JP3896911B2 - Both tab cells and batteries - Google Patents

Both tab cells and batteries Download PDF

Info

Publication number
JP3896911B2
JP3896911B2 JP2002189464A JP2002189464A JP3896911B2 JP 3896911 B2 JP3896911 B2 JP 3896911B2 JP 2002189464 A JP2002189464 A JP 2002189464A JP 2002189464 A JP2002189464 A JP 2002189464A JP 3896911 B2 JP3896911 B2 JP 3896911B2
Authority
JP
Japan
Prior art keywords
tab
negative electrode
positive
exterior material
voltage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189464A
Other languages
Japanese (ja)
Other versions
JP2004031270A (en
Inventor
慎也 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002189464A priority Critical patent/JP3896911B2/en
Publication of JP2004031270A publication Critical patent/JP2004031270A/en
Application granted granted Critical
Publication of JP3896911B2 publication Critical patent/JP3896911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、シート状薄型電池である両タブ型セルおよびそれを積層してなる組電池に関する。
【0002】
【従来の技術】
両端からシート状の正極タブおよび負極タブが引き出される両タブ型セル(以下、薄型電池とも呼ぶ)としては、特開平9−259859号公報に開示されている薄型電池が知られている。このような両タブ型セルは、両面に正極活物質が塗布された正極箔(これを正電極と呼ぶ)と両面に負極活物質が塗布された負極箔(これを負電極と呼ぶ)とをセパレータを介して積層してなる内部電極対を複数積層し、この複数の内部電極対を電解液に浸漬させた状態で外装材で密封し、各層の正極箔と負極箔をそれぞれ正極タブと負極タブに接合し、正極タブと負極タブを外装材から突出させて成る。これらのセルを用いて高電圧、高容量な電池を得るためには、複数セルを直列接続や並列接続して組電池とする必要がある。
【0003】
【発明が解決しようとする課題】
上述した組電池にあっては、その使用にあたって各セルの電圧や温度を検出する必要がある。上述した従来の両タブ型セルでは、正極タブと負極タブが互いに逆方向に向いている。そのため、正負極タブから電圧検出線を引き回す場合、両タブ型セルの両側に電圧検出線を引き回す必要があり、組電池の小型化を阻害する要因である。
【0004】
本発明は、セル電圧を検出する検出線をセルの一方側に集中できるようにした両タブ型セルおよびそれを複数個積層した組電池を提供するものである。
【0005】
また本発明は、セル温度検出器をセル内部に設けることができる両タブ型セルおよびそれを複数個積層した組電池を提供するものである。
【0006】
【課題を解決するための手段】
請求項1の発明は、正電極および負電極を積層した内部電極対と電解液とを、フィルム状の上側外装材および下側外装材の全周に設けられた接合フランジ同士を接合して形成された袋状の外装材の内部に収容するとともに、内部電極対に接続された正極タブおよび負極タブを前記外装材の外部へ互いに反対方向に延伸した両タブ型セルであって、正負極タブの少なくともいずれか一方側に、その一方側のタブとは逆極性のタブの電圧を検出する電圧検出用端子を設け、一方側の端部が電圧検出用端子に接続された電圧検出線を上下外装材の接合フランジ間に挟んで配線し、該電圧検出線の他方の端部を逆極性のタブと同電位の箇所に接合することを特徴とする。
請求項2の発明は、正電極および負電極を積層した内部電極対と電解液とを、フィルム状の上側外装材および下側外装材の全周に設けられた接合フランジ同士を接合して形成された袋状の外装材の内部に収容するとともに、内部電極対に接続された正極タブおよび負極タブを前記外装材の外部へ互いに反対方向に延伸した両タブ型セルであって、一端が外装体内部で正極タブと同電位な箇所に接続され、他端が上下外装材のフランジ間に挟まれて負極タブ側まで配線される正電圧検出線と、一端が外装体内部で負極タブと同電位な箇所に接続され、他端が上下外装材のフランジ間に挟まれて正極タブ側まで配線される負電圧検出線とを有することを特徴とする。
請求項の組電池は、上記複数の両タブ型セルと、積層された複数の両タブ型セルを収容する筐体と、積層された複数の両タブ型セルを筐体内で電気的に接続するバスバーと、筐体に設けられ、最大電圧が出力されるバスバーに接続される正極外部端子および最小電圧が出力されるバスバーに接続される負極外部端子と、筐体に設けられ、電圧検出用端子または温度検出用端子が接続される外部検出端子とを有することを特徴とする。
【0007】
【発明の効果】
本発明によれば、セル電圧を検出するための検出用信号線をセルの一方側で集中して引き回すようにしたので、セルを収容する筐体の大型化を抑制することができる。また、セルを収容する筐体に設けられる検出外部端子と検出用内部端子間の信号線の引き回しも容易となる
【0008】
【発明の実施の形態】
−第1の実施の形態−
以下、図1〜図6を参照して、本発明による両タブ型セルの第1の実施の形態を説明する。
図1〜図6は、一個の両タブ型セル1を説明する図である。図1は両タブ型セル1の上面図、図2は側面図、図3(a)は図2の符号IIIで示す部分の拡大断面図、図3(b)はさらにその部分拡大図、図4は両タブ型セル1の上側外装材を取り除いて内部を示す図、図5(a)〜(d)は両タブ型セル1の各部断面図、図6(a)は、積層した複数のセルの一方側に電圧検出線を集中して引き回す一例を示す斜視図である。
【0009】
両タブ型セル1はシート状リチウムイオン二次電池である。可撓性の袋状外装材100は、全周に接合フランジ100FUを有する上側外装材100Uと全周に接合フランジ100FLを有する下側外装材100Lをフランジ接合部(ヒートシール部)103で熱溶着して密閉容器とされている。袋状外装材100の内部には、内部電極対101および電解液102が真空密封状態で収容されている。内部電極対101はシート状の正電極101aおよび負電極101bを備えている。
【0010】
正電極101aは、図3(b)に示すように、アルミ箔の正極集電体(正極箔)104の両面に正極活物質104aを積層したものである。一方、負電極101bは銅箔の負極集電体(負極箔)105の両面に負極活物質105aを積層したものである。正電極101aと負電極101bとは、セパレータ101cを介して交互に積層されている。これら積層体が上述した内部電極対101を構成する。
【0011】
図3(a)に示すように、負電極101bの負極箔105はそれぞれ負極タブ1cに連結されている。負極タブ1cは、袋状外装材100のヒートシール部103(図2も参照)を気密に貫通するとともに、ヒートシール部103に固着される。なお、図示していないが、正極タブ1bも負極タブ1cと同様となっており、正極タブ1bには正電極101aの正極箔104がそれぞれ連結されている。
【0012】
袋状外装材100は、内面層100a、中間層100bおよび外面層100cの三層構造のラミネートフィルムで形成されている。内面層100aには、ポリエチレン、ポリプロピレン、ポリアミドなどの耐電解液性およびヒートシール性に優れた熱可塑性樹脂が使用される。中間層100bには、アルミ箔やステンレス箔等の可撓性および強度に優れた金属箔が使用される。外面層100cには、ポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた絶縁樹脂が使用される。
【0013】
第1の実施の形態の両タブ型セル1の特徴は、図1および図4に示すように、正負極タブ1b,1cと並んで電圧検出端子11b,11cを設けた点、および、正負極箔104,105と検出端子11b,11cとの間の検出線12b,12cをフランジ100FUと100FL間に挟んで配線する点である。
【0014】
すなわち、負極用検出線12cの一端には接合タブ13cが設けられ、接合タブ13cを介して負極箔105に接合されている。負極用検出線12cの他端には外部接続部に対してネジ結合される孔が形成されている検出端子11cが設けられ、この検出端子11cは外装材100の外部に突設されている。図5(b)および(d)に示すように、検出線12cは、フランジ100FUと100FLとの間に挟まれ、電池長手方向に引き回されている。正極検出線12bも同様にである。すなわち、正極検出線12bの一端は接合タブ12bを介して正極箔104に接合される。正極用検出線12bの他端には外部接続部に対してネジ結合される孔が形成されている検出端子11bが設けられ、この検出端子11bは外装材100の外部に突設されている。
【0015】
電気自動車やハイブリッド車両の二次電池として上述した両タブ型セル1を使用する場合は、図6(a)に示すように、たとえば複数の平板状両タブ型セル1−1〜1−8をセル固定板120を介して積層する。そして、図6(b)に示すように、図示しないバスバーにより、セル1−1,1−2,1−5,1−6およびセル1−3,1−4,1−7,1−8を並列接続して並列電池を構成するとともに、複数の並列電池を直列接続して高電圧を出力する組電池を構成する。これらの積層された両タブ型セル1は筐体に収容される。筐体の外面には、最大電圧が出力されるバスバーに接続される正極外部端子および最小電圧が出力されるバスバーに接続される負極外部端子が設けられる。また、電圧検出用端子にリード線(ハーネス)で接続される外部電圧検出端子も設けられる。
【0016】
図6(a)に示すように、セルの片側において積層方向に並列電池ごとに交互に正極端子と負極端子が現れるように複数のセル1を積層する場合、第1の実施の形態では、セル両側にそれぞれ正極電圧検出用端子11bと負極電圧検出用端子11cを設けたので、電圧検出線15b,15cをセルの片側に集中して配索することができる。
【0017】
すなわち、第1段目および第2段目では、負極タブ1cと正極電圧検出用端子11bにそれぞれ正負の電圧検出線15b,15cを接続し、第3段目および第4段目では、正極タブ1bと負極電圧検出用端子11cにそれぞれ正負の電圧検出線15b,15cを接続する。これらの電圧検出線15b、15cは束ねられて筐体内部から筐体外部に引き出され、筐体外面に設けられている外部電圧検出端子であるコネクタに接続される。そして、このコネクタをバッテリーコントローラなどの制御回路に接続することにより、各セルの電圧がバッテリーコントローラでそれぞれ検出される。
【0018】
このように、第1の実施の形態の両タブ型セルによれば次のような作用効果が得られる。
(1)セル1のフランジ部100FU,FLに、正負極タブ1b,1cと並んで電圧検出端子11b,11cを設けたので、正極タブと負極タブを互に逆方向にして両タブ型セルを積層して構成される組電池でも、正負極タブのいずれか一方側に電圧検出線15b,15cを集中して引き回すことができる。そのため、組電池の小型化、配線の簡素化につながり、コストが低減される。
(2)正負極タブの両側から電圧検出線を引き回す場合、セル一方側の電圧検出線をセル他方側まで引き回し、セルの片側で電圧検出線を束ねて配線する必要がある。そのため、電圧検出線をセルの間から反対側へ引き出さねばならない。このとき、電圧検出線がセル固定板の間に噛み込むおそれがある。この点、一実施の形態のセルでは、積層したセルの片側において正負の電圧検出線15b,15cをタブと電圧検出端子に接続することができる。その結果、セルの一方側に電圧検出線を集中して引き回すことができ、セル固定板に噛み込むおそれが解消される。
(3)正負極タブ1b,1cと検出端子11b,11cとの間の検出線12b,12cをフランジ100FUと100FL間に挟んで配線した。したがって、フランジ接合面間の検出線引き回し部がフランジ接合面から水が侵入する際の抵抗となり、換言すると、水侵入方向におけるフランジ接合長を大きくすることができ、外部からセル内部への水分の侵入を効果的に抑制できる。
【0019】
図7(a)は第1の実施の形態の第1変形例を示す。第1の実施の形態では、セル両端に正負極電圧検出用端子11b,11cを設けた。これに代えて、図7(a)に示すようセル片側の負極タブ1c側に正極電圧検出用端子11bだけを設けてもよい。これは、複数のセルを積層する際、正負極タブの方向がすべての段において同一に向ける場合に有効である。なお図示しないが、セル片側の正極タブ1b側に負極電圧検出用端子だけを設けてもよい。
【0020】
図7(b)は第1の実施の形態の第2変形例を示す。第1の実施の形態では、検出線12b,12cの両端に接合タブ13b,13cと検出端子11b,11cとを設けた。これに代えて、図7に示すように、薄板状の検出線112b,112cを用いても良い。この場合、電池内部の検出線端部113b,113cは正負極タブ1b,1cと同電位である箇所に直接溶接され、電池外部の端部111b,111cは図示しない電圧検出線に溶接される。
【0021】
−第2の実施の形態−
図8〜図10を参照して第2の実施の形態を説明する。図8は両タブ型セル50の平面図、図9は両タブ型セル50の上側外装材を取り除いて内部を示す図、図10(a)〜(d)は両タブ型セル50の各部断面図である。
【0022】
第2の実施の形態の両タブ型セル50の特徴は、図8および図9に示すように、電池内部にサーミスタ(温度検出器)70を設け、サーミスタ70の2本の+−検出線71a,71bをフランジ100FUと100FL間に挟んで配線する点、および負極タブ1cと並んで温度検出端子72を設けた点である。
【0023】
すなわち、電池50の温度を検出するサーミスタ70を外装材100内部で正極箔104に溶接し、サーミスタ70の信号検出線71a,71bを負極タブ1c側まで引き回し、外装材100に引き出されている検出線71,71bの先端に温度検出端子72を設ける。温度検出端子72から温度信号を取り出すことができる。図10(b)および(d)に示すように、検出線71a,71bは、フランジ100FUと100FLとの間に挟まれ、電池長手方向に引き回されている。なお、信号検出線71a,71bにビニール被覆が施されている場合には、フランジの熱溶着によりビニール被覆が溶けるおそれがあるから、信号線71a,71bは十分離間して配線する必要がある。
【0024】
このように、第2の実施の形態の両タブ型セル50も、図6(a)に示した積層方式で積層して組電池を構成することができる。この場合、温度検出器をすべてのセルに設ける場合、セル数分の温度検出端子が設けられ、その温度検出端子にリード線が接続される。そして、リード線を束ねて筐体内部を引き回し、筐体外部の温度検出用外部端子へ接続する。この温度検出用外部端子も上述した電圧検出用外部端子と同様に、バッテリーコントローラに接続される。
【0025】
このようなセル50および組電池によれば次のような作用効果が得られる。
(1)電池内部で正極箔104にサーミスタ70を接合し、セル外部の温度検出端子72から温度に依存した信号を取り出すようにしたので、セル外部に温度検出器を設ける場合に比べて組電池が小型化される。
(2)セル内部にサーミスタ70を設けたので、外装材の外面に温度センサを設けることなく、セルの温度を精度よく検出できる。
(3)サーミスタ70と温度検出端子72との間の温度検出線71a,71bをフランジ100FUと100FL間に挟んで配線した。したがって、フランジ接合面間の検出線引き回し部がフランジ接合面から水が侵入する際の抵抗となり、水分の侵入を効果的に抑制できる。第2の実施の形態では、2本の検出線71a,71bがフランジ100FU,FL間に介在されるから、第1の実施の形態に比べてより水侵入方向におけるフランジ接合長を長くでき、水侵入抑制効果をさらに増大することができる。
【0026】
なお、サーミスタに代えて、熱電対による温度検出器を採用してもよい。この場合、2本の検出線の一端を外装材の内部で負極箔または正極箔に接合し、検出線は接合フランジの接合面間に敷設して、セル他端まで配線する。
【0027】
−第3の実施の形態−
図11〜図13を参照して第3の実施の形態を説明する。図11は両タブ型セル80の平面図、図12は両タブ型セル80の上側外装材を取り除いて内部を示す図、図13(a)〜(d)は両タブ型セル80の各部断面図である。
【0028】
第3の実施の形態の両タブ型セル80の特徴は次の通りである。
▲1▼図11および図12に示すように、第1の実施の形態の変形例と同様な電圧検出端子311b,311cを正負極タブ1b,1cと並べて設けた点、
▲2▼検出端子311b,311cに接続される検出線312b,312cをフランジ100FUと100FL間に挟んで配線する点、
▲3▼電池内部にサーミスタ(温度検出器)70を設け、サーミスタ70の2本の+−検出線71a,71bをフランジ100FUと100FL間に挟んで配線する点、
▲4▼負極タブ1cと並んで温度検出端子72を設けた点である。
【0029】
すなわち、負極用検出線312cの一端は負極タブ1cに接合されている。負極用検出線312cの他端は外装材100の外部に突設され、外部接続部に対して溶接されるタブ311cが形成されている。図13(b)および(d)に示すように、検出線312cは、フランジ100FUと100FLとの間に挟まれ、電池長手方向に引き回されている。正極タブ1bに一端が接合される正極検出線312bについても同様に構成される。
【0030】
また、電池80の温度を検出するサーミスタ70を外装材100内部で正極箔104に溶接し、サーミスタ70の信号検出線71a,71bを負極タブ1c側まで引き回し、外装材100に引き出されている検出線71a,71bの先端に温度検出端子72を設ける。図13(b)および(d)に示すように、検出線71a,71bは、フランジ100FUと100FLとの間に挟まれ、電池長手方向に引き回されている。
【0031】
このように、第3の実施の形態の両タブ型セル80によれば次のような作用効果が得られる。
(1)正負極タブ1b,1cと並んで電圧検出端子312b,312cを設けたので、両タブ型セル80を、その正極タブと負極タブを互に逆方向に積層して構成される組電池でも、正負極タブのいずれか一方側に電圧検出線を集中して引き回すことができる。そのため、組電池の小型化、配線の簡素化につながり、コストの低減される。
(2)電池内部で正極箔104にサーミスタ70を接合し、電池外部の温度検出端子72から温度に依存した信号を取り出すようにしたので、電池の外部に温度検出器を設ける場合に比べて組電池の小型化がされる。
(3)サーミスタ70と温度検出端子72との間の温度検出線71a,71bをフランジ100FUと100FL間に挟んで配線した。したがって、フランジ接合面間の検出線引き回し部がフランジ接合面から水が侵入する際の抵抗となり、水分の侵入を効果的に抑制できる。第3の実施の形態では、2本の検出線71a,71bと電圧検出線312bがフランジ100FU,FL間に介在されるから、第2の実施の形態に比べてさらに水侵入抑制効果が得られる。
【0032】
本発明は上述したシート状の両タブ型セルに限らず両端子型のセルであれば角形セルなどにも適用することができる。また、ラミネート外装材内に電解液と内部電極対とを真空密閉させた湿式の二次電池について説明したが、本発明は、セル両端から正負極タブが突設される各種薄型二次電池に適用することができる。そして、上述した特徴的な機能作用効果が得られるものであるならば、本発明は上述した実施の形態に限定されない。
【図面の簡単な説明】
【図1】本発明による両タブ型セルの第1の実施の形態を示す上面図
【図2】図1の側面図
【図3】(a)は図2の符号IIIで示す部分の拡大断面図、(b)はさらにその部分拡大図
【図4】両タブ型セルの上部外装材を取り除いて内部を示す上面図
【図5】図1のVa−Va断面図、Vb−Vb断面図、Vc−Vc断面図、Vd−Vd断面図
【図6】(a)は積層した複数のセルの一方側に電圧検出線を集中して引き回す一例を示す斜視図、(b)はセルの接続を示す回路図
【図7】(a)、(b)は第1の実施の形態の第1および第2変形例を示すセルを示す図
【図8】本発明による両タブ型セルの第2の実施の形態を示す上面図
【図9】第2の実施の形態のセル内部を示す図
【図10】図8のXa−Xa断面図、Xb−Xb断面図、Xc−Xc断面図、Xd−Xd断面図
【図11】本発明による両タブ型セルの第3の実施の形態を示す上面図
【図12】第3の実施の形態のセル内部を示す図
【図13】図11のXIIIa−XIIIa断面図、XIIIb−XIIIb断面図、XIIIc−XIIIc断面図、XIIId−XIIId断面図
【符号の説明】
1,50、80:両タブ型セル
1b:正極タブ
1c:負極タブ
11b.11c:電圧検出端子
12b,312b:正極電圧検出線
12c,312c:負極電圧検出線
70:サーミスタ
71a,71b:温度検出線
72:温度検出端子
101:内部電極対
101a:正電極
101b:負電極
101c:セパレータ
100FR:上外装材フランジ
100FL:下外装材フランジ
104:正極箔
104a:正極活物質
104b:絶縁材
105:負極箔
105a:負極活物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tab-type cell that is a sheet-like thin battery and an assembled battery formed by stacking the cells.
[0002]
[Prior art]
A thin battery disclosed in Japanese Patent Laid-Open No. 9-259859 is known as a both-tab type cell (hereinafter also referred to as a thin battery) from which sheet-like positive electrode tabs and negative electrode tabs are drawn from both ends. Such a tab-type cell includes a positive electrode foil (referred to as a positive electrode) coated with a positive electrode active material on both sides and a negative electrode foil (referred to as a negative electrode) coated with a negative electrode active material on both sides. A plurality of internal electrode pairs laminated via a separator are stacked, and the plurality of internal electrode pairs are immersed in an electrolyte solution and sealed with an exterior material, and the positive electrode foil and the negative electrode foil of each layer are respectively connected to the positive electrode tab and the negative electrode. Bonded to the tab, the positive electrode tab and the negative electrode tab are projected from the exterior material. In order to obtain a high-voltage, high-capacity battery using these cells, it is necessary to form a battery pack by connecting a plurality of cells in series or in parallel.
[0003]
[Problems to be solved by the invention]
In the above-described assembled battery, it is necessary to detect the voltage and temperature of each cell when used. In the conventional both-tab type cell described above, the positive electrode tab and the negative electrode tab face in opposite directions. Therefore, when the voltage detection line is routed from the positive and negative electrode tabs, it is necessary to route the voltage detection line on both sides of both tab type cells, which is a factor that hinders the downsizing of the assembled battery.
[0004]
The present invention provides both tab type cells in which detection lines for detecting a cell voltage can be concentrated on one side of the cell, and an assembled battery in which a plurality of them are stacked.
[0005]
The present invention also provides a double tab type cell in which a cell temperature detector can be provided inside the cell, and an assembled battery in which a plurality of the tab type cells are stacked.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, an internal electrode pair in which a positive electrode and a negative electrode are laminated and an electrolytic solution are formed by joining together flanges provided on the entire circumference of a film-like upper exterior material and lower exterior material. A tab-type cell that is accommodated in the bag-shaped exterior material and has a positive electrode tab and a negative electrode tab connected to the internal electrode pair extending in opposite directions to the exterior of the exterior material, A voltage detection terminal that detects the voltage of a tab having a polarity opposite to that of the tab on one side is provided on at least one of the sides, and the voltage detection line with one end connected to the voltage detection terminal is moved up and down. It is characterized in that the wiring is sandwiched between the joining flanges of the exterior material, and the other end of the voltage detection line is joined to a portion having the same potential as that of the reverse polarity tab .
The invention according to claim 2 is formed by joining an internal electrode pair in which a positive electrode and a negative electrode are laminated, and an electrolytic solution by joining together flanges provided on the entire circumference of the film-like upper exterior material and lower exterior material. A tab-type cell which is accommodated in the bag-shaped exterior material and has a positive electrode tab and a negative electrode tab connected to the internal electrode pair extending in opposite directions to the exterior of the exterior material, one end of the exterior cell A positive voltage detection line that is connected to the same potential as the positive electrode tab inside the body, the other end is sandwiched between the flanges of the upper and lower exterior materials and wired to the negative electrode tab side, and one end is the same as the negative electrode tab inside the exterior body It has a negative voltage detection line connected to a potential portion and having the other end sandwiched between flanges of the upper and lower exterior materials and wired to the positive electrode tab side.
The assembled battery according to claim 4 , wherein the plurality of both tab-type cells, a housing that houses the plurality of stacked tab-type cells, and the plurality of stacked tab-type cells are electrically connected within the housing. A bus bar, a positive external terminal connected to the bus bar that outputs the maximum voltage, a negative external terminal connected to the bus bar that outputs the minimum voltage, and a voltage detection And an external detection terminal to which a terminal or a temperature detection terminal is connected.
[0007]
【The invention's effect】
According to the present invention, since the detection signal lines for detecting the cell voltage are concentrated and routed on one side of the cell, it is possible to suppress an increase in the size of the housing that accommodates the cell. In addition, it is easy to route the signal line between the detection external terminal and the detection internal terminal provided in the housing that accommodates the cell .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
-First embodiment-
Hereinafter, with reference to FIG. 1 to FIG. 6, a first embodiment of a both-tab type cell according to the present invention will be described.
1 to 6 are diagrams for explaining one tab-type cell 1. 1 is a top view of both tab-type cells 1, FIG. 2 is a side view, FIG. 3 (a) is an enlarged sectional view of a portion indicated by reference numeral III in FIG. 2, and FIG. 3 (b) is a further enlarged view of the portion. 4 is a view showing the inside of the tab-type cell 1 with the upper exterior material removed, FIGS. 5A to 5D are cross-sectional views of the tab-type cell 1, and FIG. It is a perspective view which shows an example which concentrates a voltage detection line on the one side of a cell, and is drawn.
[0009]
Both tab type cells 1 are sheet-like lithium ion secondary batteries. The flexible bag-shaped exterior material 100 is formed by thermally welding an upper exterior material 100U having a joint flange 100FU on the entire periphery and a lower exterior material 100L having a joint flange 100FL on the entire periphery at a flange joint (heat seal portion) 103. It is a sealed container. Inside the bag-shaped exterior material 100, an internal electrode pair 101 and an electrolytic solution 102 are accommodated in a vacuum-sealed state. The internal electrode pair 101 includes a sheet-like positive electrode 101a and a negative electrode 101b.
[0010]
As shown in FIG. 3B, the positive electrode 101a is obtained by laminating a positive electrode active material 104a on both surfaces of a positive electrode current collector (positive electrode foil) 104 made of aluminum foil. On the other hand, the negative electrode 101b is obtained by laminating a negative electrode active material 105a on both surfaces of a negative electrode current collector (negative electrode foil) 105 made of copper foil. The positive electrode 101a and the negative electrode 101b are alternately stacked via the separator 101c. These laminates constitute the internal electrode pair 101 described above.
[0011]
As shown to Fig.3 (a), the negative electrode foil 105 of the negative electrode 101b is each connected with the negative electrode tab 1c. The negative electrode tab 1 c penetrates the heat seal portion 103 (see also FIG. 2) of the bag-shaped exterior material 100 in an airtight manner and is fixed to the heat seal portion 103. Although not shown, the positive electrode tab 1b is the same as the negative electrode tab 1c, and the positive electrode foil 104 of the positive electrode 101a is connected to the positive electrode tab 1b.
[0012]
The bag-shaped exterior material 100 is formed of a laminate film having a three-layer structure including an inner surface layer 100a, an intermediate layer 100b, and an outer surface layer 100c. For the inner surface layer 100a, a thermoplastic resin excellent in electrolytic solution resistance and heat sealability such as polyethylene, polypropylene, and polyamide is used. For the intermediate layer 100b, a metal foil having excellent flexibility and strength, such as an aluminum foil or a stainless steel foil, is used. For the outer surface layer 100c, an insulating resin excellent in electrical insulation such as a polyamide-based resin or a polyester-based resin is used.
[0013]
As shown in FIGS. 1 and 4, the features of both the tab-type cells 1 of the first embodiment are that voltage detection terminals 11b and 11c are provided alongside the positive and negative electrode tabs 1b and 1c, and the positive and negative electrodes The point is that the detection lines 12b and 12c between the foils 104 and 105 and the detection terminals 11b and 11c are wired between the flanges 100FU and 100FL.
[0014]
That is, a joining tab 13c is provided at one end of the negative electrode detection line 12c, and is joined to the negative foil 105 via the joining tab 13c. The other end of the negative electrode detection line 12c is provided with a detection terminal 11c in which a hole to be screw-coupled to the external connection portion is formed, and the detection terminal 11c protrudes from the exterior material 100. As shown in FIGS. 5B and 5D, the detection line 12c is sandwiched between the flanges 100FU and 100FL and routed in the battery longitudinal direction. The same applies to the positive electrode detection line 12b. That is, one end of the positive electrode detection line 12b is bonded to the positive electrode foil 104 via the bonding tab 12b. The other end of the positive electrode detection line 12b is provided with a detection terminal 11b in which a hole to be screw-coupled to the external connection portion is provided. The detection terminal 11b protrudes from the exterior material 100.
[0015]
When the above-described double tab type cell 1 is used as a secondary battery of an electric vehicle or a hybrid vehicle, as shown in FIG. 6A, for example, a plurality of flat plate type double tab type cells 1-1 to 1-8 are provided. Lamination is performed via the cell fixing plate 120. Then, as shown in FIG. 6B, cells 1-1, 1-2, 1-5, 1-6 and cells 1-3, 1-4, 1-7, 1-8 are provided by bus bars (not shown). Are connected in parallel to form a parallel battery, and a plurality of parallel batteries are connected in series to output a high voltage. These stacked tab-type cells 1 are accommodated in a casing. A positive external terminal connected to the bus bar that outputs the maximum voltage and a negative external terminal connected to the bus bar that outputs the minimum voltage are provided on the outer surface of the housing. An external voltage detection terminal connected to the voltage detection terminal with a lead wire (harness) is also provided.
[0016]
As shown in FIG. 6A, when a plurality of cells 1 are stacked so that a positive electrode terminal and a negative electrode terminal appear alternately for each parallel battery in the stacking direction on one side of the cell, Since the positive voltage detection terminal 11b and the negative voltage detection terminal 11c are provided on both sides, the voltage detection lines 15b and 15c can be concentrated on one side of the cell.
[0017]
That is, in the first and second stages, positive and negative voltage detection lines 15b and 15c are connected to the negative electrode tab 1c and the positive voltage detection terminal 11b, respectively. In the third and fourth stages, the positive electrode tabs are connected. Positive and negative voltage detection lines 15b and 15c are connected to 1b and negative voltage detection terminal 11c, respectively. These voltage detection lines 15b and 15c are bundled and drawn from the inside of the housing to the outside of the housing, and are connected to a connector which is an external voltage detection terminal provided on the outer surface of the housing. Then, by connecting this connector to a control circuit such as a battery controller, the voltage of each cell is detected by the battery controller.
[0018]
Thus, according to the both tab type cell of 1st Embodiment, the following effects are obtained.
(1) Since the voltage detection terminals 11b and 11c are provided in the flange portions 100FU and FL of the cell 1 along with the positive and negative electrode tabs 1b and 1c, both the tab-type cells are arranged with the positive electrode tab and the negative electrode tab opposite to each other. Even in an assembled battery configured by stacking, the voltage detection lines 15b and 15c can be concentrated and routed to either one of the positive and negative electrode tabs. This leads to a reduction in the size of the assembled battery and simplification of wiring, thereby reducing costs.
(2) When the voltage detection line is routed from both sides of the positive and negative electrode tabs, it is necessary to route the voltage detection line on one side of the cell to the other side of the cell and bundle the voltage detection lines on one side of the cell. For this reason, the voltage detection line must be drawn from between the cells to the opposite side. At this time, the voltage detection line may be caught between the cell fixing plates. In this regard, in the cell of one embodiment, the positive and negative voltage detection lines 15b and 15c can be connected to the tab and the voltage detection terminal on one side of the stacked cells. As a result, it is possible to concentrate the voltage detection lines on one side of the cell and eliminate the possibility of biting into the cell fixing plate.
(3) The detection lines 12b and 12c between the positive and negative electrode tabs 1b and 1c and the detection terminals 11b and 11c are wired between the flanges 100FU and 100FL. Therefore, the detection line routing portion between the flange joint surfaces provides resistance when water enters from the flange joint surface.In other words, the flange joint length in the water intrusion direction can be increased, and moisture from the outside to the cell interior can be increased. Intrusion can be effectively suppressed.
[0019]
FIG. 7A shows a first modification of the first embodiment. In the first embodiment, positive and negative voltage detection terminals 11b and 11c are provided at both ends of the cell. Instead of this, as shown in FIG. 7A, only the positive electrode voltage detection terminal 11b may be provided on the negative electrode tab 1c side on the cell side. This is effective when the direction of the positive and negative electrode tabs is the same in all stages when a plurality of cells are stacked. Although not shown, only the negative electrode voltage detection terminal may be provided on the positive electrode tab 1b side on one side of the cell.
[0020]
FIG. 7B shows a second modification of the first embodiment. In the first embodiment, the joining tabs 13b and 13c and the detection terminals 11b and 11c are provided at both ends of the detection lines 12b and 12c. Instead, thin plate-like detection lines 112b and 112c may be used as shown in FIG. In this case, the detection line end portions 113b and 113c inside the battery are directly welded to portions having the same potential as the positive and negative electrode tabs 1b and 1c, and the end portions 111b and 111c outside the battery are welded to voltage detection lines (not shown).
[0021]
-Second Embodiment-
A second embodiment will be described with reference to FIGS. 8 is a plan view of both tab type cells 50, FIG. 9 is a view showing the inside of the tab type cells 50 with the upper exterior material removed, and FIGS. 10 (a) to 10 (d) are cross-sectional views of the respective parts of both tab type cells 50. FIG.
[0022]
As shown in FIGS. 8 and 9, the two-tab type cell 50 of the second embodiment is characterized in that a thermistor (temperature detector) 70 is provided inside the battery, and two + −detection lines 71 a of the thermistor 70 are provided. , 71b between the flanges 100FU and 100FL and wiring, and the temperature detection terminal 72 is provided along with the negative electrode tab 1c.
[0023]
That is, the thermistor 70 that detects the temperature of the battery 50 is welded to the positive foil 104 inside the exterior material 100, the signal detection lines 71 a and 71 b of the thermistor 70 are routed to the negative electrode tab 1 c side, and the detection that is drawn to the exterior material 100 is performed. A temperature detection terminal 72 is provided at the tip of the wires 71 and 71b. A temperature signal can be taken out from the temperature detection terminal 72. As shown in FIGS. 10B and 10D, the detection lines 71a and 71b are sandwiched between the flanges 100FU and 100FL and routed in the battery longitudinal direction. Note that when the signal detection lines 71a and 71b are covered with vinyl, the vinyl cover may be melted by heat welding of the flanges. Therefore, it is necessary to wire the signal lines 71a and 71b sufficiently apart.
[0024]
As described above, the tab-type cells 50 of the second embodiment can also be stacked by the stacking method shown in FIG. In this case, when temperature detectors are provided in all cells, temperature detection terminals corresponding to the number of cells are provided, and lead wires are connected to the temperature detection terminals. Then, the lead wires are bundled, and the inside of the casing is routed and connected to the temperature detection external terminal outside the casing. This temperature detection external terminal is also connected to the battery controller in the same manner as the voltage detection external terminal described above.
[0025]
According to such a cell 50 and an assembled battery, the following effects can be obtained.
(1) Since the thermistor 70 is joined to the positive electrode foil 104 inside the battery and a temperature-dependent signal is taken out from the temperature detection terminal 72 outside the cell, the assembled battery is compared with the case where a temperature detector is provided outside the cell. Is miniaturized.
(2) Since the thermistor 70 is provided inside the cell, the temperature of the cell can be accurately detected without providing a temperature sensor on the outer surface of the exterior material.
(3) The temperature detection lines 71a and 71b between the thermistor 70 and the temperature detection terminal 72 are wired between the flanges 100FU and 100FL. Therefore, the detection line routing portion between the flange joint surfaces serves as resistance when water enters from the flange joint surface, and the intrusion of moisture can be effectively suppressed. In the second embodiment, since the two detection lines 71a and 71b are interposed between the flanges 100FU and FL, the flange joint length in the water intrusion direction can be made longer than in the first embodiment. The invasion suppression effect can be further increased.
[0026]
In place of the thermistor, a temperature detector using a thermocouple may be employed. In this case, one end of the two detection lines is bonded to the negative electrode foil or the positive electrode foil inside the exterior material, and the detection line is laid between the bonding surfaces of the bonding flange and wired to the other end of the cell.
[0027]
-Third embodiment-
A third embodiment will be described with reference to FIGS. 11 is a plan view of both tab type cells 80, FIG. 12 is a view showing the inside of the tab type cells 80 with the upper exterior material removed, and FIGS. 13A to 13D are cross-sectional views of the respective parts of both tab type cells 80. FIG.
[0028]
The features of the both-tab type cell 80 of the third embodiment are as follows.
(1) As shown in FIGS. 11 and 12, the same voltage detection terminals 311b and 311c as those in the modification of the first embodiment are provided side by side with the positive and negative electrode tabs 1b and 1c.
(2) The detection wires 312b and 312c connected to the detection terminals 311b and 311c are wired between the flanges 100FU and 100FL.
(3) A thermistor (temperature detector) 70 is provided inside the battery, and the two + -detection wires 71a and 71b of the thermistor 70 are wired between the flanges 100FU and 100FL.
(4) A temperature detection terminal 72 is provided along with the negative electrode tab 1c.
[0029]
That is, one end of the negative electrode detection line 312c is joined to the negative electrode tab 1c. The other end of the negative electrode detection line 312c protrudes from the exterior material 100, and a tab 311c welded to the external connection portion is formed. As shown in FIGS. 13B and 13D, the detection line 312c is sandwiched between the flanges 100FU and 100FL and is routed in the battery longitudinal direction. The positive electrode detection line 312b whose one end is joined to the positive electrode tab 1b is similarly configured.
[0030]
Further, the thermistor 70 for detecting the temperature of the battery 80 is welded to the positive electrode foil 104 inside the exterior material 100, and the signal detection lines 71 a and 71 b of the thermistor 70 are routed to the negative electrode tab 1 c side to detect that the thermistor 70 is drawn to the exterior material 100. A temperature detection terminal 72 is provided at the tip of the wires 71a and 71b. As shown in FIGS. 13B and 13D, the detection lines 71a and 71b are sandwiched between the flanges 100FU and 100FL and routed in the battery longitudinal direction.
[0031]
Thus, according to the both tab type cell 80 of 3rd Embodiment, the following effects are obtained.
(1) Since the voltage detection terminals 312b and 312c are provided side by side with the positive and negative electrode tabs 1b and 1c, the assembled battery configured by laminating both tab type cells 80 in the opposite direction to each other. However, it is possible to concentrate the voltage detection lines on either side of the positive and negative electrode tabs. Therefore, the battery pack is reduced in size and wiring is simplified, and the cost is reduced.
(2) Since the thermistor 70 is joined to the positive electrode foil 104 inside the battery, and a temperature-dependent signal is taken out from the temperature detection terminal 72 outside the battery, the assembly is compared with the case where a temperature detector is provided outside the battery. The battery is downsized.
(3) The temperature detection lines 71a and 71b between the thermistor 70 and the temperature detection terminal 72 are wired between the flanges 100FU and 100FL. Therefore, the detection line routing portion between the flange joint surfaces serves as resistance when water enters from the flange joint surface, and the intrusion of moisture can be effectively suppressed. In the third embodiment, since the two detection lines 71a and 71b and the voltage detection line 312b are interposed between the flanges 100FU and FL, a water intrusion suppressing effect can be further obtained as compared with the second embodiment. .
[0032]
The present invention can be applied not only to the above-described sheet-like double tab type cell but also to a square cell as long as it is a double terminal type cell. In addition, the wet secondary battery in which the electrolyte solution and the internal electrode pair are vacuum-sealed in the laminate exterior material has been described, but the present invention is applicable to various thin secondary batteries in which positive and negative electrode tabs protrude from both ends of the cell. Can be applied. The present invention is not limited to the above-described embodiment as long as the above-described characteristic functions and effects can be obtained.
[Brief description of the drawings]
FIG. 1 is a top view showing a first embodiment of a tab-type cell according to the present invention. FIG. 2 is a side view of FIG. 1. FIG. 3 (a) is an enlarged cross section of a portion indicated by reference numeral III in FIG. FIG. 4B is a partially enlarged view thereof. FIG. 4 is a top view showing the inside after removing the upper exterior material of both tab-type cells. FIG. 5 is a cross-sectional view taken along the lines Va-Va and Vb-Vb in FIG. Vc-Vc cross-sectional view, Vd-Vd cross-sectional view [FIG. 6] (a) is a perspective view showing an example in which voltage detection lines are concentrated around one side of a plurality of stacked cells, and (b) is a connection of cells. FIGS. 7A and 7B are diagrams showing cells showing first and second modifications of the first embodiment. FIGS. 8A and 8B are diagrams showing a second of both tab type cells according to the present invention. 9 is a top view showing the embodiment. FIG. 9 is a view showing the inside of the cell according to the second embodiment. FIG. 10 is a cross-sectional view taken along the lines Xa-Xa, Xb-Xb, Xc-Xc, Xd- Xd cross section 【 11 is a top view showing a third embodiment of a both-tab type cell according to the present invention. FIG. 12 is a view showing the inside of the cell according to the third embodiment. FIG. 13 is a sectional view taken along line XIIIa-XIIIa in FIG. -XIIIb cross section, XIIIc-XIIIc cross section, XIIId-XIIId cross section [Explanation of symbols]
1, 50, 80: Both tab type cells 1b: Positive electrode tab 1c: Negative electrode tab 11b. 11c: Voltage detection terminal 12b, 312b: Positive voltage detection line 12c, 312c: Negative voltage detection line 70: Thermistor 71a, 71b: Temperature detection line 72: Temperature detection terminal 101: Internal electrode pair 101a: Positive electrode 101b: Negative electrode 101c : Separator 100FR: Upper exterior material flange 100FL: Lower exterior material flange 104: Positive electrode foil 104a: Positive electrode active material 104b: Insulating material 105: Negative electrode foil 105a: Negative electrode active material

Claims (4)

正電極および負電極を積層した内部電極対と電解液とを、フィルム状の上側外装材および下側外装材の全周に設けられた接合フランジ同士を接合して形成された袋状の外装材の内部に収容するとともに、前記内部電極対に接続された正極タブおよび負極タブが前記外装材の外部へ互いに反対方向に延伸した両タブ型セルにおいて、
前記正負極タブの少なくともいずれか一方側に、その一方側のタブとは逆極性のタブの電圧を検出する電圧検出用端子を設け
一方側の端部が前記電圧検出用端子に接続された電圧検出線を前記上下外装材の接合フランジ間に挟んで配線し、該電圧検出線の他方の端部を前記逆極性のタブと同電位の箇所に接合することを特徴とする両タブ型セル。
A bag-like exterior material formed by joining an internal electrode pair in which a positive electrode and a negative electrode are laminated and an electrolytic solution, and joining flanges provided on the entire circumference of a film-like upper exterior material and a lower exterior material. In both tab type cells in which the positive electrode tab and the negative electrode tab connected to the internal electrode pair extend in opposite directions to the outside of the exterior material ,
On at least one side of the positive and negative electrode tabs, a voltage detection terminal for detecting a voltage of a tab having a polarity opposite to the tab on the one side is provided ,
A voltage detection line having one end connected to the voltage detection terminal is wired between the joint flanges of the upper and lower exterior members, and the other end of the voltage detection line is the same as the tab of the opposite polarity. A both-tab type cell characterized in that it is bonded to a potential point .
正電極および負電極を積層した内部電極対と電解液とを、フィルム状の上側外装材および下側外装材の全周に設けられた接合フランジ同士を接合して形成された袋状の外装材の内部に収容するとともに、前記内部電極対に接続された正極タブおよび負極タブが前記外装材の外部へ互いに反対方向に延伸した両タブ型セルにおいて、A bag-like exterior material formed by joining an internal electrode pair in which a positive electrode and a negative electrode are laminated and an electrolytic solution, and joining flanges provided on the entire circumference of a film-like upper exterior material and a lower exterior material. In both tab type cells in which the positive electrode tab and the negative electrode tab connected to the internal electrode pair extend in opposite directions to the outside of the exterior material,
一端が前記外装体内部で前記正極タブと同電位な箇所に接続され、他端が前記上下外装材のフランジ間に挟まれて前記負極タブ側まで配線される正電圧検出線と、One end is connected to the same potential as the positive electrode tab inside the exterior body, and the other end is sandwiched between flanges of the upper and lower exterior materials, and is connected to the negative electrode tab side, and a positive voltage detection line,
一端が前記外装体内部で前記負極タブと同電位な箇所に接続され、他端が前記上下外装材のフランジ間に挟まれて前記正極タブ側まで配線される負電圧検出線とを有することを特徴とする両タブ型セル。One end is connected to the same potential as the negative electrode tab inside the exterior body, and the other end has a negative voltage detection line that is sandwiched between the flanges of the upper and lower exterior materials and wired to the positive electrode tab side. Features both tab type cells.
請求項2に記載の両タブ型セルにおいて、In both the tab type cells according to claim 2,
前記外装体内部に設けられ、セル温度を検出する温度検出器と、A temperature detector provided in the exterior body for detecting a cell temperature;
前記温度検出器の信号検出線を前記正負極タブのいずれか一方側まで引き回し、信号検出線に温度検出用端子を設けることを特徴とする両タブ型セル。A double-tab type cell characterized in that a signal detection line of the temperature detector is routed to one of the positive and negative electrode tabs, and a temperature detection terminal is provided on the signal detection line.
積層された請求項1〜3のいずれかの複数の両タブ型セルと、A plurality of both tab-type cells according to any one of claims 1 to 3, which are laminated,
積層された複数の両タブ型セルを収容する筐体と、A housing that houses a plurality of stacked tab-type cells;
積層された複数の両タブ型セルを前記筐体内で電気的に接続するバスバーと、A bus bar for electrically connecting a plurality of stacked tab-type cells in the housing;
前記筐体に設けられ、最大電圧が出力されるバスバーに接続される正極外部端子および最小電圧が出力されるバスバーに接続される負極外部端子と、A positive external terminal connected to a bus bar that is provided in the housing and connected to a bus bar that outputs a maximum voltage; and a negative external terminal connected to a bus bar that outputs a minimum voltage;
前記筐体に設けられ、前記電圧検出用端子または温度検出用端子が接続される外部検出端子とを有することを特徴とする組電池。An assembled battery comprising: an external detection terminal provided in the housing and connected to the voltage detection terminal or the temperature detection terminal.
JP2002189464A 2002-06-28 2002-06-28 Both tab cells and batteries Expired - Fee Related JP3896911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189464A JP3896911B2 (en) 2002-06-28 2002-06-28 Both tab cells and batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189464A JP3896911B2 (en) 2002-06-28 2002-06-28 Both tab cells and batteries

Publications (2)

Publication Number Publication Date
JP2004031270A JP2004031270A (en) 2004-01-29
JP3896911B2 true JP3896911B2 (en) 2007-03-22

Family

ID=31183879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189464A Expired - Fee Related JP3896911B2 (en) 2002-06-28 2002-06-28 Both tab cells and batteries

Country Status (1)

Country Link
JP (1) JP3896911B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140083344A (en) * 2012-12-26 2014-07-04 에스케이이노베이션 주식회사 Pouch type secondary battery
KR20190060963A (en) * 2019-05-23 2019-06-04 에스케이이노베이션 주식회사 Secondary battery
KR20230072622A (en) 2021-11-18 2023-05-25 주식회사 엘지에너지솔루션 Pouch-type Battery Cell Comprising Sensing Member and Battery Module Comprising the Same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461940B2 (en) * 2004-07-20 2010-05-12 日産自動車株式会社 Assembled battery
JP4785360B2 (en) * 2004-08-31 2011-10-05 トータル ワイヤレス ソリューショオンズ リミテッド Secondary battery
JP4581628B2 (en) * 2004-10-27 2010-11-17 日産自動車株式会社 Bipolar battery
JP4929587B2 (en) * 2004-11-26 2012-05-09 日産自動車株式会社 Bipolar battery, manufacturing method thereof, and assembled battery
JP4661648B2 (en) * 2005-06-16 2011-03-30 日産自動車株式会社 Flat battery and assembled battery using the flat battery
JP4977356B2 (en) * 2005-10-26 2012-07-18 日本電気株式会社 Electrical device assembly
JP4462245B2 (en) 2006-07-19 2010-05-12 トヨタ自動車株式会社 Secondary battery, laminated secondary battery and assembled battery
DE102008010828A1 (en) * 2008-02-23 2009-08-27 Daimler Ag Battery with several single cells
JP5472958B2 (en) * 2008-02-28 2014-04-16 Necエナジーデバイス株式会社 Assembled battery
JP6051753B2 (en) * 2012-10-10 2016-12-27 株式会社オートネットワーク技術研究所 Power storage module
JP2015125878A (en) * 2013-12-26 2015-07-06 株式会社デンソー Battery cell and battery pack
JP6455705B2 (en) * 2014-10-21 2019-01-23 株式会社オートネットワーク技術研究所 Power storage module
KR102137756B1 (en) * 2017-03-21 2020-07-24 주식회사 엘지화학 A battery module having a simple sensing structure
KR102198848B1 (en) * 2017-11-16 2021-01-05 주식회사 엘지화학 Battery Module Having Sensing Assembly and Busbar Assembly
JP2022057666A (en) * 2020-09-30 2022-04-11 トヨタ自動車株式会社 battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140083344A (en) * 2012-12-26 2014-07-04 에스케이이노베이션 주식회사 Pouch type secondary battery
KR101984314B1 (en) * 2012-12-26 2019-05-30 에스케이이노베이션 주식회사 Secondary battery
KR20190060963A (en) * 2019-05-23 2019-06-04 에스케이이노베이션 주식회사 Secondary battery
KR102124626B1 (en) 2019-05-23 2020-06-19 에스케이이노베이션 주식회사 Secondary battery
KR20230072622A (en) 2021-11-18 2023-05-25 주식회사 엘지에너지솔루션 Pouch-type Battery Cell Comprising Sensing Member and Battery Module Comprising the Same
WO2023090927A1 (en) 2021-11-18 2023-05-25 주식회사 엘지에너지솔루션 Pouch-type battery cell including sensing member, and battery module including same

Also Published As

Publication number Publication date
JP2004031270A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3896911B2 (en) Both tab cells and batteries
US9450215B2 (en) Outer casing material for battery and lithium secondary battery
JP6798043B2 (en) Battery module with improved electrical connection safety
JP2008021634A (en) Secondary battery with security of sealing part improved
KR101229228B1 (en) Secondary Battery with Improved Moisture Barrier
JP2006221938A (en) Film packaged electric storage device
KR20130139026A (en) Pouch typed battery having a non-exposure sealing portion
KR101082960B1 (en) Secondary Battery with Excellent Durability
JP7028685B2 (en) Battery structure
JP7265844B2 (en) LAMINATE BUS BAR, MANUFACTURING METHOD THEREOF, AND BATTERY
JP7308923B2 (en) electrochemical cell module
JP2002042775A5 (en)
JP2005267880A (en) Battery pack
WO2005101546A1 (en) Laminate-type cell, joining terminal, battery set, and process for producing battery set
JP2004247244A (en) Laminated battery, joint terminal, battery pack, and manufacturing method of battery pack
JP4887650B2 (en) Single cells and batteries
JP7225193B2 (en) Battery module and manufacturing method thereof
JP7275096B2 (en) film type battery
JP2004031194A (en) Laminated cells and battery pack
JP4078892B2 (en) Battery connection structure
CN114597600B (en) Laminated battery
JP2002118037A (en) Electric double-layer capacitor pack
JP2004031195A (en) Laminated cells and battery pack
JP7453043B2 (en) Laminated power storage device
WO2021166625A1 (en) Power storage device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees