JP3896606B2 - Production method of yeast extract - Google Patents

Production method of yeast extract Download PDF

Info

Publication number
JP3896606B2
JP3896606B2 JP13788096A JP13788096A JP3896606B2 JP 3896606 B2 JP3896606 B2 JP 3896606B2 JP 13788096 A JP13788096 A JP 13788096A JP 13788096 A JP13788096 A JP 13788096A JP 3896606 B2 JP3896606 B2 JP 3896606B2
Authority
JP
Japan
Prior art keywords
yeast
glutamic acid
cell
acid concentration
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13788096A
Other languages
Japanese (ja)
Other versions
JPH09313169A (en
Inventor
信晴 辻本
和彦 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP13788096A priority Critical patent/JP3896606B2/en
Publication of JPH09313169A publication Critical patent/JPH09313169A/en
Application granted granted Critical
Publication of JP3896606B2 publication Critical patent/JP3896606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は細胞膜の構造・機能を障害する薬剤に耐性を有し、菌体内にL−グルタミン酸を蓄積する能力が向上した酵母、及び該酵母を用いる酵母エキスの製造法に関する。
【0002】
【従来の技術】
天然系調味料は天然・自然・健康・本格・高級・グルメといったキーワードで表せうる時流の中でその需要が拡大し続けており、酵母エキスも天然系調味料の発展とともにその市場規模が拡大している。酵母エキスの製造には一般にビール酵母やパン酵母、トルラ属酵母等が利用されており、ビール醸造で副生するビール酵母を用いる場合では、ビール品質の設計範囲内で酵母の選定・改良が行われており、エキス製造だけを目的とした酵母でないがために、エキスを製造した場合に不快な臭いがしたり、うま味が足りないの等品質の点から必ずしも満足のいくものではないことが指摘されている。
【0003】
これらを解決する方法として酵母を育種改良して好ましい味や風味を持つ酵母を造成し、これを用いて酵母エキスを製造する方法がある。風味という点ではノルバリン耐性を付与した酵母を用いることにより、エステル類やアルコール類等の香気成分を増加させた例が知られおり(ジャーナル・オブ・ジィ・インスティテュート・オブ・ブリューイング、第76巻、843頁〜847頁、1981年)これを用いたアルコール飲料の製造が報告されている。しかしながら、うま味等の呈味を変えた例は知られいない。
【0004】
うま味等の呈味を増強するものとしてL−グルタミン酸ナトリウム、5’−イノシン酸ナトリウム、5’−グアニル酸ナトリウムが知られており、調味料として用途に応じて食品に添加されている。
【0005】
【本発明が解決しようとする課題】
本発明の目的はうま味を増強する物質であるL−グルタミン酸を菌体内に蓄積する能力の高い酵母を効率良く育種する方法を開発し、育種された酵母を用いてよりL−グルタミン酸含量の高い酵母エキス製造する方法を見いだすことにある。上記課題はこれまでになかったものであり、すなわち、課題自体が新規なのである。
【0006】
【課題を解決するための手段】
本発明者らは、6−ジアゾ−5−オキソ−ノルロシン等のグルタミン代謝拮抗物質に対する耐性を付与した酵母変異株がL−グルタミン酸を菌体内に高い濃度で蓄積すること、本変異株を用いて酵母エキスを調製したところ、エキス中のL−グルタミン酸濃度が高く、官能評価の結果では、うま味が増し、風味、あつ味、こく等呈味に優れる酵母エキスであることを見いだした。
【0007】
しかしながら、6−ジアゾ−5−オキソ−ノルロイシン耐性を付与した酵母変異株の中には菌体内L−グルタミン酸濃度が親株と変わらず、むしろ菌体外L−グルタミン酸蓄積量が向上したものもあった。また、6−ジアゾ−5−オキソ−ノルロイシン耐性を付与した酵母変異株であって菌体内L−グルタミン酸濃度が高まった変異株であっても、菌体外に多量のL−グルタミン酸を蓄積していた。
【0008】
本発明者らは、L−グルタミン酸を著量生産する酵母変異株が生合成するL−グルタミン酸を特異的に菌体内にとどめさせることができれば、菌体内L−グルタミン酸濃度が高い酵母を育成でき、その結果L−グルタミン酸含量の高い、より呈味に優れた酵母エキスを調製することが可能になると考えた。
【0009】
そこで本発明者らは、この様な新たな課題を解決すべくさらに検討した結果、酵母にその細胞膜の構造・機能に障害を与える薬剤に対する耐性を付与することにより、菌体内にL−グルタミン酸を蓄積する能力の高い酵母を効率良く作出できることを見いだし、本発明を完成させるに至った。
【0010】
本発明は以下の通りである。
(1)細胞膜の構造・機能に障害を与える薬剤に耐性を有し、菌体内にL−グルタミン酸を蓄積する能力が向上した酵母。
(2)細胞膜の構造・機能に障害を与える薬剤がナイスタチンである前記(1)記載の酵母。
(3)酵母がヤロウィア・リポリティカである前記(1)または(2)記載の酵母。
(4)前記(1)ないし(3)記載の酵母を用いることを特徴とする酵母エキスの製造方法。
【0011】
【発明の実施の形態】
【0012】
本発明に用いられる酵母としてはサッカロマイセス属に属する酵母(サッカロマイセス・セレビシエ、サッカロマイセス・ウバルム、サッカロマイセス・シュバリエ、サッカロマイセス・ロゼイ等)トルラスポラ属に属する酵母(例えばトルラスポラ・デルブルツキ)、クライベロマイセス属に属する酵母(例えばクライバロマイセス・サーモトレランス)、ピヒア属に属する酵母(例えばピヒア・メンブラネファシエンス)、ヤロウィア属に属する酵母(例えばヤロウィア・リポリティカ)等が挙げられる。
【0013】
本発明で用いられる細胞膜の構造・機能に障害を与える薬剤としては、例えばアンホテリシンBやナイスタチン等のポリエン系抗生物質やエコナゾール、ミコナゾール、ケトコナゾール等のエルゴステロール合成を阻害する抗生物質が挙げられる。これらの抗生物質は市販のものを用いることが出来る。特に好ましい薬剤としてはナイスタチンが挙げられる。
【0014】
本発明の酵母は細胞膜の構造・機能に障害を与える薬剤に耐性を有し、かつ菌体内のL−グルタミン酸濃度が向上した酵母であり、かかる性質を有していれば菌体内L−グルタミン酸濃度の向上に効果の見られる他の薬剤、例えば6−ジアゾ−5−オキソ−ノルロイシンや本発明で用いたブロモピルビン酸等に対する抵抗性を有していても良い。
【0015】
細胞膜の構造・機能に障害を与える薬剤に対する耐性を親株に付与するには、親株を紫外線照射するか、あるいは変異誘発剤(例えばN−メチル−N’−ニトロ−N−ニトロソグアニジン、エチルメタンスルフォン酸等)で処理した後、親株が生育できないような濃度の細胞膜の構造・機能に障害を与える薬剤を含む寒天培地で生育可能な菌株を採取すればよい。
【0016】
細胞膜の構造・機能に障害を与える薬剤に耐性な変異株とは、親株と比較したときに同薬剤に対してより強い耐性を有する株のことである。
【0017】
本発明の酵母は細胞膜の構造・機能に障害を与える薬剤に耐性を有し、かつ菌体内L−グルタミン酸濃度が向上した酵母である。例えば以下のものがある。
ヤロウィア・リポリティカ AJ14718
【0018】
本発明における酵母を培養し、菌体を得るために用いられる培地は、炭素源、無機塩類、その他必要に応じてアミノ酸、ビタミン等の有機微量栄養素を含有する通常の栄養培地である。合成培地または天然培地のいずれも使用可能である。培地に使用される炭素源、窒素源は、培養される酵母の利用可能なものならばよい。
【0019】
炭素源としてはグルコース、グリセロール、マニトール、エタノール、n−パラフィン等が用いられる。また乳酸やクエン酸等の有機酸も単独あるいは他の炭素源と併用して用いることができる。
【0020】
窒素源としては尿素、アンモニア、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム等が用いられる。
【0021】
有機微量栄養素としては、アミノ酸、ビタミン、脂肪酸、核酸、更にこれらのものを含有するペプトン、カザミノ酸、酵母エキス、大豆蛋白分解物等が用いられ、生育にアミノ酸や、ビタミン等を要求する野生株や栄養要求性変異株を培養する場合には要求される栄養素を補添することが必要である。
【0022】
無機塩類としてはリン酸塩、マグネシウム塩、鉄塩、亜鉛塩、カルシウム塩等が用いられる。
【0023】
培養方法は、培養温度20ないし37℃で、pHを3ないし8に制御しつつ通気培養を行う。培養中にpHが下がる場合には、炭酸カルシウムを加えるか、アンモニア水、アンモニアガス等のアルカリで中和する。かくして10時間ないし4日間程度培養することにより酵母菌体が得られる。
【0024】
得られた菌体から酵母エキスを調製するには、遠心分離により培養ブロスから菌体を回収し、公知の方法に従って行えばよい。例えばトルエンや酢酸エチルを菌体当り1〜2%添加し、温度45〜50℃で自己消化を行い、エキス分を減圧濃縮し、噴霧乾燥により粉末酵母エキスが得られる。
【0025】
【実施例】
次に実施例によって本発明をさらに詳細に説明する。
【0026】
【実施例1】
ヤロウィア・リポリティカAJ5004からブロモピルビン酸耐性株の分離
自然界から分離されたヤロウィア・リポリティカAJ5004(アグリカルチュラル アンド バイオロジカル ケミストリー、第33巻、158頁〜167頁、1969年)を胞子形成培地(1%酢酸カリウム、0.1%酵母エキス、0.05%グルコース)にて1ないし2日間30℃で培養後、0.85%生理食塩水にて洗浄し、最終1mg/mlのザイモリアーゼ5000を含む0.85%生理食塩水に懸濁し、30℃で120分間処理した。さらにポアサイズ60μmナイロンメンブレンで濾過し、胞子を回収した。エチルメタンスルホン酸を最終濃度30μl/mlとなるように添加した0.1Mリン酸緩衝液(最終濃度2.5%のグルコースを含む)に懸濁し、30℃で60分間の変異処理を行った。遠心分離の後、胞子を0.1Mリン酸緩衝液で洗浄し、ブロモピルビン酸0.5g/lを含む最少培地(ディフコ イーストナイトロジェンベース ウィズアウト アミノ アシド 0.67%、グルコース 2%、寒天 2%)に塗布し、30℃で3〜7日間培養した。
【0027】
ピルビン酸の代謝拮抗物質として知られるブロモピルビン酸はヤロウィア・リポリティカAJ5004の生育を阻害し、0.5g/Lのブロモピルビン酸を含む最少培地上ではヤロウィア・リポリティカAJ5004の生育は認められなかった。
【0028】
ブロモピルビン酸を含む最少培地上に出現したコロニーを釣り上げ、同一組成の最少培地上で単コロニー分離を行った後、菌体調製用培地(n−パラフィン 80g/l、硝酸アンモニウム 20g/l、リン酸2水素カリウム 2g/l、硫酸マグネシウム7水和物 1g/l、硫酸第一鉄7水和物 10mg/l、硫酸亜鉛7水和物 40mg/l、チアミン 6μg/l、炭酸カルシウム 20g/l、pH5.0)を20ml注入した500ml容坂口フラスコに植菌し、2日間30℃でシード培養した後、同一組成の培地20mlを注入した500ml容坂口フラスコに植菌し、30℃で5日間培養した後、培養ブロスを遠心し、上清中のL−グルタミン酸濃度をバイオテックアナライザーAS200(旭化成社製)で測定した結果、培養ブロス中に230mg/lのL−グルタミン酸を蓄積するN46株(AJ14717)を見いだした。
【0029】
【実施例2】
ブロモピルビン酸耐性株N46(AJ14717)からナイスタチン耐性株の分離
【0030】
実施例1で用いた方法によりブロモピルビン酸耐性株N46(AJ14717)の胞子を調製し、最終10mMになるようにN−メチル−N’−ニトロ−N−ニトロソグアニジンを添加した1Mソルビトール溶液に懸濁し、30℃で20分間の変異処理を行った。遠心分離後、変異処理した胞子を1Mソルビトール溶液で洗浄し、ナイスタチン1g/lを含む最少培地に塗布した。ブロモピルビン酸耐性株N46株(AJ14717)はナイスタチン1g/lを含む最少培地上では全く生育できなかった。
【0031】
30℃で3〜7日間培養後、1g/lナイスタチンを含有する最少培地に出現したコロニーを釣り上げ、同一組成の培地で単コロニー分離した後、実施例1で用いた菌体調製用培地5mlを注入した50ml容大型試験管に植菌し、30℃で5日間培養した。培養終了後培養ブロス1mlをエッペンドルフチューブに採り、密閉し、沸騰しているウオーターバス中に30分間浸漬し、菌体内の遊離L−グルタミン酸を抽出した。遠心分離により抽出残査を除いたのち、上清のL−グルタミン酸濃度をバイオテックアナライザーAS200で測定し、測定値を菌体内外を併せたL−グルタミン酸濃度とした。一方、菌体外グルタミン酸濃度は培養ブロスを遠心分離し、得られた上清中のL−グルタミン酸濃度を測定し、測定値を菌体外L−グルタミン酸濃度とした。菌体内のL−グルタミン酸濃度は菌体内外を併せたL−グルタミン酸濃度から菌体外L−グルタミン酸濃度を引いた値で表せうる。
【0032】
分離し、培養評価した13株のナイスタチン耐性株の内、菌体内外を併せたL−グルタミン酸濃度が親株であるN46株(AJ14717)よりも高い株が9株存在した(図1)。13株の内、菌体外のL−グルタミン酸濃度が親株に比し顕著に向上した株は1株だけであった。菌体内外を併せたL−グルタミン酸濃度が向上した9株では、菌体外L−グルタミン酸濃度が親株より顕著に増加したものはなく、親株と同等、もしくは低下しており、ナイスタチン耐性付与により菌体内のL−グルタミン酸濃度が顕著に向上したことが明らかになった。
【0033】
菌体内外のL−グルタミン酸濃度が最も高かったナイスタチン耐性株AJ14718では菌体内に700mg/l(菌体乾燥重量当り3.5%)、菌体外に20mg/lのL−グルタミン酸を蓄積した。
【0034】
実施例1の菌体調製培地の炭素源のみをn−パラフィンからグルコース(8%)に変更して培養評価を行った。培養評価菌株をYPD寒天培地(ディフコ バクト イーストエキストラクト1%、ディフコ バクトペプトン2%、グルコース2%、寒天2%)にて30℃で2間培養し、寒天プレート全面に生育した内の1/16プレート分を菌体調製用培地(炭素源グルコース)5mlを注入した50ml容大型試験管に植菌し、30℃にて5日間培養し、菌体内外、及び菌体内のL−グルタミン酸濃度を測定したところAJ14718はL−グルタミン酸を菌体内に530mg/l、菌体外に42mg/l蓄積し、一方親株であるブロモピルビン酸耐性株N46(AJ14717)では菌体内に198mg/l、菌体外に49mg/l蓄積していた。炭素源をグルコースに変更しても炭素源をn−パラフィンとした場合と同様にナイスタチン耐性株では菌体内のL−グルタミン酸濃度が顕著に向上していることが明かとなった。
【0035】
【発明の効果】
本発明の方法により酵母菌体内のL−グルタミン酸濃度を高めることができ、本発明の方法により育種された酵母を用いることによりL−グルタミン酸含量の高い酵母エキスを製造することが可能となる。
【0036】
ヤロウィア・リポリティカAJ14717は、平成8年5月29日に工業技術院生命工学工業技術研究所(郵便番号305 日本国茨城県つくば市東一丁目1番3号)に寄託されており、受託番号FERM P−15653が付与されている。
ヤロウィア・リポリティカAJ14718は、平成8年5月29日に工業技術院生命工学工業技術研究所(郵便番号305 日本国茨城県つくば市東一丁目1番3号)に寄託されており、受託番号FERM P−15654が付与されている。
【図面の簡単な説明】
【図1】ナイスタチン耐性株の菌体内外を併せたL−グルタミン酸濃度を評価した結果である。縦軸にはL−グルタミン酸濃度を、横軸にはナイスタチン耐性株の菌株番号を示した。N46は親株である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yeast having resistance to a drug that impairs the structure and function of cell membranes and having an improved ability to accumulate L-glutamic acid in the microbial cells, and a method for producing a yeast extract using the yeast.
[0002]
[Prior art]
The demand for natural seasonings continues to expand in the current trends that can be expressed by keywords such as natural, natural, healthy, full-scale, luxury, and gourmet. Yeast extract has also expanded its market scale with the development of natural seasonings. ing. In general, beer yeast, baker's yeast, Torula yeast, etc. are used for the production of yeast extract. When using beer yeast produced as a by-product in beer brewing, selection and improvement of yeast within the beer quality design range is performed. It is pointed out that it is not necessarily satisfactory from the viewpoint of quality such as unpleasant odor and lack of umami taste because it is not a yeast only for the purpose of producing the extract. Has been.
[0003]
As a method for solving these problems, there is a method in which yeast is bred and improved to produce a yeast having a preferable taste and flavor, and a yeast extract is produced using the yeast. In terms of flavor, there is a known example in which aroma components such as esters and alcohols are increased by using yeast imparted with norvaline resistance (Journal of the Institute of Brewing, Vol. 76). 843 to 847, 1981) The production of alcoholic beverages using this has been reported. However, an example in which the taste such as umami is changed is not known.
[0004]
L-glutamate sodium, 5′-sodium inosinate, and 5′-sodium guanylate are known as substances that enhance the taste of umami and the like, and are added to foods as seasonings according to their use.
[0005]
[Problems to be solved by the present invention]
The object of the present invention is to develop a method for efficiently breeding yeast having a high ability to accumulate L-glutamic acid, which is a substance that enhances umami taste, in the microbial cells, and yeast having a higher L-glutamic acid content using the bred yeast. It is to find a method for producing an extract. The above problem has never existed before, that is, the problem itself is new.
[0006]
[Means for Solving the Problems]
The present inventors have found that a yeast mutant imparted resistance to a glutamine antimetabolite such as 6-diazo-5-oxo-norlosin accumulates L-glutamic acid at a high concentration in the microbial cell, When a yeast extract was prepared, the L-glutamic acid concentration in the extract was high, and as a result of sensory evaluation, it was found that the yeast extract has an increased umami taste and excellent taste such as flavor, hot taste, and body.
[0007]
However, among the yeast mutants imparted with 6-diazo-5-oxo-norleucine resistance, the intracellular L-glutamic acid concentration was not different from that of the parent strain, but rather, the extracellular L-glutamic acid accumulation amount was improved. . Moreover, even if it is a yeast mutant which gave 6-diazo-5-oxo-norleucine resistance and the mutant L-glutamic acid concentration increased, it has accumulated a large amount of L-glutamic acid outside the cell. It was.
[0008]
The present inventors can grow a yeast having a high intracellular L-glutamic acid concentration if L-glutamic acid biosynthesized by a yeast mutant that produces a significant amount of L-glutamic acid can be specifically retained in the bacterial body. As a result, it was considered possible to prepare a yeast extract having a high L-glutamic acid content and excellent taste.
[0009]
Therefore, as a result of further investigations to solve such a new problem, the present inventors confer L-glutamic acid in the bacterial body by imparting resistance to a drug that impairs the structure and function of the cell membrane of yeast. The inventors have found that yeast having a high ability to accumulate can be produced efficiently, and have completed the present invention.
[0010]
The present invention is as follows.
(1) Yeast which has resistance to a drug that impairs the structure and function of cell membranes and has an improved ability to accumulate L-glutamic acid in the microbial cells.
(2) The yeast according to (1) above, wherein the drug that impairs the structure / function of the cell membrane is nystatin.
(3) The yeast according to (1) or (2) above, wherein the yeast is Yarrowia lipolytica.
(4) A method for producing a yeast extract, wherein the yeast according to (1) to (3) is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[0012]
The yeast used in the present invention is a yeast belonging to the genus Saccharomyces (Saccharomyces cerevisiae, Saccharomyces ubalum, Saccharomyces chevalier, Saccharomyces roseii, etc.) Examples include yeasts (for example, Kleiberomyces thermotolerance), yeasts belonging to the genus Pichia (for example, Pichia membranefaciens), yeasts belonging to the genus Yarrowia (for example, Yarrowia lipolytica), and the like.
[0013]
Examples of drugs that impair the structure and function of the cell membrane used in the present invention include polyene antibiotics such as amphotericin B and nystatin, and antibiotics that inhibit ergosterol synthesis such as econazole, miconazole, and ketoconazole. Commercially available antibiotics can be used. A particularly preferred drug is nystatin.
[0014]
The yeast of the present invention is a yeast that has resistance to a drug that impairs the structure and function of cell membranes and has an improved L-glutamic acid concentration in the cell, and if it has such properties, the L-glutamic acid concentration in the cell It may have resistance to other drugs that are effective in improving the resistance, such as 6-diazo-5-oxo-norleucine and bromopyruvic acid used in the present invention.
[0015]
In order to confer resistance to a parent strain on a drug that impairs the structure and function of the cell membrane, the parent strain is irradiated with ultraviolet light, or a mutagenic agent (for example, N-methyl-N′-nitro-N-nitrosoguanidine, ethylmethanesulfone). After treatment with acid or the like, a strain that can grow on an agar medium containing a drug that impairs the structure and function of the cell membrane at a concentration such that the parent strain cannot grow may be collected.
[0016]
A mutant resistant to a drug that impairs the structure and function of the cell membrane is a strain that is more resistant to the drug when compared to the parent strain.
[0017]
The yeast of the present invention is a yeast that is resistant to drugs that impair the structure and function of cell membranes and that has an improved L-glutamic acid concentration in the cells. For example:
Yarrowia Lipitica AJ14718
[0018]
The medium used for culturing yeast in the present invention to obtain microbial cells is a normal nutrient medium containing a carbon source, inorganic salts, and other organic micronutrients such as amino acids and vitamins as necessary. Either synthetic or natural media can be used. The carbon source and nitrogen source used in the medium may be any one that can be used by the yeast to be cultured.
[0019]
As the carbon source, glucose, glycerol, mannitol, ethanol, n-paraffin and the like are used. Organic acids such as lactic acid and citric acid can also be used alone or in combination with other carbon sources.
[0020]
As the nitrogen source, urea, ammonia, ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate and the like are used.
[0021]
As organic micronutrients, amino acids, vitamins, fatty acids, nucleic acids, and peptone, casamino acids, yeast extracts, soy protein digests, etc. containing these are used, and wild strains that require amino acids, vitamins, etc. for growth In addition, when cultivating auxotrophic mutants, it is necessary to supplement the required nutrients.
[0022]
As the inorganic salts, phosphates, magnesium salts, iron salts, zinc salts, calcium salts and the like are used.
[0023]
As the culture method, aeration culture is performed at a culture temperature of 20 to 37 ° C. and a pH of 3 to 8. When the pH falls during the cultivation, calcium carbonate is added or neutralized with an alkali such as ammonia water or ammonia gas. Thus, yeast cells can be obtained by culturing for about 10 hours to 4 days.
[0024]
In order to prepare a yeast extract from the obtained microbial cells, the microbial cells may be collected from the culture broth by centrifugation and performed according to a known method. For example, toluene or ethyl acetate is added at 1 to 2% per cell, self-digestion is performed at a temperature of 45 to 50 ° C., the extract is concentrated under reduced pressure, and a powdered yeast extract is obtained by spray drying.
[0025]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0026]
[Example 1]
Isolation of Bromopyruvic Acid-Resistant Strain from Yarrowia lipolytica AJ5004 Yarrowia lipolytica AJ5004 (Agricultural and Biological Chemistry, Vol. 33, pages 158-167, 1969) isolated from nature was sporulated medium (1% acetic acid Potassium, 0.1% yeast extract, 0.05% glucose) for 1 to 2 days at 30 ° C., washed with 0.85% physiological saline, and finally containing 0.1 mg / ml zymolyase 5000. It was suspended in 85% physiological saline and treated at 30 ° C. for 120 minutes. Further, the mixture was filtered through a nylon membrane having a pore size of 60 μm to collect spores. Suspension in 0.1 M phosphate buffer (containing 2.5% final concentration of glucose) to which ethyl methanesulfonic acid was added to a final concentration of 30 μl / ml was performed, and mutation treatment was performed at 30 ° C. for 60 minutes. . After centrifugation, the spores are washed with 0.1 M phosphate buffer and minimal medium containing 0.5 g / l bromopyruvic acid (Difco East Nitrogen Base Without Amino Acid 0.67%, glucose 2%, agar 2%) and cultured at 30 ° C. for 3 to 7 days.
[0027]
Bromopyruvic acid, known as an antimetabolite of pyruvic acid, inhibited the growth of Yarrowia lipolytica AJ5004, and no growth of Yarrowia lipolytica AJ5004 was observed on a minimal medium containing 0.5 g / L of bromopyruvic acid.
[0028]
A colony that appeared on a minimal medium containing bromopyruvic acid was picked up, and a single colony was isolated on the minimal medium having the same composition, and then a medium for cell preparation (n-paraffin 80 g / l, ammonium nitrate 20 g / l, phosphoric acid) Potassium dihydrogen 2 g / l, magnesium sulfate heptahydrate 1 g / l, ferrous sulfate heptahydrate 10 mg / l, zinc sulfate heptahydrate 40 mg / l, thiamine 6 μg / l, calcium carbonate 20 g / l, Inoculated in a 500 ml Sakaguchi flask into which 20 ml of pH 5.0) was injected, seeded at 30 ° C. for 2 days, then inoculated into a 500 ml Sakaguchi flask into which 20 ml of the same composition was injected, and cultured at 30 ° C. for 5 days. After that, the culture broth was centrifuged, and the L-glutamic acid concentration in the supernatant was measured with Biotech Analyzer AS200 (Asahi Kasei Co., Ltd.). N46 strain (AJ14717) that accumulates 230 mg / l of L-glutamic acid in the cell was found.
[0029]
[Example 2]
Isolation of nystatin resistant strain from bromopyruvate resistant strain N46 (AJ14717)
Spores of bromopyruvate resistant strain N46 (AJ14717) were prepared by the method used in Example 1, and suspended in a 1 M sorbitol solution to which N-methyl-N′-nitro-N-nitrosoguanidine was added to a final concentration of 10 mM. It became cloudy and was subjected to a mutation treatment at 30 ° C. for 20 minutes. After centrifugation, the mutated spore was washed with 1 M sorbitol solution and applied to a minimal medium containing 1 g / l nystatin. The bromopyruvate resistant strain N46 (AJ14717) could not grow at all on a minimal medium containing 1 g / l nystatin.
[0031]
After culturing at 30 ° C. for 3 to 7 days, colonies appearing in a minimal medium containing 1 g / l nystatin were picked up and separated into single colonies with a medium having the same composition, and then 5 ml of the cell preparation medium used in Example 1 was added. The inoculated 50 ml large test tube was inoculated and cultured at 30 ° C. for 5 days. After completion of the culture, 1 ml of culture broth was taken in an Eppendorf tube, sealed, and immersed in a boiling water bath for 30 minutes to extract free L-glutamic acid in the cells. After the extraction residue was removed by centrifugation, the L-glutamic acid concentration in the supernatant was measured with Biotech Analyzer AS200, and the measured value was taken as the L-glutamic acid concentration in which the inside and outside of the cells were combined. On the other hand, the extracellular glutamic acid concentration was obtained by centrifuging the culture broth, measuring the L-glutamic acid concentration in the obtained supernatant, and taking the measured value as the extracellular L-glutamic acid concentration. The L-glutamic acid concentration in the microbial cell can be expressed by a value obtained by subtracting the extracellular L-glutamic acid concentration from the L-glutamic acid concentration in the microbial cell.
[0032]
Of the 13 nystatin resistant strains that were isolated and evaluated for culture, there were 9 strains having a higher L-glutamic acid concentration than the parent strain N46 (AJ14717), both inside and outside the cell (FIG. 1). Among the 13 strains, only one strain had a significantly improved extracellular L-glutamic acid concentration compared to the parent strain. Nine strains with improved L-glutamic acid concentration, both inside and outside the cells, had no significant increase in the extracellular L-glutamic acid concentration compared to the parent strain, and were equivalent to or decreased from the parent strain. It was revealed that the L-glutamic acid concentration in the body was significantly improved.
[0033]
In the nystatin resistant strain AJ14718 having the highest L-glutamic acid concentration outside and inside the cells, 700 mg / l (3.5% per cell dry weight) of the cells and 20 mg / l of L-glutamic acid were accumulated outside the cells.
[0034]
Only the carbon source of the cell preparation medium of Example 1 was changed from n-paraffin to glucose (8%), and culture evaluation was performed. The cultured strains were cultured in YPD agar medium (Difco Bacto yeast extract 1%, Difco Bacto peptone 2%, glucose 2%, agar 2%) at 30 ° C. for 2 minutes. 16 plates were inoculated into a 50 ml large test tube into which 5 ml of cell preparation medium (carbon source glucose) was injected, cultured at 30 ° C. for 5 days, and the L-glutamic acid concentration inside and outside the cells and in the cells was determined. When measured, AJ14718 accumulates 530 mg / l L-glutamic acid inside the cell and 42 mg / l outside the cell, while bromopyruvic acid resistant strain N46 (AJ14717), which is the parent strain, contains 198 mg / l outside the cell. 49 mg / l was accumulated. It was revealed that even when the carbon source was changed to glucose, the concentration of L-glutamic acid in the cells was significantly improved in the nystatin-resistant strain as in the case where the carbon source was n-paraffin.
[0035]
【The invention's effect】
The L-glutamic acid concentration in the yeast cells can be increased by the method of the present invention, and a yeast extract having a high L-glutamic acid content can be produced by using the yeast bred by the method of the present invention.
[0036]
Yarrowia Lipolytica AJ14717 was deposited on May 29, 1996, at the Biotechnology Institute of Industrial Technology (Postal code 305 1-3, Higashi 1-chome, Tsukuba, Ibaraki, Japan). -15653.
Yarrowia Lipolytica AJ14718 was deposited with the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (Postal Code 305 1-3, Higashi 1-chome, Tsukuba, Ibaraki, Japan) on May 29, 1996. -15654 is given.
[Brief description of the drawings]
FIG. 1 shows the results of evaluation of L-glutamic acid concentration of nystatin-resistant strains both inside and outside the cells. The vertical axis represents the L-glutamic acid concentration, and the horizontal axis represents the strain number of the nystatin resistant strain. N46 is a parent strain.

Claims (1)

細胞膜の構造・機能を障害する薬剤ナイスタチンに耐性を有し、菌体内にL-グルタミン酸を530mg/l以上蓄積する能力を有するヤロウィア・リポリティカ酵母を用いることを特徴とする酵母エキスの製造方法。A method for producing a yeast extract, characterized by using Yarrowia lipolytica yeast that has resistance to the drug nystatin, which impairs the structure and function of cell membranes, and has the ability to accumulate 530 mg / l or more of L-glutamic acid in the cells.
JP13788096A 1996-05-31 1996-05-31 Production method of yeast extract Expired - Fee Related JP3896606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13788096A JP3896606B2 (en) 1996-05-31 1996-05-31 Production method of yeast extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13788096A JP3896606B2 (en) 1996-05-31 1996-05-31 Production method of yeast extract

Publications (2)

Publication Number Publication Date
JPH09313169A JPH09313169A (en) 1997-12-09
JP3896606B2 true JP3896606B2 (en) 2007-03-22

Family

ID=15208855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13788096A Expired - Fee Related JP3896606B2 (en) 1996-05-31 1996-05-31 Production method of yeast extract

Country Status (1)

Country Link
JP (1) JP3896606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058551A1 (en) 2008-11-18 2010-05-27 アサヒビール株式会社 Method for producing amino-acid-rich yeast
WO2010058527A1 (en) 2008-11-18 2010-05-27 アサヒビール株式会社 Method for producing yeast with high glutamic acid content
US9005683B2 (en) 2008-11-18 2015-04-14 Asahi Group Holdings, Ltd. Method for producing yeast with high glutamic acid content

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637507B2 (en) 2008-03-31 2014-12-10 興人ライフサイエンス株式会社 Yeast mutants and yeast extracts
US20110223288A1 (en) * 2008-11-18 2011-09-15 Asahi Breweries, Ltd. Method for producing alanine-rich yeast
JP5867911B2 (en) * 2011-03-02 2016-02-24 日立造船株式会社 Method for producing ethanol from waste
KR20170141218A (en) 2015-04-28 2017-12-22 테이부루마크 가부시키가이샤 Method for producing yeast extract, yeast extract obtained thereby, seasoning composition and food

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058551A1 (en) 2008-11-18 2010-05-27 アサヒビール株式会社 Method for producing amino-acid-rich yeast
WO2010058527A1 (en) 2008-11-18 2010-05-27 アサヒビール株式会社 Method for producing yeast with high glutamic acid content
US9005683B2 (en) 2008-11-18 2015-04-14 Asahi Group Holdings, Ltd. Method for producing yeast with high glutamic acid content
EP2949745A1 (en) 2008-11-18 2015-12-02 Asahi Group Holdings, Ltd. Method for producing amino acid-rich yeast
EP3385369A1 (en) 2008-11-18 2018-10-10 Asahi Group Holdings, Ltd. Method for producing yeast with high glutamic acid content

Also Published As

Publication number Publication date
JPH09313169A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
EP1016708B1 (en) Yeast extract composition, yeast for obtaining the same, and process for producing yeast extract composition
US4303680A (en) Production of yeast extract containing flavoring
JP5883780B2 (en) Yeast culture method
CN112029672A (en) Method for preparing tobacco flavor by using saccharomyces cerevisiae and application of tobacco flavor in cigarette leaf group
JP5102076B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a yeast with a high RNA content using the mutant.
CN109370951A (en) One plant increases the fusion Wei Si Salmonella of bata-phenethyl alcohol content and its application in soy sauce
CN114507610A (en) Saccharomyces cerevisiae for producing sauce flavor and application thereof
JP3896606B2 (en) Production method of yeast extract
JP5875869B2 (en) Arginine-rich yeast extract and method for producing the same
WO2006013736A1 (en) Mutant yeast, method of producing glutathione-rich yeast, culture thereof, fraction thereof, yeast extract and glutathione-containing foods and drinks
EP0805202A1 (en) Yeast, and food and drink containing the same
JP2004215644A (en) Thyrosol-producing mutant yeast strain having high productivity, and method for producing fermented alcoholic beverage using the yeast
JP4620404B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
JP4620405B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
JPH11196859A (en) Mutant
JP2006067992A (en) Bacillus subtilis strain and fermented soybean produced by using the same
KR102278292B1 (en) The adaptive laboratory evolved Yeast having ability of decomposing acetaldehyde and producing glutathione and uses thereof
JP5667365B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a high sulfur-containing compound yeast using the mutant.
CN116814446B (en) Aspergillus oryzae capable of utilizing tyrosine and not producing tyramine and application thereof
JPH03160985A (en) Novel variant and preparation of soy sauce using thereof
KR101556115B1 (en) - A Manufacturing method for -lactones from safflower oil with a high yield by using microorganisms and composition therefor
WO2012067106A1 (en) Method for producing yeast extract
KR100787537B1 (en) Process for mass production of Tricholoma matsutake mycelium by liquid culture
JP3176842B2 (en) New brewer's yeast
KR101189888B1 (en) Novel yeast mutant containing increased RNA content, method for producing the same and use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees