JP3899401B2 - Molecular orientation control method - Google Patents

Molecular orientation control method Download PDF

Info

Publication number
JP3899401B2
JP3899401B2 JP2002191000A JP2002191000A JP3899401B2 JP 3899401 B2 JP3899401 B2 JP 3899401B2 JP 2002191000 A JP2002191000 A JP 2002191000A JP 2002191000 A JP2002191000 A JP 2002191000A JP 3899401 B2 JP3899401 B2 JP 3899401B2
Authority
JP
Japan
Prior art keywords
skeleton
item
liquid crystal
compound
molecular orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002191000A
Other languages
Japanese (ja)
Other versions
JP2004035617A (en
Inventor
直弘 寺澤
洋 清水
浩達 物部
健司 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002191000A priority Critical patent/JP3899401B2/en
Publication of JP2004035617A publication Critical patent/JP2004035617A/en
Application granted granted Critical
Publication of JP3899401B2 publication Critical patent/JP3899401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0488Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a special bonding
    • C09K2019/0496Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a special bonding the special bonding being a specific pi-conjugated group

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶性化合物の中間相(メソフェーズ)における分子配向制御方法に関する。
【0002】
【従来の技術】
これまでの棒状液晶に関する分野では、ディスプレイ技術として、基板上での液晶配向が極めて重要であり、多くの研究開発が行われてきた。典型的にはホモジニアス配向するにはポリイミド、ホメオトロピック配向するにはセチルトリメチルアンモニウムブロマイド(CTAB)が代表的な配向材料として知られている。また透明電極としてITO(インジウム-スズオキサイド)が利用されてきており、ITO上での配向も重要である。ディスプレイの電極応答速度を向上させるため、低粘性化を目指して液晶の長鎖フルオロメチレン基が導入された。しかし、含フッ素液晶の各種基板上での配向に関して、系統だった知見は得られていない。
【0003】
一方、新しい円盤状分子の液晶(ディスコチック液晶)では、トリフェニレンをコアに持つ化合物において10-1 cm2/V sec という非常に大きな電荷移動度を与えることが報告され、新しい有機半導体として興味が持たれている。しかし、ホメオトロピック配向に関しては、電荷の効率的を輸送するための有効な方法はなかった。
【0004】
【発明が解決しようとする課題】
本発明は、液晶材料における電荷の効率的な輸送を可能とする、液晶性化合物の中間相(メソフェーズ)における分子配向制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、下記に示す通りの分子配向制御方法に関する。
項1. 剛直平板状の中心骨格の周辺に屈曲性の置換基を有する液晶性化合物において、該置換基がフルオロカーボン部分を有することを特徴とする、中間相(メソフェーズ)における分子配向制御方法。
項2. 中心骨格が共役パイ電子系からなることを特徴とする、項1の方法。
項3. 共役パイ電子系が、トリフェニレン、コロネン、ベンゾコロネン、フタロシアニン、ポルフィリン、トルキセン、ピラン、トリシクロキナゾリン、フェニルアセチレン、カリックスアレーン、ピレン、ペリレン、オリゴチオフェン、デカサイクレン及びルフィガロール及びルフィガロール骨格からなる群から選択される項2の方法。
項4. 液晶性化合物が一般式(I):
【0006】
【化3】

Figure 0003899401
【0007】
(ここで、Aは-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-又は-NH-であり、Bは単結合、フッ素を含まないアルキレン基又はフッ素を含むことのアルアリーレン基であり、Rはフッ素を含有するアルキル基、アルケニル基又はシクロアルキル基である)
の化合物である項1〜3のいずれかに記載の方法。
項5. 液晶性化合物が化合物(II)である項4に記載の方法。
【0008】
【化4】
Figure 0003899401
【0009】
項6. 中間相(メソフェーズ)が液晶相であることを特徴とする項1〜5のいずれかの方法。
項7. 該液晶相をホメオトロピック配向させることを特徴とする項1〜6のいずれかの方法。
【0010】
【発明の実施の形態】
本発明による中間相(メソフェーズ)における分子配向制御方法は、剛直平板状の中心骨格の周辺に屈曲性の置換基を有する液晶性化合物において、該置換基がフルオロカーボン部分を有することを特徴とする。
【0011】
本発明における液晶性化合物の中心骨格は、平板状であればよく、共役パイ電子系からなるものがより好ましい。例として、トリフェニレン骨格、コロネン骨格、ベンゾコロネン骨格、フタロシアニン骨格、ポルフィリン骨格、トルキセン骨格、ピラン骨格、トリシクロキナゾリン骨格、フェニルアセチレン骨格、カリックスアレーン骨格、ピレン骨格、ペリレン骨格、オリゴチオフェン骨格、デカサイクレン骨格及びルフィガロール骨格が挙げられる。共役π電子系以外の例として、イノシトール、アザクラウン環、フェニルシクロファンなどが挙げられる。
【0012】
本発明におけるフルオロカーボン部分は、フッ素を含有するアルキル基(直鎖状又は分枝状のC118、好ましくはC412、より好ましくはC48、例えばC118パーフルオロアルキル基(直鎖又は分枝)、フッ素を含有するアルケニル基(C110直鎖または分枝)、フッ素を含有するシクロアルキル基などが挙げられる。このフルオロカーボン部分の炭素数は1〜18、好ましくは1〜15、より好ましくは2〜10、更に好ましくは2〜6である。また、側鎖部分全体のフッ素と水素のバランスは、0に近い方が良く、好ましくは、0<H数/F数<0.7、好ましくは0<H数/F数<0.5、より好ましくは0<H数/F数<0.3、さらに好ましくは0<H数/F数<0.1である。
【0013】
トリフェニレン骨格の液晶性化合物として、例えば上記一般式(I)の化合物が挙げられる。
【0014】
一般式(I)において、Aは-O-、-S-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-又は-NH-であり、Bは単結合、フッ素を含まないアルキレン基(直鎖又は分枝のC118、好ましくはC412、より好ましくはC48)又はフッ素を含むことのあるアリーレン基(例えばフェニレン基、ビフェニレン基)であり、Rはフッ素を含有するアルキル基、アルケニル基又はシクロアルキル基である。Rは上記のフルオロカーボン部分と同じである。
【0015】
一般式(I)における屈曲性の置換基-A-B-Rは、トリフェニレン骨格に限らず、他の中心骨格、特に共役π電子系のものでも適用できる。例えば、-A-B-Rのような置換基は、ポルフィリンでは5位、10位、15位、20位、フタロシアニンでは2位、3位、9位、10位、16位、17位、23位、24位に位置するものがよい。
【0016】
上記化合物(I)の一例として、上記一般式(II)の化合物が挙げらる。
【0017】
一般式(II)において、mは0〜10であり、nは0〜10、好ましくは1〜10である。好ましくは3<m+n<15であり、より好ましくは6<m+n<10である。
【0018】
本発明の分子配向制御方法は、カラムナー相の液晶材料に対して特に有効である。
【0019】
本発明により、液晶相を基板に挟んでホメオトロピック配向させることも可能である。この基板の素材はガラス、フッ化バリウム、石英、ポリマー等である。基板を処理する場合もあり、処理方法の一例を下記実施例に記載する。
【0020】
【実施例】
ポリイミド(JSR Co. Ltd., AL1254)を基板上にスピンコーターにより1000 rpmの速度で1分間塗布し、その後180℃で2時間乾燥し、ポリイミド修飾基板を調製した。
【0021】
飽和セチルトリメチルアンモニウムブロマイド(CTAB)溶液に基板を浸漬し、その後乾燥し、CTAB修飾基板を調製した。
【0022】
液晶性化合物として下記化合物(III)及び(IV)を調製した。
【0023】
化合物(III)及び(IV)の配向挙動を偏光顕微鏡下のクロスニコル下で、テクスチャー観察をした。その結果を表1に示す。
【0024】
【化5】
Figure 0003899401
【0025】
【表1】
Figure 0003899401
【0026】
実施例1
上記のそれぞれの修飾基板間に上記液晶化合物(III)と粒径2μmのシリカビーズを挟むことにより測定用のセルを3個作成した。修飾基板上のカラムナー相の配向挙動を調べた。その結果を表2に示す。また、それぞれの場合のクロスニコル下での偏光顕微鏡写真を図1〜図3に示す。
【0027】
化合物(III)は、界面の状態が化学的にも物理的にも異なるポリイミド、CTAB及びITOの全ての修飾基板において、カラムナー(柱状)液晶相で一様なホメオトロピック配向を示した。
【0028】
比較例1
上記のそれぞれの修飾基板間に上記液晶化合物(IV)と粒径2μmのシリカビーズを挟むことにより測定用のセルを3個作成した。修飾基板上のカラムナー相の配向挙動を調べた。その結果を表2に示す。また、それぞれの場合のクロスニコル下での偏光顕微鏡写真を図4〜図6に示す。
【0029】
化合物(IV)は、全ての修飾基盤において不均一な配向を示した。
【0030】
【表2】
Figure 0003899401
【0031】
【発明の効果】
本発明により、一様なホメオトロピック配向膜を得ることが可能になり、その液晶材料における最大効率の電荷輸送能が期待できる膜を得ることが可能となる。
【0032】
よって、光・電子機能を有する材料を含むデバイスに本発明を応用することが期待される。具体的には、光伝導体として用いられることにより電子写真感光体デバイス、高速電荷移動材料として電界発光素子等に本発明を応用することが可能である。
【図面の簡単な説明】
【図1】図1は、実施例1においてポリイミド修飾基板を用いた時の100℃における偏光顕微鏡写真を示す。
【図2】図2は、実施例1においてCTAB修飾基板を用いた時の130℃における偏光顕微鏡写真を示す。
【図3】図3は、実施例1においてITO修飾基板を用いた時の135℃における偏光顕微鏡写真を示す。
【図4】図4は、比較例1においてポリイミド修飾基板を用いた時の80℃における偏光顕微鏡写真を示す。
【図5】図5は、比較例1においてCTAB修飾基板を用いた時の70℃における偏光顕微鏡写真を示す。
【図6】図6は、比較例1においてITO修飾基板を用いた時の80℃における偏光顕微鏡写真を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling molecular orientation in an intermediate phase (mesophase) of a liquid crystal compound.
[0002]
[Prior art]
Until now, in the field of rod-like liquid crystals, liquid crystal alignment on a substrate is extremely important as a display technology, and many researches and developments have been conducted. Typically, polyimide is known as a typical alignment material for homogeneous alignment, and cetyltrimethylammonium bromide (CTAB) is known as a typical alignment material for homeotropic alignment. In addition, ITO (indium-tin oxide) has been used as a transparent electrode, and orientation on ITO is also important. In order to improve the electrode response speed of the display, long-chain fluoromethylene groups of liquid crystals were introduced with the aim of lowering the viscosity. However, no systematic knowledge has been obtained regarding the orientation of fluorine-containing liquid crystals on various substrates.
[0003]
On the other hand, a new discotic liquid crystal (discotic liquid crystal) has been reported to give a very large charge mobility of 10 -1 cm 2 / V sec in a compound having triphenylene as a core. Is held. However, for homeotropic alignment, there has been no effective way to transport charge efficiency.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for controlling molecular alignment in an intermediate phase (mesophase) of a liquid crystal compound, which enables efficient transport of charges in a liquid crystal material.
[0005]
[Means for Solving the Problems]
The present invention relates to a molecular orientation control method as described below.
Item 1. A method for controlling molecular orientation in an intermediate phase (mesophase), characterized in that, in a liquid crystalline compound having a flexible substituent around a rigid flat plate-like central skeleton, the substituent has a fluorocarbon moiety.
Item 2. Item 2. The method according to Item 1, wherein the central skeleton is composed of a conjugated pi-electron system.
Item 3. The conjugated pi-electron system is selected from the group consisting of triphenylene, coronene, benzocoronene, phthalocyanine, porphyrin, truxene, pyran, tricycloquinazoline, phenylacetylene, calixarene, pyrene, perylene, oligothiophene, decacyclene and lufigalol and luffgalol skeleton Item 2. The method according to Item 2.
Item 4. Liquid crystalline compounds are represented by the general formula (I):
[0006]
[Chemical 3]
Figure 0003899401
[0007]
(Where A is —O—, —S—, —CO—, —COO—, —OCO—, —CONH—, —NHCO— or —NH—, and B is a single bond, an alkylene containing no fluorine. A group or an arylene group containing fluorine, and R is a fluorine-containing alkyl group, alkenyl group or cycloalkyl group)
Item 4. The method according to any one of Items 1 to 3, which is a compound of
Item 5. Item 5. The method according to Item 4, wherein the liquid crystalline compound is compound (II).
[0008]
[Formula 4]
Figure 0003899401
[0009]
Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the mesophase is a liquid crystal phase.
Item 7. Item 7. The method according to any one of Items 1 to 6, wherein the liquid crystal phase is homeotropically aligned.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The molecular orientation control method in an intermediate phase (mesophase) according to the present invention is characterized in that in a liquid crystal compound having a flexible substituent around a rigid flat plate-like central skeleton, the substituent has a fluorocarbon moiety.
[0011]
The central skeleton of the liquid crystalline compound in the present invention may be a flat plate, and more preferably a conjugated pi-electron system. Examples include triphenylene skeleton, coronene skeleton, benzocoronene skeleton, phthalocyanine skeleton, porphyrin skeleton, truxene skeleton, pyran skeleton, tricycloquinazoline skeleton, phenylacetylene skeleton, calixarene skeleton, pyrene skeleton, perylene skeleton, oligothiophene skeleton, decacyclene skeleton, and Ruffalol skeleton is mentioned. Examples other than the conjugated π-electron system include inositol, azacrown ring, and phenylcyclophane.
[0012]
Fluorocarbon portion in the present invention, C 1 ~ 18 alkyl group (linear or branched containing fluorine, preferably C 4 ~ 12, more preferably C 4 ~ 8, for example, C 1 ~ 18 perfluoroalkyl group (linear or branched), alkenyl groups containing fluorine (C 1 ~ 10 linear or branched), such as cycloalkyl groups containing fluorine. carbon number of the fluorocarbon moiety is 1 to 18, It is preferably 1 to 15, more preferably 2 to 10, and still more preferably 2 to 6. The balance of fluorine and hydrogen in the entire side chain portion should be close to 0, preferably 0 <H number. / F number <0.7, preferably 0 <H number / F number <0.5, more preferably 0 <H number / F number <0.3, more preferably 0 <H number / F number <0.1.
[0013]
As a liquid crystalline compound having a triphenylene skeleton, for example, a compound of the above general formula (I) can be mentioned.
[0014]
In the general formula (I), A is —O—, —S—, —CO—, —COO—, —OCO—, —CONH—, —NHCO— or —NH—, and B is a single bond, fluorine. contains no alkylene group (straight or branched C 1 ~ 18, preferably from C 4 ~ 12, more preferably C 4 ~ 8) be an arylene group which may contain a or fluorine (e.g. phenylene group, biphenylene group) , R is a fluorine-containing alkyl group, alkenyl group or cycloalkyl group. R is the same as the above fluorocarbon moiety.
[0015]
The flexible substituent —A—B—R in the general formula (I) is not limited to the triphenylene skeleton, but may be applied to other central skeletons, particularly those having a conjugated π electron system. For example, substituents such as -A-B-R are 5th, 10th, 15th, 20th for porphyrin, 2nd, 3rd, 9th, 10th, 16th, 17th, 23th for phthalocyanine. The one located at the 24th place is good.
[0016]
An example of the compound (I) is a compound of the general formula (II).
[0017]
In general formula (II), m is 0-10, n is 0-10, Preferably it is 1-10. Preferably 3 <m + n <15, more preferably 6 <m + n <10.
[0018]
The molecular orientation control method of the present invention is particularly effective for a columnar phase liquid crystal material.
[0019]
According to the present invention, homeotropic alignment can be performed with a liquid crystal phase sandwiched between substrates. The material of this substrate is glass, barium fluoride, quartz, polymer or the like. A substrate may be processed, and an example of a processing method is described in the following examples.
[0020]
【Example】
Polyimide (JSR Co. Ltd., AL1254) was applied onto the substrate with a spin coater at a speed of 1000 rpm for 1 minute, and then dried at 180 ° C. for 2 hours to prepare a polyimide-modified substrate.
[0021]
The substrate was immersed in a saturated cetyltrimethylammonium bromide (CTAB) solution and then dried to prepare a CTAB-modified substrate.
[0022]
The following compounds (III) and (IV) were prepared as liquid crystal compounds.
[0023]
The orientation behavior of the compounds (III) and (IV) was observed under texture under a crossed Nicol under a polarizing microscope. The results are shown in Table 1.
[0024]
[Chemical formula 5]
Figure 0003899401
[0025]
[Table 1]
Figure 0003899401
[0026]
Example 1
Three measurement cells were prepared by sandwiching the liquid crystal compound (III) and silica beads having a particle diameter of 2 μm between the modified substrates. The orientation behavior of the columnar phase on the modified substrate was investigated. The results are shown in Table 2. In addition, FIGS. 1 to 3 show polarization micrographs under crossed Nicols in each case.
[0027]
Compound (III) showed uniform homeotropic alignment in the columnar (columnar) liquid crystal phase on all modified substrates of polyimide, CTAB, and ITO whose interface states were chemically and physically different.
[0028]
Comparative Example 1
Three measurement cells were prepared by sandwiching the liquid crystal compound (IV) and silica beads having a particle diameter of 2 μm between the modified substrates. The orientation behavior of the columnar phase on the modified substrate was investigated. The results are shown in Table 2. In addition, FIGS. 4 to 6 show polarization micrographs under crossed Nicols in each case.
[0029]
Compound (IV) showed non-uniform orientation across all modified substrates.
[0030]
[Table 2]
Figure 0003899401
[0031]
【The invention's effect】
According to the present invention, it is possible to obtain a uniform homeotropic alignment film, and it is possible to obtain a film that can be expected to have the maximum efficiency in the liquid crystal material.
[0032]
Therefore, it is expected that the present invention is applied to a device including a material having an optical / electronic function. Specifically, the present invention can be applied to an electrophotographic photosensitive device, an electroluminescent element as a high-speed charge transfer material, etc. by being used as a photoconductor.
[Brief description of the drawings]
FIG. 1 shows a polarizing microscope photograph at 100 ° C. when using a polyimide-modified substrate in Example 1. FIG.
FIG. 2 shows a polarizing microscope photograph at 130 ° C. when a CTAB-modified substrate is used in Example 1.
FIG. 3 shows a polarizing microscope photograph at 135 ° C. when an ITO-modified substrate was used in Example 1.
4 shows a polarizing microscope photograph at 80 ° C. when a polyimide-modified substrate is used in Comparative Example 1. FIG.
FIG. 5 shows a polarizing microscope photograph at 70 ° C. when a CTAB-modified substrate is used in Comparative Example 1.
6 shows a polarizing microscope photograph at 80 ° C. when an ITO modified substrate is used in Comparative Example 1. FIG.

Claims (1)

一般式(II):
Figure 0003899401
(式中、6≦m+n<10、かつ、0<2m/(2n+3)<0.7である)
で表されるカラムナー相を示す液晶性化合物を基板で挟み、該カラムナー相をホメオトロピック配向させることを特徴とする、カラムナー相における分子配向制御方法。
General formula (II):
Figure 0003899401
(Wherein 6 ≦ m + n <10 and 0 <2 m / (2n + 3) <0.7)
A method for controlling molecular orientation in a columnar phase, comprising sandwiching a liquid crystalline compound having a columnar phase represented by a substrate and causing the columnar phase to be homeotropically oriented.
JP2002191000A 2002-06-28 2002-06-28 Molecular orientation control method Expired - Lifetime JP3899401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191000A JP3899401B2 (en) 2002-06-28 2002-06-28 Molecular orientation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191000A JP3899401B2 (en) 2002-06-28 2002-06-28 Molecular orientation control method

Publications (2)

Publication Number Publication Date
JP2004035617A JP2004035617A (en) 2004-02-05
JP3899401B2 true JP3899401B2 (en) 2007-03-28

Family

ID=31700751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191000A Expired - Lifetime JP3899401B2 (en) 2002-06-28 2002-06-28 Molecular orientation control method

Country Status (1)

Country Link
JP (1) JP3899401B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493313B2 (en) * 2003-09-24 2010-06-30 富士フイルム株式会社 Liquid crystal display

Also Published As

Publication number Publication date
JP2004035617A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US5332521A (en) Ferroelectric liquid crystal composition, liquid crystal optical device produced by using the ferroelectric liquid crystal composition, and method of producing the liquid crystal optical device
TWI589677B (en) Ferroelectric liquid crystal composition and ferroelectric liquid crystal display element
Boamfa et al. Magnetic field alignment of liquid crystals for fast display applications
Zhao et al. Aggregate‐induced emission in light‐emitting liquid crystal display technology
JP2007521506A (en) Liquid crystal device and manufacturing method thereof
JP3899401B2 (en) Molecular orientation control method
JP5338117B2 (en) Ferroelectric liquid crystal composition and display device using the same
JP6932338B2 (en) Liquid crystal composition and optical element
TW581802B (en) Tristable liquid crystal display device and method of driving the same
JP2010195885A (en) Ferroelectric liquid crystal composition and display element using the same
JP5219386B2 (en) New discotic liquid crystalline compounds
KR101834042B1 (en) Reactive mesogen dye and liquid crystal display comprising the same
JP5495003B2 (en) Ferroelectric liquid crystal composition and display device using the same
KR101976864B1 (en) Method for manufacturing liquid crystal display device and liquid crystal display device manufactured by using the same
KR100673805B1 (en) Smectic liquid crystal high-contrast switching or display device
JP2008502014A (en) Liquid crystal device and manufacturing method thereof
JP5556985B2 (en) Ferroelectric liquid crystal composition and display device using the same
JP4343487B2 (en) Organic semiconductor, light emitting element and light receiving element using the same
JP4099843B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
KR101954459B1 (en) Liquid crystal display device and method for manufacturing the same
JP4951818B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device using the same
JP2696555B2 (en) Ferroelectric liquid crystal composition
JPS62146984A (en) Ferroelectric liquid crystal composition
Mochizuki et al. Electroluminescent behavior of oxadiazole derivatives in liquid-crystalline media
JPS6339924A (en) Photoconductive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Ref document number: 3899401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term