平6−338037号公報等によって確立されているから、これらの技術を利用すれば、複数のデータ収集装置間での電気量のベクトル位相同期が可能になり、多端子電気量を用いた故障点標定を高精度に実現することができる。
【0015】
先の図1において、変電所100(A端)のデータ収集装置は電圧・電流を収集するものとし、変電所200(B端)、変電所300(C端)のデータ収集装置は電流のみを収集するものとする。なお、B端、C端のうち、電源端でないもの(図1の例ではC端)はデータ収集装置の設置を省略する。
いま、図2に示すように片端電源または両端電源の2端末送配電線を想定して、本実施形態の動作を説明する。
【0016】
図2(A)は一端に電源601、他端に負荷800を有する片端電源の場合であり、図2(B)は一端にS電源701、他端にR電源702を有する両端電源の場合である。なお、411〜414は前述したデータ収集装置である。
送配電線に故障が発生すると、図2(A),(B)に示すごとく、常時の負荷電流の他に各電源端から故障点に向かって故障電流が流れる。
【0017】
故障発生時の送配電線各地点における電圧分布例を図4、図5に示す。
図4(A)は図2(A)のような片端電源時の電圧分布であり、電源端から故障点までは、電流Iが大きく、V−Z・I(Zは線路インピーダンス)によって決まる電圧変化も大きい。また、故障点から負荷端までは、Iが負荷電流のみであり、電圧変化は小さくなる。
図4(B)は図2(B)のような両端電源時の電圧分布であり、故障点を中心として両端側に対称の電圧分布となる。
【0018】
図5(A)は、両端電源時における故障相電流の和のベクトル、つまり両端合成電流(極性電流)と同相の電圧成分Re{V}の分布を示し、図5(B)は直交する電圧成分Im{V}の分布を示している。ここで、送配電線上の電圧ベクトルV=Re{V}+Im{V}である。
これらの図から、電圧成分Re{V}についてはほぼ故障点抵抗値×Iに相当する電圧分変化となり、電圧成分Im{V}についてはほぼ電線のリアクタンス値×Iに相当する電圧分変化となる。
【0019】
特開平8−122395号公報等の従来技術において1端子電圧・電流で実施するインピーダンス演算を基にした故障点標定は、各地点の電圧値のうち、両端合成電流に直交する電圧成分が故障点においてほぼ0〔V〕になる特徴を使い、0〔V〕になる地点を故障点と見なしている。これは、故障点の残り電圧が故障点抵抗(ほぼ純抵抗とされている)とこれに流れる故障点の故障電流との積により発生するので、故障点残り電圧のうち故障電流に直交する電圧成分は0〔V〕になる特徴を用いたものである。故障点の故障電流は未知量であるので、送配電線の端で検出した電流に基づいていかに故障点の故障電流と同位相の電流を求めるかが標定精度を決定する大きな技術課題であった。
従来技術では、故障点の故障電流と同位相の電流を求める方法として、故障相電流、対象座標法に基づく零相・逆相電流、α−β−O法に基づくα回路電流等を用いるものが提案されており、各々特徴がある。
【0020】
しかし、いずれの方法も故障点標定装置の設置点背後の電源(送配電線の一電源端)から故障点に流れる故障電流を模擬したものであるのに対し、実際の故障電流は図2(B)の両端電源の電流イメージ図にあるように全電源端からの電流和となる。このため、従来技術では何れも他の電源端からの故障電流を模擬することができず、各電源端からの故障電流に位相差がある場合には、送配電線一端の電気量のみで故障点の故障電流と同位相の電流を求めるのが困難であり、前記位相差によって故障点標定誤差を生じてしまう。
【0021】
そこで、請求項1記載の発明の実施形態では、全電源端の時刻同期のとれた電流を直接求め、その合成電流(各電流の和のベクトル)を極性電流に用いることを特徴とする。例えば、図1の例において、変電所100,200が共に電源端である場合、変電所100内のデータ収集装置401は電圧・電流を収集し、変電所200内のデータ収集装置401は電流のみを収集してデータ収集装置401へ伝送し、故障点標定装置に伝送する。図2(B)の例に即して言えば、S電源701の端のデータ収集装置411が電圧・電流を収集し、R電源702の端のデータ収集装置414が電流のみを収集する。
前述のように、GPSの時計機能を利用して各データ収集装置による収集電気量の位相同期が可能であるから、データ収集装置411,414により収集した故障電流に位相差がある場合にもその位相差をほぼゼロにすることができる。そして、これらの電気量を用いて以下のように故障点標定を行う。
【0022】
具体的な故障点標定方法としては、従来の1端子電圧・電流で実施するインピーダンス演算に基づく故障点標定方法を用いるものとする。
すなわち、図2のS電源701の端においてデータ収集装置411が収集した電圧ベクトルVの成分であって、両端合成電流ベクトル(データ収集装置411,414による位相同期した収集電流の和のベクトル)に直交する電圧成分Im{V}は、図5(B)に示した如く故障点においてほぼゼロになる。このため、S電源701の端においてデータ収集装置411が収集した電流(故障電流)と送配電線リアクタンス値(送配電線の長さに比例)との積による電圧降下が前記電圧成分Im{V}に等しくなるような地点を演算により求めれば、その地点を故障点として標定することができる。
これにより、各電源端からの故障電流の位相差を見かけ上、なくして高精度に故障点を標定することができる。
【0023】
次に、発明の参考形態を説明する。
図2の系統において、各収集装置が収集した各電流のベクトル例を図3に示す。片端電源時(図2(A)、図3(A))において、電源〜故障点間は、(故障電流+負荷電流)でほぼ一様であり、この(故障電流+負荷電流)はデータ収集装置411,412によって収集される。故障点〜負荷端間は負荷電流のみであり、この負荷電流はデータ収集装置413,414によって収集される。すなわち、故障点を挟む前後では電流値の急変がある。
また、両端電源時(図2(B)、図3(B))では、データ収集装置411,412がS電源701からの故障電流を収集し、データ収集装置413,414がR電源702からの故障電流を収集する。これらの電流ベクトルの絶対値は図3(B)ではほぼ等しいが、電流ベクトルの差分は大きくなる。
【0024】
上記の点に着目し、この参考形態では、送配電線上の任意地点に配置されたデータ収集装置により各地点の電流量を同期させて収集し、隣接するデータ収集装置がそれぞれ収集した電流ベクトル同士を比較して両者の差分が一定値を超える(つまり隣接データ収集装置間で収集電流ベクトルが急変している)ような隣接データ収集装置の間に故障点があるものとして、故障点を標定するものである。
これにより、図2、図3の例ではデータ収集装置412,413間が故障点として標定される。
上記の方法によれば、電源が複数ある系統でも、故障点を挟んで電流ベクトルの急変があるので、片端系統と同様に故障点を確実に標定することができる。
【0025】
上記の方法では、故障時の電流データのみで故障点標定を実施することができる利点がある。また、送配電線上の各データ収集装置が収集した電流ベクトルの差分を見るだけの簡単な原理であり、故障形態(単純故障・同一地点多重故障・異地点多重故障)も問わない。更に、インピーダンス整定値の設定もなく、これらの整定誤差も存在しないという特徴があり、標定誤差は、データ収集装置の設置間隔で決まるので、送配電線上に短距離(例えば鉄塔毎)の間隔(数百メートルおき)でデータ収集装置を設置できれば、高精度の標定が可能になる。
【0026】
次に、請求項に記載した発明の実施形態を説明する。まず、上述した標定方法には、二つの問題点がある。
一つは、物理的・経済的な理由であり、データ収集装置を短い間隔で設置できない場合には設置間隔が長距離になるほど標定誤差が大きくなる。
もう一つは、故障電流が小さく、隣接するデータ収集装置間の電流ベクトルの差分が微小である場合である。この場合、例えば特公平6−68535号公報等の従来技術による故障点標定が考えられる。しかし、これらの従来技術では、データ収集装置のない端、特に都合によってデータ収集装置を設置できない需要家(負荷端及び電源端)につながる分岐線への故障電流の分流や、端からの故障電流の流入は標定誤差要因となる。
また、端の電流には電線の対地容量等に起因する充電電流が含まれていないので、これも標定誤差要因となる。
【0027】
そこで、請求項に記載した発明では、一つの電源端の電圧・電流及び既知の送配電線インピーダンス、更には送配電線の途中地点の電流から、従来技術の如く送配電線各地点における電圧分布を計算する。ここでも、各収集電気量の位相同期をとることは言うまでもない。特に本実施形態では、電流値として端の電流を無条件に使用するのではなく、送配電線の途中のデータ収集装置設置点以遠の区間では当該データ収集装置による収集電流量を使用する。このように送配電線の途中のデータ収集装置によって収集した電流には充電電流が含まれているので、充電電流に起因する誤差を軽減することができる。また、端にデータ収集装置がない分岐線でも、分岐点〜端の間に少なくとも一つデータ収集装置を設置することで、分流する故障電流の検出は容易である。
【0028】
本実施形態では、以上のように収集装置における収集電流を用いることで、充電電流や分流故障電流を検出可能であり、送配電線上の電圧分布を一層正確に計算することができる。こうして送配電線上の電圧分布が正確に求められれば、送配電線上の電圧の極性電流と直交する電圧成分がほぼゼロになるような地点つまり故障点の標定は、請求項1の実施形態と同様に送配電線のリアクタンスを用いたインピーダンス演算によって容易に実現可能である。
【0029】
【発明の効果】
以上のように本発明によれば、送配電線の複数の電源端や送配電線の途中地点から同期させて収集した電圧・電流を用いることにより、従来の多端子判定形の利点を活かし、しかも専用回線等の大規模かつ長距離の通信設備、伝送手段を用いることなく高精度に故障点を標定することができる。
【図面の簡単な説明】
【図1】本発明の実施形態におけるデータ収集装置の設置例を示す図である。
【図2】片端電源時・両端電源時における電流分布の説明図である。
【図3】図2における電流ベクトルの説明図である。
【図4】片端電源時・両端電源時における電圧分布の説明図である。
【図5】両端電源系統における電圧分布の説明図である。
【符号の説明】
100,200,300 変電所
401,402,403,404,405,406,407,411,412,413,414 データ収集装置
501,502 送配電線
601,701,702 電源
800 負荷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a failure point locating method for locating a failure point using voltages and currents collected by a plurality of data collection devices on a transmission and distribution line.
[0002]
[Prior art]
As technology for fault location of transmission and distribution lines, use the voltage / current obtained by means of collecting electricity such as CT / PT at one or more substations, paying attention to the principle of distance relay and the shunt ratio of fault current Those using the fault location method have been put into practical use (Japanese Patent Publication No. 6-68535, Japanese Patent Laid-Open No. 8-122395, etc.). Also, a method focusing on the arrival time difference at each end of the transmission line due to the occurrence of a failure (hereinafter referred to as a surge method) or a method applying a pulse on the transmission line and focusing on the arrival time of the reflected wave (hereinafter referred to as a pulse) System) is put into practical use.
[0003]
[Problems to be solved by the invention]
The methods using the amount of electricity at each end of the transmission line disclosed in Japanese Patent Publication No. 6-68535 and Japanese Patent Laid-Open No. 8-122395 have the following problems.
An orientation method (hereinafter referred to as “one-terminal determination type”) using an electric quantity at one end of a transmission line represented by Japanese Patent Laid-Open No. 8-122395 discloses that when a plurality of power supplies and loads are branched and connected to the transmission line, Since an unknown amount is included in the current flowing through the failure point and the current flowing through the load, a basic orientation error occurs.
[0004]
JP-A-6-68535, JP-A-58-208676, and other systems that collect and determine the amount of electricity at each end of a transmission line (hereinafter referred to as multi-terminal judgment type) Since the current flowing in the terminal and the current flowing in the load become the measurement amount, there is an advantage that the orientation error is reduced compared to the one-terminal determination type.
However, there is a problem that a long-distance communication infrastructure such as a dedicated line facility of an electric power company is required as a communication means for collecting the collected electricity amount at each terminal of the electric wire in one place. In addition, when a part of the transmission line is a customer, the data collection facility may not be installed due to the convenience of the customer. The fact that there is an end that cannot collect the amount of electricity means that the current flowing into and out of that end is an unknown amount, which greatly affects the fault location accuracy. Furthermore, in the transmission line including a large number of branches, the orientation is complicated, and there is also a problem that the grounding current generated in the middle of the electric wire cannot be detected at each end and the orientation accuracy is lowered.
[0005]
In addition, the surge method and the pulse method generally require a larger equipment scale for fault location as compared to the one-terminal determination type and the multi-terminal determination type. Furthermore, since there are many reflection points of surges and pulses in the multi-terminal transmission / distribution line, it is difficult to accurately determine the fault point.
[0006]
Therefore, the present invention makes use of the advantages of the multi-terminal determination type by using the amount of electricity collected synchronously from a plurality of power supply ends of the transmission / distribution line and the intermediate point of the transmission / distribution line, and also a large-scale and long-distance communication facility. Therefore, an object of the present invention is to provide a failure point locating method capable of performing highly accurate locating without using a transmission means or the like.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is arranged such that a data collecting device capable of collecting electric power in synchronism is arranged at all power supply terminals of the transmission / distribution line, and at one power supply terminal when a failure occurs. Using the collected voltage and current, the current collected at all other power terminals, and the known transmission and distribution line impedance, the fault phase current collected at all power terminals of the voltage on the transmission and distribution lines The point where the component orthogonal to the sum vector is minimum (almost zero) is determined as the failure point.
[0009]
The invention according to claim 2 arranges a plurality of data collection devices that can collect electricity in synchronism with all the power supply terminals on the transmission and distribution lines and in the middle of the transmission and distribution lines, and collects at one power supply terminal when a failure occurs. The voltage distribution on the transmission / distribution line is obtained using the collected voltage and current, the current collected in the middle of the transmission / distribution line, and the known transmission / distribution line impedance. The point where the component orthogonal to the vector of the sum of the fault phase currents collected in (1) is minimized is determined as the fault point. That is, in the present invention, unlike the invention of claim 1, since the current amount at the midpoint of the transmission / distribution line is also used, the voltage calculation accuracy at each point on the transmission / distribution line can be improved. This contributes to higher accuracy of the orientation process for searching for a point where the minimum is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a diagram showing an installation example of a data collection device in an embodiment of the present invention. In FIG. 1, 100 is a substation (A end), 200 is a substation (B end), 300 is a substation (C end), 401 to 407 are data collection devices, and 501 and 502 are transmission and distribution lines.
All of the above data collection devices have the same configuration, and the size of the data collection devices is a compact size that can be installed on a steel tower or power pole at an arbitrary point of a substation or transmission / distribution line. Here, the installation point of the data collection device is not limited to the illustrated example, but in the invention of claim 1, at least all the power supply terminals, in the invention of claim 2, every predetermined interval on the transmission and distribution line, In invention of Claim 3, it arrange | positions in the arbitrary positions on an at least 1 power supply end and a power transmission and distribution line.
[0011]
The data collection devices 401 to 407 detect voltages and currents from electric transmission / distribution lines by means of electric quantity detection means such as PT / CT, take in them, convert these analog electric quantities into digital values, and convert the amplitude value / effective value / position. Calculates various electrical quantities such as phase difference, impedance, and change width. These amounts of electricity are stored in a memory as needed, and are added to the amount of electricity transmitted from the data collection device in the previous section and transmitted to the data collection device in the next section. In FIG. 1, all the collected electricity is collected in the data collection device 401 of the substation 100 and is transmitted to, for example, a fault location device using the hardware of a digital relay.
As a means for transmission between data collection devices, public wireless telephone communications such as mobile phones and PHS, or low-power wireless communications can be used, thereby simplifying communication facilities and transmission means and saving power. Can do.
[0012]
The operation of collecting the amount of electricity by the data collection device is activated by a preset cycle, an operation input by an operator, or a command from a remote location.
In addition, the data collection device has a fault detection relay function and overcurrent detection function such as overcurrent relay, variable width overcurrent relay, overvoltage relay, undervoltage relay, etc., and transmits electric quantity only when fault is detected or overcurrent detection It may be possible to collect and transmit electricity by supplying power only occasionally. As a result, it is possible to save power, reduce transmission capacity, reduce the influence of noise on the surrounding environment, and the like.
[0013]
Further, each of the data collection devices 401 to 407 may be provided with a clock function using a GPS (global positioning system). In the current GPS, highly accurate time data is transmitted from an artificial satellite at a cycle of 1 second. Therefore, the data collection devices 401 to 407 on the transmission and distribution lines detect this time data, so that all the collection devices can acquire the same time information.
[0014]
If the data collection devices 401 to 407 add the time data to the electricity amount at the time of collecting the electricity amount and collect the electricity amount with the collection time in one place by the GPS, the timing difference between the collected data at the aggregation destination That is, the time difference can be corrected. For example, when the data collected by the first and second data collection devices are data collected at time (t 1 , t 2 ), the time difference (Δt = t 2 −t 1 ) and the electric quantity The phase correction (addition) of 2πfΔt [rad] (π is the circumference) is performed on the electric quantity of the second data collection device using the frequency f of the second data collection device. The amount of electricity can be handled as if it was collected at time t 1 .
Since such a technique is established by, for example, Japanese Patent Application Laid-Open No. 6-338037, etc., if these techniques are used, vector phase synchronization of electric quantity among a plurality of data collection devices becomes possible, and a multi-terminal Fault location using electric quantity can be realized with high accuracy.
[0015]
In FIG. 1, the data collection device of the substation 100 (A end) collects voltage and current, and the data collection devices of the substation 200 (B end) and the substation 300 (C end) receive only current. Shall be collected. Of the B end and C end, those that are not power supply ends (C end in the example of FIG. 1) omit the installation of the data collection device.
Now, as shown in FIG. 2, the operation of this embodiment will be described on the assumption of a two-terminal transmission / distribution line of a single-end power supply or a double-end power supply.
[0016]
2A shows a case of a one-end power source having a power source 601 at one end and a load 800 at the other end, and FIG. 2B shows a case of a both-end power source having an S power source 701 at one end and an R power source 702 at the other end. is there. Reference numerals 411 to 414 denote the data collection devices described above.
When a failure occurs in the transmission / distribution line, as shown in FIGS. 2A and 2B, a failure current flows from each power supply end toward the failure point in addition to the normal load current.
[0017]
Examples of voltage distribution at each point of the transmission / distribution line at the time of failure are shown in FIGS.
FIG. 4A shows a voltage distribution at the time of one-end power supply as shown in FIG. 2A. From the power supply end to the failure point, the current I is large and the voltage is determined by VZ · I (Z is the line impedance). The change is also big. Further, from the failure point to the load end, I is only the load current, and the voltage change is small.
FIG. 4B shows a voltage distribution at the time of power supply at both ends as shown in FIG. 2B. The voltage distribution is symmetrical on both ends with the failure point as the center.
[0018]
FIG. 5 (A) shows a vector of the sum of the fault phase currents at both ends of the power supply, that is, the distribution of voltage components Re {V} in phase with the combined current (polar current) at both ends, and FIG. The distribution of the component Im {V} is shown. Here, the voltage vector V = Re {V} + Im {V} on the transmission and distribution line.
From these figures, the voltage component Re {V} changes approximately by the voltage corresponding to the failure point resistance value × I, and the voltage component Im {V} changes approximately by the voltage corresponding to the reactance value × I of the wire. Become.
[0019]
In the conventional technique such as Japanese Patent Application Laid-Open No. 8-122395, the failure point determination based on the impedance calculation performed at one terminal voltage / current is a voltage component at each point where the voltage component orthogonal to the combined current at both ends is the failure point. In FIG. 2, a point that becomes almost 0 [V] is used, and a point that becomes 0 [V] is regarded as a failure point. This occurs because the residual voltage at the fault point is the product of the fault point resistance (substantially pure resistance) and the fault current at the fault point that flows through it. The component uses the feature of 0 [V]. Since the fault current at the fault point is an unknown quantity, it was a major technical issue to determine the positioning accuracy based on whether the current in phase with the fault current at the fault point was obtained based on the current detected at the end of the transmission and distribution line. .
In the prior art, as a method for obtaining a current having the same phase as the fault current at the fault point, a fault phase current, a zero phase / reverse phase current based on the target coordinate method, an α circuit current based on the α-β-O method, or the like is used. Have been proposed, each with its own characteristics.
[0020]
However, both methods simulate the fault current that flows from the power source (one power supply end of the transmission and distribution line) behind the fault point location device to the fault point, whereas the actual fault current is shown in Fig. 2 ( As shown in the current image of the power supply at both ends B), the current is summed from all power supply terminals. For this reason, none of the prior arts can simulate fault currents from other power supply terminals, and if there is a phase difference in the fault currents from each power supply terminal, the fault is caused only by the amount of electricity at one end of the transmission and distribution lines. It is difficult to obtain a current having the same phase as the point failure current, and a fault location error is caused by the phase difference.
[0021]
Therefore, the embodiment of the invention described in claim 1 is characterized in that the time-synchronized currents of all the power supply terminals are directly obtained, and the resultant current (vector of the sum of the currents) is used as the polarity current. For example, in the example of FIG. 1, when the substations 100 and 200 are both power supply terminals, the data collection device 401 in the substation 100 collects voltage and current, and the data collection device 401 in the substation 200 has only current. Are collected and transmitted to the data collection device 401 and transmitted to the fault location device. 2B, the data collection device 411 at the end of the S power supply 701 collects voltage / current, and the data collection device 414 at the end of the R power supply 702 collects only current.
As described above, it is possible to synchronize the phase of the collected electricity by each data collection device using the GPS clock function, so even if there is a phase difference in the fault current collected by the data collection devices 411 and 414 The phase difference can be made almost zero. And fault location is performed as follows using these electric quantities.
[0022]
As a specific failure point locating method, a conventional failure point locating method based on impedance calculation performed with a one-terminal voltage / current is used.
That is, it is a component of the voltage vector V collected by the data collection device 411 at the end of the S power supply 701 in FIG. 2 and is combined into a combined current vector at both ends (a vector of the sum of collected currents phase-synchronized by the data collection devices 411 and 414). The orthogonal voltage component Im {V} becomes almost zero at the failure point as shown in FIG. Therefore, the voltage drop due to the product of the current (fault current) collected by the data collection device 411 at the end of the S power supply 701 and the transmission / distribution line reactance value (proportional to the length of the transmission / distribution line) is the voltage component Im {V }, It is possible to determine the point as a failure point.
As a result, it is possible to locate the fault point with high accuracy by apparently eliminating the phase difference of the fault current from each power supply end.
[0023]
Next, a reference embodiment of the present invention will be described.
FIG. 3 shows a vector example of each current collected by each collecting device in the system of FIG. At the time of one-end power supply (FIG. 2 (A), FIG. 3 (A)), between the power supply and the failure point is almost uniform (failure current + load current), and this (failure current + load current) is data collection. Collected by devices 411, 412. Between the failure point and the load end is only the load current, and this load current is collected by the data collection devices 413 and 414. That is, there is a sudden change in the current value before and after the failure point.
In the case of power supply at both ends (FIGS. 2B and 3B), the data collection devices 411 and 412 collect the fault current from the S power supply 701, and the data collection devices 413 and 414 receive from the R power supply 702. Collect fault current. Although the absolute values of these current vectors are substantially equal in FIG. 3B, the difference between the current vectors is large.
[0024]
View of the above problems, in this reference embodiment, by synchronizing the current amount of each point by the arrangement data collection device to any point on the transmission and distribution lines collected, current vector adjacent to the data collection device collects respectively , And the fault point is determined as if there is a fault point between adjacent data collectors where the difference between the two exceeds a certain value (that is, the collected current vector suddenly changes between adjacent data collectors). Is.
Thereby, in the example of FIG. 2 and FIG. 3, the area between the data collection devices 412 and 413 is determined as a failure point.
According to the above method , even in a system having a plurality of power supplies, since there is a sudden change in the current vector across the failure point, the failure point can be reliably determined as in the one-end system.
[0025]
The above method has an advantage that fault location can be performed only with current data at the time of failure. Moreover, it is a simple principle which only looks at the difference between the current vectors collected by each data collection device on the transmission / distribution line, and the failure mode (simple failure / multiple failure at the same point / multiple failure at different points) does not matter. Furthermore, there is a feature that there is no setting of the impedance settling value and these settling errors do not exist, and since the positioning error is determined by the installation interval of the data collecting device, a short distance (for example, every tower) on the transmission and distribution line ( If a data collection device can be installed at intervals of several hundred meters, high-precision orientation can be achieved.
[0026]
Next, an embodiment of the invention described in claim 2 will be described. First, the above-described orientation method has two problems.
One is a physical / economic reason. When the data collection device cannot be installed at a short interval, the orientation error becomes larger as the installation interval becomes longer.
The other is a case where the fault current is small and the current vector difference between adjacent data collection devices is very small. In this case, for example, fault location by a conventional technique such as Japanese Patent Publication No. 6-68535 can be considered. However, in these prior arts, a fault current is diverted to a branch line connected to an end without a data collection device, particularly a consumer (load end and power supply end) where the data collection device cannot be installed due to circumstances, or a fault current from the end. The inflow becomes a factor of orientation error.
In addition, since the current at the end does not include the charging current due to the ground capacity of the electric wire, this also becomes a cause of the orientation error.
[0027]
Therefore, in the invention described in claim 2 , the voltage at each point of the transmission / distribution line as in the prior art is obtained from the voltage / current of one power supply end and the known impedance of the transmission / distribution line, and further, the current at the midpoint of the transmission / distribution line. Calculate the distribution. It goes without saying that the phase synchronization of each collected electric quantity is also taken here. In particular, in the present embodiment, the current at the end is not used unconditionally as the current value, but the amount of current collected by the data collection device is used in a section in the middle of the transmission / distribution line beyond the data collection device installation point. Thus, since the charging current is included in the current collected by the data collection device in the middle of the transmission / distribution line, errors due to the charging current can be reduced. Further, even in a branch line having no data collection device at the end, it is easy to detect a fault current that is shunted by installing at least one data collection device between the branch point and the end.
[0028]
In the present embodiment, by using the collected current in the collecting device as described above, the charging current and the shunt failure current can be detected, and the voltage distribution on the transmission and distribution line can be calculated more accurately. If the voltage distribution on the transmission / distribution line is accurately obtained in this way, the point where the voltage component orthogonal to the polarity current of the voltage on the transmission / distribution line becomes almost zero, that is, the fault location is determined as in the embodiment of claim 1. In addition, it can be easily realized by impedance calculation using the reactance of the transmission and distribution lines.
[0029]
【The invention's effect】
As described above, according to the present invention, by using the voltage and current collected in synchronization from a plurality of power supply ends of the transmission and distribution lines and the midpoint of the transmission and distribution lines, taking advantage of the conventional multi-terminal determination type, In addition, the failure point can be determined with high accuracy without using a large-scale and long-distance communication facility such as a dedicated line or transmission means.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an installation example of a data collection device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of current distribution at the time of one-end power supply and both-end power supply.
FIG. 3 is an explanatory diagram of a current vector in FIG. 2;
FIG. 4 is an explanatory diagram of voltage distribution at the time of one-end power supply and at both-end power supply.
FIG. 5 is an explanatory diagram of voltage distribution in a power supply system at both ends.
[Explanation of symbols]
100, 200, 300 Substations 401, 402, 403, 404, 405, 406, 407, 411, 412, 413, 414 Data collection devices 501, 502 Transmission and distribution lines 601, 701, 702 Power supply 800 Load

Claims (2)

送配電線のすべての電源端に電気量を同期させて収集可能なデータ収集装置をそれぞれ配置し、故障発生時に一つの電源端にて収集した電圧及び電流と、他のすべての電源端にて収集した電流と、既知である送配電線インピーダンスとを用いて、送配電線上の電圧の、すべての電源端にて収集した故障相電流の和のベクトルに直交する成分が最小となる地点を故障点として標定することを特徴とする故障点標定方法。  Data collection devices that can collect the amount of electricity in synchronization are arranged at all power supply terminals of the transmission and distribution lines, and the voltage and current collected at one power supply terminal at the time of failure and at all other power supply terminals Using the collected current and the known transmission / distribution line impedance, the point where the component of the voltage on the transmission / distribution line that is orthogonal to the sum vector of the sum of the fault phase currents collected at all the power supply terminals is failed. A fault locating method characterized by locating as a point. 送配電線上のすべての電源端及び送配電線の途中に電気量を同期させて収集可能なデータ収集装置を複数配置し、故障発生時に一つの電源端にて収集した電圧及び電流と、送配電線の途中にて収集した電流と、既知である送配電線インピーダンスとを用いて、送配電線上の電圧分布を求め、送配電線上の電圧の、すべての電源端にて収集した故障相電流の和のベクトルに直交する成分が最小となる地点を故障点として標定することを特徴とする故障点標定方法。Multiple data collection devices that can collect and collect the amount of electricity synchronized in the middle of all power supply terminals on the transmission and distribution lines, and the voltage and current collected at one power supply terminal when a failure occurs , and the transmission and distribution Using the current collected in the middle of the wire and the known transmission / distribution line impedance, the voltage distribution on the transmission / distribution line is obtained, and the fault phase current collected at all power terminals of the voltage on the transmission / distribution line is obtained. A failure point locating method characterized by locating a point where the component orthogonal to the sum vector is minimum as a failure point.
JP15759399A 1999-06-04 1999-06-04 Fault location method Expired - Lifetime JP3899730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15759399A JP3899730B2 (en) 1999-06-04 1999-06-04 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15759399A JP3899730B2 (en) 1999-06-04 1999-06-04 Fault location method

Publications (2)

Publication Number Publication Date
JP2000346900A JP2000346900A (en) 2000-12-15
JP3899730B2 true JP3899730B2 (en) 2007-03-28

Family

ID=15653112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15759399A Expired - Lifetime JP3899730B2 (en) 1999-06-04 1999-06-04 Fault location method

Country Status (1)

Country Link
JP (1) JP3899730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505479B (en) * 2020-11-19 2022-12-13 国网江苏省电力有限公司扬州供电分公司 Fault location method suitable for MMC type direct current power distribution network
CN114089122B (en) * 2021-12-03 2023-09-15 东南大学 Fault distance measurement method based on direct current breaker structure multiplexing
CN113985126B (en) * 2021-12-30 2022-03-22 北京志翔科技股份有限公司 Method and device for calculating low electricity metering quantity due to under-voltage abnormality

Also Published As

Publication number Publication date
JP2000346900A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
US6845333B2 (en) Protective relay with synchronized phasor measurement capability for use in electric power systems
US5455776A (en) Automatic fault location system
AU2012216391B2 (en) Systems, methods, and apparatus for locating faults on an electrical distribution network
US6466031B1 (en) Systems and methods for locating faults on a transmission line with multiple tapped loads
CN103548228B (en) For protecting the system and method for electric power networks
CN110927519B (en) Active power distribution network fault positioning method based on mu PMU measurement value
US6915186B2 (en) System and method for synchronizing electrical generators
US20030120440A1 (en) Electric power transmission network state estimation
EP3506445A1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
JP2024513381A (en) How to identify and locate faults in medium- and low-voltage distribution networks using measurements from low-voltage parts of the distribution network
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
CN113281618A (en) Low-voltage distribution line fault positioning method and device
US11327105B2 (en) Fault location in multi-terminal tapped lines
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
Meghwani et al. An on-line fault location technique for DC microgrid using transient measurements
Dutta et al. Role of microphasor measurement unit for decision making based on enhanced situational awareness of a modern distribution system
CN101943738B (en) Single-phase grounding distance measuring method and distance measuring device
JP2000341882A (en) Data collection device in power system
JP3899730B2 (en) Fault location method
Dutta et al. Assessment of impedance based fault locator for AC micro-grid
JP4374738B2 (en) Fault location method
Liu et al. Fault detection and location of microgrid based on distributed decision
JP2018163066A (en) Fault locator
Gaur et al. Synchrophasor Based Fault Distance Estimation Method for Tapped Transmission Line
Vilas et al. A diagnosis of fault location system for electrical transmission and distribution network

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Ref document number: 3899730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term