JP3899187B2 - Non-radioactive dielectric guide circuit - Google Patents

Non-radioactive dielectric guide circuit Download PDF

Info

Publication number
JP3899187B2
JP3899187B2 JP18354798A JP18354798A JP3899187B2 JP 3899187 B2 JP3899187 B2 JP 3899187B2 JP 18354798 A JP18354798 A JP 18354798A JP 18354798 A JP18354798 A JP 18354798A JP 3899187 B2 JP3899187 B2 JP 3899187B2
Authority
JP
Japan
Prior art keywords
guide circuit
hole
waveguide
strip line
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18354798A
Other languages
Japanese (ja)
Other versions
JP2000022408A (en
Inventor
健一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP18354798A priority Critical patent/JP3899187B2/en
Publication of JP2000022408A publication Critical patent/JP2000022408A/en
Application granted granted Critical
Publication of JP3899187B2 publication Critical patent/JP3899187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発振器を内蔵した非放射性誘電体ガイド回路に関するものである。
【0002】
【従来の技術】
非放射性誘電体ガイド回路(NRDガイド回路:Non Radiative Dielectic Wave Guide)は、マイクロ波ストリップ線路に比べて伝搬損失が低く、導波管に比べて伝搬路の制作が容易であるところから、マイクロ波、特に30GHz以上のミリ波帯の伝送線路として注目されている。
【0003】
このNRDガイド回路は、電磁波が伝搬する誘電体ストリップ線路を金属の2枚の平行平板で挟んだ構造であり、この平行平板の対面間隔が使用周波数波長の1/2以下に設定されているので、この誘電体ストリップ線路以外の場所では、電磁波が遮断されてその放射が抑制されるため、誘電体ストリップ線路に沿って電磁波を低損失で伝搬させることができる。
【0004】
一方、導波管は前記したように製作が困難ではあるが、損失が少なく信頼性が高いという長所があり、また多くのノウハウの蓄積があるところから、ミリ波以上の高周波の伝送線路としては主流となっている。
【0005】
そこで、NRDガイド回路と導波管を接続することが要求される場合が多く発生し、NRDガイド回路−導波管のモード変換器が必要となってくる。
【0006】
図5は従来のNRDガイド回路−導波管のモード変換器の構造を示す図である。ここで、NRDガイド回路の伝送モードは現在主流であるLSM01モード、導波管の伝送モードはTE10モードである。NRDガイド回路Aは2枚の金属の平行平板1,2の間に誘電体ストリップ線路3を挟んだ構造であり、この誘電体ストリップ線路3には先端がテーパ形状の誘電体ストリップ線路4が連続している。Bはホーン型導波管であり、その内部にテーパ形状の誘電体ストリップ線路4が挿入されている。LSM01モードの電磁界分布はTE10モードの電磁界分布を90度ひねったものに似ているので、平行平板1,2と導波管BのE面が平行になるように設置すると電磁波はスムーズに変換される。導波管BのH面と平行平板1,2とを平行にするときは、90度のねじり導波管Cを使用する。
【0007】
このようなNRDガイド回路−導波管のモード変換器では、図6の(a)に示すように、平行平板1,2に垂直方向の磁力線面S1がNRDガイド回路Aとホーン導波管Bで平行な関係にあり、電気力線S2は平行平板1,2に平行であり、スムーズに伝搬モードの変換が行われていることがわかる。
【0008】
一方、NRDガイド回路を使用した35GHz帯および60GHz帯の発振器として、図7の(a)に示すようにガンダイオードと組み合わせた構造のものがある。これは、平行平板1,2の間のスペースに、誘電体ストリップ線路3と共にガンダイオード5を搭載したマウント6を設置したものであり、ガンダイオード5で発振した高周波出力が、共振器7を経由して誘電体ストリップ線路3に導出される。ガンダイオード5には、電源系への高周波信号漏洩を遮断するチョーク8を介してバイアス電圧が印加される。図7の(b)は共振器7の代表的な例を示す図であり、テフロン銅張積層基板の銅箔をエッチングでパターニングした銅箔部分7aを有するようにしたものである。この銅箔部分7aの幅や長さを調整することにより発振周波数を調整することができる。
【0009】
【発明が解決しようとする課題】
ところが、前記したNRDガイド回路−導波管のモード変換器では、NRDガイド回路Aの誘電体ストリップ線路3から連続して外部に延長するテーパ状の誘電体ストリップ線路4を設けて、この部分を導波管Bに結合するものであり、全体形状が大型化するという問題がある。
【0010】
また、NRDガイド回路を使用した発振器では、一旦組み立ててしまうと周波数を変更する手段がなく、再度平行平板1,2を開いて共振器7を調整しなければならない。また、特定の周波数で発振させたいときは、共振器7の銅箔部分7aの調整だけで周波数調整することは非常に困難であった。
【0011】
本発明は以上のような点に鑑みてなされたものであり、その目的は、NRDガイド回路の内部に導波管部分を作り込むようにして、周波数調整が簡単にできるようにした発振器を提供することである。
【0015】
【課題を解決するための手段】
の発明は、2枚の金属板からなる平行平板を使用周波数帯の波長の1/2以下の間隔で配置し、該平行平板の間に誘電体ストリップ線路を挟持してなる非放射性誘電体ガイド回路において、前記平行平板の一方に垂直に、内側が前記誘電体ストリップ線路で閉じられる貫通孔を形成し、該貫通孔内に発振素子を装填し、該貫通孔の外側を周波数調整部材で閉じて構成した。
【0016】
の発明は、第の発明において、前記周波数調整部材が、前記貫通孔に挿入される金属又は誘電体であるよう構成した。
【0017】
の発明は、第又は第の発明において、前記発振素子がガンダイオードであるよう構成した。
【0018】
【発明の実施の形態】
参考例
図1は本発明の参考例のNRDガイド回路−導波管のモード変換器の構造を示す図である。NRDガイド回路A1は2枚の金属の平行平板1,2の間に誘電体ストリップ線路線路3を挟んだ構造であり、従来と同じである。本実施の形態では、一方(下側)の平板2に垂直方向に貫通する断面形状が導波管形状の貫通孔11を形成し、その開口の内側(上側)を誘電体ストリップ線路3の底面により閉じたものである。貫通孔11の外側の開口には別の導波管12が連続するように取り付けられている。
【0019】
したがって、このモード変換器では、導波管12を伝搬してきたTE10モードの電磁波が、同じTE10モードで貫通孔11を通じて誘電体ストリップ線路3に到達し、ここでNRDガイド回路A1のLS01モードに変換されて、その誘電体ストリップ線路3内を伝搬していく。
【0020】
図2は導波管11から誘電体ストリップ線路3への電磁波の変化の様子を示す図である。まず、図2の(a)は図1のa−a線断面図であり磁力線面S1の様子を示し、(b)は図1のb−b線断面図であり電気力線S2の様子を示している。磁力線S1はNRDガイド回路A1、貫通孔11、導波管12ともに導波管12のH面に平行であり、電気力線S2はいずれも平行平板1,2に平行である。したがって、電磁波は、導波管12から誘電体ストリップ線路3にスムーズに伝搬モードを移行できる。
【0021】
なお、NRDガイド回路A1と貫通孔11の間のインピーダンス整合は、誘電体ストリップ線路3の一方の端部を開放し(平行平板1,2より短くする)、その端部から導波管穴11の形成位置までの距離L(図2の(a)参照)を調節することによって行う。
【0022】
実施例
図3は本発明の実施例の発振器の構成を示す図である。ここでは、前記した貫通孔11内にガンダイオード21を装填している。図4の(a)は図3のa−a線断面図、(b)は図3のb−b線断面図であり、その部分を具体的に表した図である。ガンダイオード21は台座22と押座23とで挟持された状態で貫通孔11内に位置し、バイアスポスト24からバイアス電圧が押座23を介して印加されるようになっている。25は貫通孔11内へ挿入量を調整可能な金属板(又は誘電体板)である。26はビームリード型のPINダイオード27をマウントした変調用プリント基板であり、誘電体ストリップ線路3の途中にPINダイオード27が位置するよう、その誘電体ストリップ線路3に挟持されている。このプリント基板26のPINダイオード27には、図4の(c)に示すように、高周波信号を遮断するためのチョーク28を介して被変調信号が印加されるようになっている。
【0023】
さて、本実施の形態では貫通孔11に空洞共振器が構成されるので、ガンダイオード21にバイアスを印加することにより発振を開始し、そこで発生した電磁波が貫通孔11から誘電体ストリップ線路3の底面に到達し、ここでNRD線路の伝搬モードLSM01に変換されてから、誘電体ストリップ線路3を伝播し、PINダイオード27に到達する。したがって、このPINダイオード27をパルス信号でオン/オフ制御してやれば、この部分を電磁波が透過したり、あるいは反射するので、パルス変調された電磁波を誘電体ストリップ線路3の端部に得ることができるようになる。
【0024】
以上において、発振周波数の調整は、貫通孔11に挿入した金属板25の挿入量の調整によって行う。貫通孔11はこの金属板25で閉じられた空洞共振器を構成しており、金属板25の挿入量を調整することで空洞共振周波数が変化し、発振周波数が変化する。
【0025】
【発明の効果】
以上から本発明によれば、非放射性誘電体ガイド回路を構成する平板に導波管形状の貫通孔を形成し、この部分において非放射性誘電体ガイド回路と導波管のモード変換器を構成したので、そのモード変換器を小さなスペースで実現できる。また、発振器においては、この貫通孔に発振素子を装填し、発振周波数はその空洞容積を周波数調整部材で調整するので、組立後であっても周波数調整を連続的に行うことができる。
【図面の簡単な説明】
【図1】 本発明の参考例のNRDガイド回路−導波管のモード変換器の概略構成を示す図である。
【図2】 (a)は図1のモード変換器の磁界分布の説明図、(b)は電界分布の説明である。
【図3】 本発明の実施例の形態のNRDガイド回路発振器の概略構成を示す図である。
【図4】 (a)は図3のa−a線断面図、(b)は図3のb−b線断面図、(c)は変調用プリント基板の平面図である。
【図5】 従来のNRDガイド回路−導波管のモード変換器の概略構成を示す図である。
【図6】 (a)は図5の磁界分布の説明図、(b)は電界分布の説明図である。
【図7】 従来のNRDガイド回路発振器の概略構成を示す図である。
【符号の説明】
1,2:金属の平行平板、3,4:誘電体ストリップ線路、5:ガンダイオード、6:マウント、7:共振器、8:チョーク、
11:貫通孔、12:導波管、
21:ガンダイオード、22:台座、23:受座、24:バイアスポスト、25:金属板、26:変調用プリント基板、27:PINダイオード、28:チョーク。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonradiative dielectric guide circuit with a built-in oscillators.
[0002]
[Prior art]
The non-radiative dielectric guide circuit (NRD guide circuit: Non Radiative Dielectic Wave Guide) has a lower propagation loss than a microwave strip line and is easier to produce a propagation path than a waveguide. In particular, it is attracting attention as a transmission line in the millimeter wave band of 30 GHz or more.
[0003]
This NRD guide circuit has a structure in which a dielectric strip line through which electromagnetic waves propagate is sandwiched between two parallel flat plates of metal, and the facing distance between the parallel flat plates is set to 1/2 or less of the operating frequency wavelength. In other places than the dielectric strip line, the electromagnetic wave is blocked and the radiation thereof is suppressed, so that the electromagnetic wave can be propagated along the dielectric strip line with low loss.
[0004]
On the other hand, although waveguides are difficult to manufacture as described above, they have the advantages of low loss and high reliability, and since there is a lot of know-how accumulated, as a high-frequency transmission line of millimeter waves or more, It has become mainstream.
[0005]
Therefore, there are many cases where it is required to connect the NRD guide circuit and the waveguide, and an NRD guide circuit-waveguide mode converter is required.
[0006]
FIG. 5 is a diagram showing the structure of a conventional NRD guide circuit-waveguide mode converter. Here, the transmission mode of the NRD guide circuit is the currently mainstream LSM 01 mode, and the transmission mode of the waveguide is the TE 10 mode. The NRD guide circuit A has a structure in which a dielectric strip line 3 is sandwiched between two metal parallel plates 1 and 2, and a dielectric strip line 4 having a tapered tip is continuously connected to the dielectric strip line 3. is doing. B is a horn-type waveguide, into which a tapered dielectric strip line 4 is inserted. The LSM 01 mode electromagnetic field distribution is similar to the TE 10 mode electromagnetic field distribution twisted 90 degrees. Therefore, if the parallel plates 1 and 2 and the E-plane of the waveguide B are installed in parallel, the electromagnetic wave is Converts smoothly. When the H plane of the waveguide B and the parallel plates 1 and 2 are parallel, a 90-degree twisted waveguide C is used.
[0007]
In such an NRD guide circuit-waveguide mode converter, as shown in FIG. 6 (a), the magnetic force lines S1 perpendicular to the parallel plates 1 and 2 have the NRD guide circuit A and the horn waveguide B. It can be seen that the electric force lines S2 are parallel to the parallel plates 1 and 2 and the propagation mode is smoothly converted.
[0008]
On the other hand, as a 35 GHz band and 60 GHz band oscillator using an NRD guide circuit, there is a structure combined with a Gunn diode as shown in FIG. In this structure, a mount 6 on which a Gunn diode 5 is mounted together with a dielectric strip line 3 is installed in a space between parallel plates 1 and 2, and a high frequency output oscillated by the Gunn diode 5 passes through a resonator 7. Then, it is led out to the dielectric strip line 3. A bias voltage is applied to the Gunn diode 5 via a choke 8 that blocks high-frequency signal leakage to the power supply system. FIG. 7 (b) is a diagram showing a typical example of the resonator 7, which includes a copper foil portion 7a obtained by patterning a copper foil of a Teflon copper-clad laminated substrate by etching. The oscillation frequency can be adjusted by adjusting the width and length of the copper foil portion 7a.
[0009]
[Problems to be solved by the invention]
However, in the above-described NRD guide circuit-waveguide mode converter, a tapered dielectric strip line 4 continuously extending from the dielectric strip line 3 of the NRD guide circuit A is provided, and this portion is provided. It is coupled to the waveguide B, and there is a problem that the overall shape increases.
[0010]
Further, in an oscillator using an NRD guide circuit, once assembled, there is no means for changing the frequency, and the parallel plates 1 and 2 must be opened again to adjust the resonator 7. When it is desired to oscillate at a specific frequency, it is very difficult to adjust the frequency only by adjusting the copper foil portion 7a of the resonator 7.
[0011]
The present invention has been made in view of the points mentioned above, and its object is as fabricated the waveguide section in the interior of the NRD guide circuit, the oscillator to be able to easily frequency adjustment Is to provide.
[0015]
[Means for Solving the Problems]
The first invention is a non-radiative dielectric in which parallel plates made of two metal plates are arranged at intervals of 1/2 or less of the wavelength of the used frequency band, and a dielectric strip line is sandwiched between the parallel plates. In the body guide circuit, a through hole is formed perpendicular to one of the parallel plates, the inside is closed by the dielectric strip line, an oscillation element is loaded in the through hole, and the frequency adjustment member is disposed outside the through hole. Closed and configured.
[0016]
According to a second aspect , in the first aspect , the frequency adjusting member is a metal or a dielectric that is inserted into the through hole.
[0017]
According to a third invention, in the first or second invention, the oscillation element is a Gunn diode.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
[ Reference example ]
FIG. 1 is a diagram showing the structure of an NRD guide circuit-waveguide mode converter of a reference example of the present invention. The NRD guide circuit A1 has a structure in which a dielectric strip line 3 is sandwiched between two metal parallel plates 1 and 2 and is the same as the conventional one. In the present embodiment, a through-hole 11 having a waveguide-shaped cross section penetrating perpendicularly to one (lower) flat plate 2 is formed, and the inner side (upper side) of the opening is the bottom surface of the dielectric strip line 3. Closed by. Another waveguide 12 is attached to the opening outside the through hole 11 so as to be continuous.
[0019]
Therefore, in this mode converter, the TE 10 mode electromagnetic wave propagating through the waveguide 12 reaches the dielectric stripline 3 through the through hole 11 in the same TE 10 mode, and here, the LS M of the NRD guide circuit A1. It is converted into 01 mode and propagates through the dielectric stripline 3.
[0020]
FIG. 2 is a diagram showing a state of change of electromagnetic waves from the waveguide 11 to the dielectric strip line 3. 2A is a cross-sectional view taken along the line aa in FIG. 1 and shows the state of the magnetic force lines S1, and FIG. 2B is a cross-sectional view taken along the line bb in FIG. Show. The magnetic field lines S1 are parallel to the H surface of the waveguide 12 for the NRD guide circuit A1, the through hole 11, and the waveguide 12, and the electric field lines S2 are all parallel to the parallel plates 1 and 2. Therefore, the electromagnetic wave can smoothly shift the propagation mode from the waveguide 12 to the dielectric strip line 3.
[0021]
For impedance matching between the NRD guide circuit A1 and the through-hole 11, one end of the dielectric strip line 3 is opened (shorter than the parallel plates 1 and 2), and the waveguide hole 11 extends from that end. It intends line by adjusting the distance to the formation position L (of (a) see FIG. 2).
[0022]
[ Example ]
FIG. 3 is a diagram showing the configuration of the oscillator according to the embodiment of the present invention . Here, the Gunn diode 21 is loaded in the through hole 11 described above. 4A is a cross-sectional view taken along the line aa in FIG. 3, and FIG. 4B is a cross-sectional view taken along the line bb in FIG. 3, specifically showing the portion. The Gunn diode 21 is positioned in the through hole 11 while being sandwiched between the pedestal 22 and the pressing seat 23, and a bias voltage is applied from the bias post 24 through the pressing seat 23. Reference numeral 25 denotes a metal plate (or dielectric plate) whose insertion amount can be adjusted into the through hole 11. Reference numeral 26 denotes a modulation printed board on which a beam lead type PIN diode 27 is mounted, and is sandwiched between the dielectric strip line 3 so that the PIN diode 27 is positioned in the middle of the dielectric strip line 3. As shown in FIG. 4C, a modulated signal is applied to the PIN diode 27 of the printed circuit board 26 via a choke 28 for blocking a high-frequency signal.
[0023]
In this embodiment, since a cavity resonator is formed in the through hole 11, oscillation is started by applying a bias to the Gunn diode 21, and an electromagnetic wave generated therein is transmitted from the through hole 11 to the dielectric strip line 3. After reaching the bottom surface and converted to the NRD line propagation mode LSM 01 here, it propagates through the dielectric strip line 3 and reaches the PIN diode 27. Therefore, if this PIN diode 27 is controlled to be turned on / off by a pulse signal, an electromagnetic wave is transmitted through or reflected at this portion, so that a pulse-modulated electromagnetic wave can be obtained at the end of the dielectric strip line 3. It becomes like this.
[0024]
In the above, the adjustment of the oscillation frequency is performed by adjusting the insertion amount of the metal plate 25 inserted into the through hole 11. The through-hole 11 constitutes a cavity resonator closed by the metal plate 25. By adjusting the amount of insertion of the metal plate 25, the cavity resonance frequency changes and the oscillation frequency changes.
[0025]
【The invention's effect】
As described above, according to the present invention, a waveguide-shaped through hole is formed in the flat plate constituting the nonradiative dielectric guide circuit, and the mode converter of the nonradiative dielectric guide circuit and the waveguide is configured in this portion. Therefore, the mode converter can be realized in a small space. In the oscillator, an oscillation element is loaded into the through hole, and the oscillation frequency is adjusted by adjusting the cavity volume by the frequency adjusting member. Therefore, the frequency can be continuously adjusted even after assembly.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an NRD guide circuit-waveguide mode converter according to a reference example of the present invention.
2A is an explanatory diagram of a magnetic field distribution of the mode converter of FIG. 1, and FIG. 2B is an explanatory diagram of an electric field distribution.
3 is a diagram showing a schematic configuration of a NRD guide circuit oscillator according to the embodiment of the present invention.
4A is a cross-sectional view taken along line aa in FIG. 3, FIG. 4B is a cross-sectional view taken along line bb in FIG. 3, and FIG. 4C is a plan view of a modulation printed board.
FIG. 5 is a diagram showing a schematic configuration of a conventional NRD guide circuit-waveguide mode converter;
6A is an explanatory diagram of the magnetic field distribution of FIG. 5, and FIG. 6B is an explanatory diagram of the electric field distribution.
FIG. 7 is a diagram showing a schematic configuration of a conventional NRD guide circuit oscillator.
[Explanation of symbols]
1, 2: parallel plate of metal, 3, 4: dielectric strip line, 5: Gunn diode, 6: mount, 7: resonator, 8: choke
11: Through hole, 12: Waveguide,
21: Gunn diode, 22: Pedestal, 23: Seat, 24: Bias post, 25: Metal plate, 26: Printed circuit board for modulation, 27: PIN diode, 28: Choke.

Claims (3)

2枚の金属板からなる平行平板を使用周波数帯の波長の1/2以下の間隔で配置し、該平行平板の間に誘電体ストリップ線路を挟持してなる非放射性誘電体ガイド回路において、
前記平行平板の一方に垂直に、内側が前記誘電体ストリップ線路で閉じられ貫通孔を形成し、
該貫通孔内に発振素子を装填し、該貫通孔の外側を周波数調整部材で閉じた
ことを特徴とする非放射性誘電体ガイド回路。
In a non-radiative dielectric guide circuit in which parallel plates made of two metal plates are arranged at intervals of 1/2 or less of the wavelength of the used frequency band, and a dielectric strip line is sandwiched between the parallel plates,
Perpendicular to one of said parallel plates, a through hole is formed inside that closed in the dielectric strip line,
An oscillation element was loaded in the through hole, and the outside of the through hole was closed with a frequency adjusting member .
A non-radiative dielectric guide circuit.
前記周波数調整部材が、前記貫通孔に挿入される金属又は誘電体であることを特徴とする請求項1に記載の非放射性誘電体ガイド回路。The non-radiative dielectric guide circuit according to claim 1, wherein the frequency adjusting member is a metal or a dielectric inserted into the through hole . 前記発振素子がガンダイオードであることを特徴とする請求項1又は2に記載の非放射性誘電体ガイド回路。The non-radiative dielectric guide circuit according to claim 1, wherein the oscillation element is a Gunn diode .
JP18354798A 1998-06-30 1998-06-30 Non-radioactive dielectric guide circuit Expired - Lifetime JP3899187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18354798A JP3899187B2 (en) 1998-06-30 1998-06-30 Non-radioactive dielectric guide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18354798A JP3899187B2 (en) 1998-06-30 1998-06-30 Non-radioactive dielectric guide circuit

Publications (2)

Publication Number Publication Date
JP2000022408A JP2000022408A (en) 2000-01-21
JP3899187B2 true JP3899187B2 (en) 2007-03-28

Family

ID=16137727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18354798A Expired - Lifetime JP3899187B2 (en) 1998-06-30 1998-06-30 Non-radioactive dielectric guide circuit

Country Status (1)

Country Link
JP (1) JP3899187B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2292064C (en) 1998-12-25 2003-08-19 Murata Manufacturing Co., Ltd. Line transition device between dielectric waveguide and waveguide, and oscillator and transmitter using the same
JP3617397B2 (en) * 1998-12-25 2005-02-02 株式会社村田製作所 Dielectric line waveguide converter, dielectric line connection structure, primary radiator, oscillator, and transmitter
DE10120248A1 (en) 2000-04-26 2002-03-28 Kyocera Corp Structure for connecting a non-radiating dielectric waveguide and a metal waveguide, transmitter / receiver module for millimeter waves and transmitter / receiver for millimeter waves
KR100502981B1 (en) * 2002-03-13 2005-07-25 코모텍 주식회사 Method for coupling an NRD waveguide with a rectangular waveguide directly and NRD waveguide thereof
KR20020066312A (en) * 2002-07-15 2002-08-14 엔알디테크 주식회사 NRD guide - Waveguide Adaptor
CN115000663B (en) * 2022-07-29 2022-11-22 四川太赫兹通信有限公司 Terahertz waveguide structure, middle cavity of terahertz waveguide structure, circuit structure and electronic equipment

Also Published As

Publication number Publication date
JP2000022408A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP4884532B2 (en) Transmission line converter
US4541120A (en) Transmitter-receiver module
JP3899187B2 (en) Non-radioactive dielectric guide circuit
JP3067675B2 (en) Planar dielectric integrated circuit
JP2003174305A (en) Transmission line and transmitter-receiver
US6344779B1 (en) Oscillator and radio equipment
US6445256B1 (en) Oscillator and radio equipment
JP3259637B2 (en) Transceiver
US6262641B1 (en) Frequency multiplier, dielectric transmission line device and radio device
JP2001237618A (en) Structure for connecting non-radiative dielectric line and metal waveguide, millimeter wave transmitting/ receiving part and millimeter wave transmitter/receiver
JPH08102604A (en) Non-radioactive dielectric line and method for controlling phase
JP4224909B2 (en) Line conversion structure, high-frequency circuit, and wireless device
JPH06140815A (en) Waveguide/trip line converter
JP3638533B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP4824869B2 (en) Microwave oscillator
EP1093218B1 (en) Oscillator and radio equipment
JP2000134031A (en) Antenna system, antenna using same and transmitter- receiver
JP2002076721A (en) Connection configuration of non-radiating dielectric line and metal waveguide and millimeter wave transmission and reception part and receiver
JP3699664B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP3709163B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP2001203510A (en) Circulator for non-radiative dielectric line and millimeter wave transmitter-receiver using it
JP2005217601A (en) High-frequency module
JP3777099B2 (en) High frequency diode oscillator and millimeter wave transceiver using the same
JP2002353710A (en) Pulse converter for nonradiative dielectric waveguide and millimeter wave transmitter-receiver using it
JP2002016406A (en) Structure for connecting non-radiative dielectric line and metal waveguide, millimeter wave transmitting/ receiving part and millimeter wave transmitter/receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150105

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term