JP3896598B2 - Anodizing method - Google Patents

Anodizing method Download PDF

Info

Publication number
JP3896598B2
JP3896598B2 JP14362095A JP14362095A JP3896598B2 JP 3896598 B2 JP3896598 B2 JP 3896598B2 JP 14362095 A JP14362095 A JP 14362095A JP 14362095 A JP14362095 A JP 14362095A JP 3896598 B2 JP3896598 B2 JP 3896598B2
Authority
JP
Japan
Prior art keywords
processed
local compression
oxide film
anodic oxide
alumite treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14362095A
Other languages
Japanese (ja)
Other versions
JPH08337896A (en
Inventor
健児 井尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP14362095A priority Critical patent/JP3896598B2/en
Publication of JPH08337896A publication Critical patent/JPH08337896A/en
Application granted granted Critical
Publication of JP3896598B2 publication Critical patent/JP3896598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアルミ系のの被処理部材に陽極酸化を形成するアルマイト処理方法に関する。
【0002】
【従来の技術】
アルマイト処理方法としては、従来より、被処理面をもつアルミ系合金で形成された被処理部材と、アルマイト処理液を収容する容器とを用い、そして被処理部材をアルマイト処理液に浸漬させた状態で、被処理部材を陽極とし、更に陽極に対する陰極を設け、陽極と陰極との間で通電して被処理部材の被処理面に陽極酸化膜を形成することにしている。更にこのアルマイト処理方法としては、電流密度を高くして高速処理する高速アルマイト処理が知られている。
【0003】
この様なアルマイト処理で形成した陽極酸化膜は、硬くて耐摩耗性に優れていることが知られている。このアルマイト処理した陽極酸化膜は、Al2 3 を主要成分とし、多孔質なポア層をもつとされている(改訂4版 金属便覧、社団法人日本金属学会、昭和57年12月20日発行;1313頁)。
【0004】
【発明が解決しようとする課題】
ところでアルマイト処理した場合には、特に高速アルマイト処理した場合には、陽極酸化膜の不均一化、面粗度の悪化を招くことがある。殊に被処理部材を構成するアルミ母材にSi粒子が含まれている場合には、陽極酸化膜の不均一化、面粗度の悪化を招き易いと一般的には考えられている。Si粒子が電流密度の不均一を誘発するためと推察されている。
【0005】
陽極酸化膜の表面粗さを小さくするため、近年、本出願人は被処理部材に形成した陽極酸化膜を砥石で研摩して表面粗さを向上させる方法を開発した。この方法によれば、研摩前に比較して陽極酸化膜の表面粗さを小さくできる。
しかしながら充分なる表面粗さの向上を目指すには、仕上研摩をする必要がある。更には、高価な研摩用の砥石を使用するのでコスト高となり易い。また砥石の目詰まりが頻繁に生じるため、砥石を頻繁に交換しなければならない。更に砥石による研摩の場合には、砥石による加工速度の増大に限度があり、加工が低速になりがちである。よって砥石で陽極酸化膜を研摩する方法によれば、価格や生産性は必ずしも充分ではない。
【0006】
本発明は上記した実情に鑑みなされたものであり、請求項1及び2の課題は、高速アルマイト処理する場合であっても、また被処理部材がSiを含む場合であっても、勿論、通常のアルマイト処理する場合であっても、また被処理部材がSiを含まない場合であっても、陽極酸化膜の均一化、面粗度の均一化に有利なアルマイト処理方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者はアルミ系の被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理について鋭意開発を進め、そして陽極酸化膜を形成後または形成中に、被処理面の陽極酸化膜に局部的圧縮加工手段の強圧体により局部的圧縮加工を加えれば、陽極酸化膜の均一化、面粗度の均一化を図り得ることを知見し、試験で確認し、本発明方法及び本発明装置を完成したものである。
【0009】
請求項1のアルマイト処理方法は、
被処理面をもつアルミ系の被処理部材と、アルマイト処理液を収容する容器と、被処理部材の被処理面に局部的圧縮加工を加える強圧体をもつ局部的圧縮加工手段とを用い、
被処理部材の被処理面とアルマイト処理液とを接触させ、且つ、局部的圧縮加工手段を陰極に設定した状態で、被処理部材に通電して被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理工程を実施し、
陽極酸化膜の形成中に、被処理面の陽極酸化膜に局部的圧縮加工手段の強圧体により局部的圧縮加工を加えることを特徴とするものである。
【0010】
請求項2のアルマイト処理方法は、
被処理面をもつアルミ系の被処理部材と、アルマイト処理液を収容する容器と、被処理部材の被処理面に局部的圧縮加工を加える強圧体をもつ局部的圧縮加工手段とを用い、
被処理部材の被処理面とアルマイト処理液とを接触させ、且つ、局部的圧縮加工手段を陰極に設定した状態で、被処理部材に通電して被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理工程を実施し、
陽極酸化膜の形成中に、局部的圧縮加工手段の強圧体を回転させつつ、被処理面の陽極酸化膜に局部的圧縮加工を加え、陽極酸化膜のポア層の少なくとも表層部分を曲成することを特徴とするものである。
【0012】
【作用】
請求項1、2の方法によれば、被処理部材に通電して被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理工程を実施する。陽極酸化膜を形成後または形成中に、局部的圧縮加工手段の強圧体により被処理面の陽極酸化膜に局部的圧縮加工を加える。
【0013】
請求項1の方法によれば、局部的圧縮加工の如何によって、陽極酸化膜のポア層の少なくとも表層部分が圧縮加工を受けて曲成される形態、及び、圧縮加工を受けつつもポア層の表層部分が実質的に曲成されない形態が含まれる。
請求項2の方法によれば、局部的圧縮加工手段の強圧体を回転させるので、陽極酸化膜のポア層の少なくとも表層部分を曲成し易い。
【0014】
本発明によれば、局部的圧縮加工の際に、付勢部材により強圧ローラは基体の周壁に半径方向外方に突出される形態を例示することができる。突出した強圧ローラは、被処理部材の被処理面の陽極酸化膜に強圧される。
【0015】
【実施例】
以下、本発明の実施例を説明する。この実施例は、Siを含む被処理部材を高速アルマイト処理する場合である。
(実施例の構成)
(装置)
まず装置から説明する。図1に示す様にアルマイト処理液1を収容する収容室20をもつ容器2が設けられている。更にアルマイト処理液1がタンク室30に貯溜されたタンク3が配置されている。タンク3にはアルマイト処理液1を低温(例えば5℃)に維持するための冷却装置33が設けられている。
【0016】
容器2の保持部21には、アルミ系合金のダイカスト材からなる被処理部材4が保持されている。本実施例では被処理部材4は、油圧部品であるブレーキマスターシリンダとして使用される。被処理部材4は、周壁42に適数個の孔43をもつ円筒体45と、円筒体45の下端開口を閉じる底壁46と、円筒体45から一体的に半径方向外方に延設された鍔部47とをもつ。円筒体45は中空室41を区画している。孔43は、被処理部材4の使用の際に油路として機能する。被処理部材4を形成するアルミ系合金には、例えば、重量%でSiが5.0〜15.0%、Mgが0.25〜0.6%、Cuが0.2%以下が含まれている。なおアルミ系合金には、硬質粒子として機能して耐摩耗性を確保する等のために初晶Si粒子が含まれている形態でも、初晶Si粒子が含まれていない形態でも良い。初晶Si粒子はSi含有量に基づき晶出するからである。
【0017】
被処理部材4の中空室41には、バニッシュ加工装置5のバニッシュ筒体50がリング状の隙間49を存して略同軸的に挿入されている。
更にタンク3とバニッシュ加工装置5とをつなぐ供給路37が設けられ、供給路37にはポンプ38が配置されている。タンク3と容器2の排出口2iとをつなぐ排出路39が設けられている。ここでポンプ38が作動すると、タンク3のアルマイト処理液1は供給通路37を通り、供給通路37のノズル37hからバニッシュ加工装置5のバニッシュ筒体50の内部に供給され、バニッシュ筒体50の孔50dから隙間49に供給され、更に被処理部材4の孔43を通って容器2の収容室20に至り、更に排出路39を経てタンク3に戻る。この様にしてアルマイト処理液1は循環する。
【0018】
図2及び図3に示す様にバニッシュ加工装置5は、局部的圧縮加工の一つであるバニッシュ加工を行う装置である。このバニッシュ加工装置5は、アルマイト処理液に対する耐食性及び導電性を備えた金属(例えばステンレス鋼)で形成された基体として機能するバニッシュ筒体50と、バニッシュ筒体50に回転可能に保持され硬質材料(例えばJIS SK材やSKD材、セラミックス材など)で形成された強圧体としての強圧ローラ52と、強圧ローラ52をバニッシュ筒体50の周壁の開口51から半径方向外方つまりX1方向に突出させる付勢部材53とを備えている。バニッシュ筒体50は、図略の駆動源によりその軸芯回りに回転可能及び上下方向に移動可能とされている。
【0019】
強圧ローラ52の一部は、バニッシュ筒体50の開口51から突出している。強圧ローラ52は円錐面状をなすテーパ面52cをもち、付勢部材53はテーパ面52cに相応するテーパ角を備えた円錐面状のテーパ面53cをもつ。付勢部材53が軸長方向つまり矢印Y1方向に移動すると、付勢部材53のテーパ面53cが強圧ローラ52のテーパ面52cを押圧し、これにより強圧ローラ52は半径方向外方つまり矢印X1方向に所定量突出する。
【0020】
図1に示す様に、給電装置として機能する整流器6が設けられている。整流器6の陽極端子60には給電線61を介して被処理部材4が電気的に接続されている。従ってアルマイト処理の際に被処理部材4が陽極として機能する。整流器6の陰極端子64には給電線65を介してバニッシュ加工装置5のバニッシュ筒体50が電気的に接続されている。従ってアルマイト処理の際にバニッシュ筒体50は陰極として機能する。
【0021】
(方法)
次に本実施例に係る方法を説明する。図1に示す様に被処理部材4を容器2の保持部21に保持して被処理部材4を容器2内のアルマイト処理液1に浸漬させる。これにより被処理部材4の円筒体45とアルマイト処理液1とを接触させる。この状態ではバニッシュ加工装置5のバニッシュ筒体50と被処理部材4の円筒体45の内周面とはアルマイト処理液を存して対面している。
【0022】
またこの状態では、強圧ローラ52は退避して強圧ローラ52の突出量は抑えられており、強圧ローラ52と被処理部材4の円筒体45とは非接触状態に維持されている。
その状態で、陰極と陽極との間に通電して所定時間アルマイト処理を行う。これにより被処理部材4の円筒体45のうち被処理面である内周面に陽極酸化膜を形成する。この場合には、陰極として機能するバニッシュ加工装置5のバニッシュ筒体50を適宜矢印Y1、Y2方向に移動させる。
【0023】
本実施例では陰極と陽極とに通電する電流密度を増大させて高速アルマイト処理を行う。そして陽極酸化膜が形成された被処理部材4の円筒体45の内径が所定寸法になったら、アルマイト処理を停止する。
なお本実施例におけるアルマイト処理の条件は次の様である。即ち、電流密度は50〜300A/dm2 であり、時間は5〜30秒であり、アルマイト処理液1は硫酸溶液(10〜30vol%程度)であり、アルマイト処理液1の処理温度は−10〜+22°Cである。
【0024】
この様にアルマイト処理の結果、被処理部材4の円筒体45の内周面には陽極酸化膜(膜厚1〜15μm、硬度Hv300以下、表面粗さRz3.0μm以下)が形成される。
次に、バニッシュ加工装置5のバニッシュ筒体50を矢印C1方向に一方向回転させつつ、強圧ローラ52を半径方向外方つまり矢印X1方向に拡張して、陽極酸化膜を局部的圧縮加工する。局部的圧縮加工は、図2に示す強圧ローラ52のうち外径が大きな径大端部52fで達成される。一般的には強圧ローラ52の拡張量は10〜50μm、膜圧縮率は5〜15%である。膜圧縮率は、〔(加工前の厚み−加工後の厚み)/(加工前の厚み)〕×100%を意味する。
【0025】
これにより局部的圧縮加工の一例であるバニッシュ加工が被処理部材4の陽極酸化膜に施される。この様なバニッシュ加工の際には、強圧ローラ52を備えたバニッシュ筒体50の軸長方向にそってつまり矢印Y1、Y2方向にそって適宜移動させる。これによりバニッシュ筒体50の軸長方向におけるバニッシュ加工のむらを軽減または回避する。バニッシュ加工は所定時間行う。そして陽極酸化膜をもつ被処理部材4の円筒体45の内径が所定寸法になったら、バニッシュ加工を停止する
の様な工程を実施した本実施例によれば、被処理部材4の円筒体45の内周面の陽極酸化膜が均一化し、表面粗さもRz1.6〜0.5μmと小さく、面粗度も良好な値となった。更にバニッシュ加工を施した陽極酸化膜の硬度も高くなり、耐摩耗性が向上し、摺動材料として一層適する様になった。
【0026】
本実施例によれば、転動する強圧ローラ52により陽極酸化膜のポア層の表層側を押し潰す方式となるため、陽極酸化膜の表面粗さを表面粗さ計で測定したとき、表面粗さを示す粗さ線の山や谷が平坦化し易く、面粗度の向上に貢献できる。
この様に本実施例によればバニッシュ加工により陽極酸化膜の表面粗さを小さくし、面粗度を向上できるため、高速処理が達成し得るものの面粗度が低下しがちであった高速アルマイト処理を実行することができる。
【0027】
また本実施例によれば、陽極酸化膜を砥石で削って研摩加工する方式に比較して、転動する強圧ローラ52により押し潰す方式となるため、砥石方式に比較して陽極酸化膜の表面粗さも良好となり、砥石の目詰まり、砥石の摩滅等の砥石に起因する不具合がない。従って砥石を頻繁に交換しなければならないといった砥石研摩方式で生じていた不具合を解消できる。
【0028】
バニッシュ加工を施した陽極酸化膜を電子顕微鏡(SEM)で観察したところ、陽極酸化膜のポア層の表層側は曲成されていた。この写真を図4に示す。図4の写真の下部には倍率として50000倍、100nmの基準寸法が記されている。この写真によれば、陽極酸化膜のポア層が、ポア層の細孔の孔芯に対して軸直角方向に曲成されていることがわかる。
【0029】
更にまた本実施例の様に陽極酸化膜の形成に際して高速アルマイト処理した場合には、電流密度が高いためジュール熱に伴い被処理部材4の温度が高温となり易い。この場合『焼け』等の不具合が生じる。この点本実施例では強圧ローラ52を退避させたバニッシュ加工装置5を用い、バニッシュ加工装置5のバニッシュ筒体50を回転させつつつアルマイト処理を行うため、アルマイト処理液には遠心力も作用し、特に隙間49のアルマイト処理液に遠心力も作用し、従ってアルマイト処理液はポンプ38の駆動力の他に遠心力によっても流動することになり、アルマイト処理液の流速の増大に有利である。よってアルマイト処理液の循環性が向上し、被処理部材4の高温化の低減に有利であり、『焼け』の軽減または回避に有利である。
【0030】
更にアルマイト処理の際に強圧ローラ52が攪拌羽根として機能することも期待できるので、被処理部材4内に収容されているアルマイト処理液を攪拌でき、アルマイト処理液の局部的溜まりを回避するのに有利であり、この意味においてもアルマイト処理液の循環性が向上し、『焼け』の軽減または回避に有利である。
【0031】
本実施例によれば、バニッシュ加工装置5のバニッシュ筒体50は強圧ローラ52を保持するばかりか、アルマイト処理の際の陰極としても機能する。即ち、バニッシュ加工装置5は、アルマイト処理及びバニッシュ加工の双方を達成できる。そのため本実施例によれば、被処理部材4を容器2の保持部21に一体保持したら、被処理部材4を取り外すことなく、アルマイト処理及びバニッシュ加工の双方を達成でき、作業性も良い。
【0032】
また本実施例によれば、強圧ローラ52が被処理部材4の円筒体45の内周面を圧接しつつ加工するものであり、いわば局部的圧縮の繰り返しで加工する方式である。従って陽極酸化膜の全体を一度に加工する形態に比較して、加工力も小さくて済み、陽極酸化膜の割れの回避に有利である。しかもバニッシュ加工装置5の小型化にも有利である。
【0033】
更に本実施例によれば、前述の様に陽極酸化膜のポア層の表層側を曲成できるので、面粗度の向上ばかりか、バニッシュ加工をポア層の封孔処理として利用することも期待できる。従って被処理部材4の使用の際に、腐食の要因となり得る侵入物がポア層の細孔に侵入することを軽減または回避でき、陽極酸化膜の耐腐食性の向上に貢献できる。
【0034】
また本実施例によれば、着色物質等の他の物質をポア層の細孔に付着させた場合には、陽極酸化膜にバニッシュ加工を施すことにより、封孔処理することも期待できる。なおポア層の細孔に着色物質を付着させた場合には、バニッシュ加工に伴う封孔作用により、ポア層の細孔に付着された着色物質の脱離の軽減または回避に有利であり、この意味において陽極酸化膜における退色防止に貢献できる。
【0035】
加えて本実施例によれば、液体であるアルマイト処理液の内で被処理部材4の陽極酸化膜に対してバニッシュ加工を行うので、バニッシュ加工の際における摩擦熱の低減、潤滑性の確保に有利であり、従ってバニッシュ加工を良好に実施するのに有利である
記した実施例によれば、アルマイト処理で被処理部材4に陽極酸化膜を形成し、その後にアルマイト処理を中止してバニッシュ加工を施し、更にその後にバニッシュ加工を中止して再びアルマイト処理で被処理部材4に陽極酸化膜を積層する。あるいは、アルマイト処理で被処理部材4に陽極酸化膜を形成しつつ、その形成中の陽極酸化膜にバニッシュ加工を施すことにしても良い。
【0036】
上記した例では、アルマイト処理液に浸漬している陽極酸化膜にバニッシュ加工を施しているが、これに限らず、バニッシュ加工の際には容器2から被処理部材4を外気中に取り出し、外気中で陽極酸化膜にバニッシュ加工することにしても良いものである。
上記した実施例によれば、高速アルマイト処理することにしているが、これに限らず通常のアルマイト処理でも良い。更にアルマイト処理液として硫酸溶液を使用しているが、これに限らずシュウ酸溶液でもクロム酸溶液等の公知のアルマイト処理液を採用しても良いものである。
【0037】
また上記した例では被処理部材4の円筒体45の内周面に陽極酸化膜を形成しているが、円筒体45の外周面に陽極酸化膜を形成し、その外周面に形成した陽極酸化膜を強圧ローラ52で強圧しても良いものである。この場合には被処理部材4の円筒体45の径よりもバニッシュ加工装置5のバニッシュ筒体50を径大とし、被処理部材4の円筒体45の外周面をバニッシュ加工装置5のバニッシュ筒体50で包囲する。更に被処理部材4の円筒体45の内周面及び外周面の双方に陽極酸化膜を形成しても良いものである。
【0038】
更に強圧体として、テーパをもつ略円筒形状の強圧ローラ52を使用しているが、これに限定されるものではなく、球体状の強圧体でも良いものである。
図5及び図6はバニッシュ加工装置の変形例を示す。図5に示すバニッシュ加工装置80は、バニッシュ筒体81と、バニッシュ筒体81に保持された強圧ローラ82と、バニッシュ筒体81に内設された回転体83と、回転体83に保持されたハンマ84とを備えている。そして回転体83の回転に伴いハンマ84が強圧ローラ82を叩いてバニッシュ筒体81の半径方向外方に突出させるので、被処理部材4の円筒体45の内周面の陽極酸化膜は局部的圧縮加工を繰り返して受ける。
【0039】
図6に例によれば、被処理部材4の円筒体45の内周面には陽極酸化膜が形成されており、そして、被処理部材4の円筒体45の内径よりも微小量大きな外径をもつ硬質材料からなる球体88を用いる。そして球体88を被処理部材4の円筒体45の内部に強制的に圧入するので、被処理部材4の円筒体45の内周面の陽極酸化膜は圧縮加工を受ける。
【0040】
上記した各例では局部的圧縮加工手段としてバニッシュ加工を行うバニッシュ加工装置を採用しているが、これに限定されるものではなく、場合によっては、強圧体を回転させつつ鍛造する回転鍛造装置、ロータリースエージ加工装置を採用することもできる。
上記した例では被処理部材4の基本的形状は円筒形状であるが、これに限定されるものではなく、平板状、盤状、塊状でも良い。
【0041】
その他、本発明は上記しかつ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で必要に応じて適宜選択できるものである。
(付記)
上記した実施例から次の技術的思想も把握できる。
○局部的圧縮加工をアルマイト処理液などの液体中で行うことを特徴とする請求項1、2に記載の方法。
○被処理部材は初晶Si粒子を含むことを特徴とする請求項1に記載の方法。
○局部的圧縮加工手段は、アルマイト処理液に浸漬される導電性材料からなる基体をもち、基体は、被処理部材の被処理面に対面し、アルマイト処理の際の陰極として機能することを特徴とする請求項3に記載の装置。
○陽極酸化膜を備え、陽極酸化膜のポア層がポア層の細孔の孔芯に対して軸直角方向に曲成されているアルミ系合金からなる部材。
○少なくとも表層部が局部的圧縮加工されたポア層をもつ陽極酸化膜を備えたアルミ系合金からなる部材。
○被摺動面をもつアルミ系の被処理部材と、アルマイト処理液を収容する容器と、被処理部材の被摺動面に局部的圧縮加工を加える強圧体をもつ局部的圧縮加工手段とを用い、被処理部材の被摺動面とアルマイト処理液とを接触させた状態で、被処理部材に通電して被処理部材の被摺動面に陽極酸化膜を形成するアルマイト処理工程を実施し、陽極酸化膜を形成後または形成中に、局部的圧縮加工手段の強圧体により被摺動面の陽極酸化膜に局部的圧縮加工を加えることを特徴とする摺動部材の製造方法。
【0042】
【発明の効果】
請求項1、2の方法によれば、高速アルマイト処理する場合であっても、また被処理部材がSiを含む場合であっても、勿論、通常のアルマイト処理する場合であっても、また被処理部材がSiを含まない場合であっても、陽極酸化膜が均一化し、陽極酸化膜の表面粗さも小さくなり、面粗度も良好な値となる。
【0043】
また請求項1、2の方法によれば、強圧ローラ体が被処理部材の被処理面を圧接しつつ加工するものであり、いわば局部的圧縮の繰り返しで加工する方式である。従って陽極酸化膜の全体を一度に加工する形態に比較して、加工力も小さくて済み、陽極酸化膜の割れの回避に有利であり、更に局部的圧縮加工手段の小型化にも有利である。
【0044】
請求項2の方法によれば、局部的圧縮加工手段の強圧体を回転させつつ局部的圧縮加工を施すので、陽極酸化膜のポア層の表層側を曲成するのに有利であり、封孔処理としての機能も期待できる。従って他の物質をポア層に付着させた場合には、その物質がポア層の細孔から脱落することを軽減または回避するのに有利である。
【図面の簡単な説明】
【図1】実施例に使用する装置を模式的に示す構成図である。
【図2】バニッシュ装置の要部の縦断面図である。
【図3】バニッシュ装置の要部の横断面図である。
【図4】陽極酸化膜のポア層における金属組織を示す顕微鏡写真図である。
【図5】他の例に係るバニッシュ装置で被処理部材をバニッシュ加工している状態を模式的に示す横断面図である。
【図6】他の例に係るバニッシュ装置で被処理部材をバニッシュ加工している状態を模式的に示す縦断面図である。
【符号の説明】
図中、1はアルマイト処理液、2は容器、38はポンプ、4は被処理部材、45は円筒体、5はバニッシュ加工装置(局部的圧縮加工手段)、52は強圧ローラ(強圧体)、53は付勢部材を示す。
[0001]
[Industrial application fields]
The present invention relates to the anodized how to form an anodic oxidation workpiece member of an aluminum-based.
[0002]
[Prior art]
As an alumite treatment method, conventionally, a treated member formed of an aluminum-based alloy having a treated surface and a container containing an alumite treatment liquid are used, and the treated member is immersed in the anodized treatment liquid. Thus, the member to be treated is an anode, a cathode for the anode is further provided, and an anodic oxide film is formed on the surface to be treated of the member to be treated by energization between the anode and the cathode. Further, as this alumite treatment method, high-speed alumite treatment is known in which current density is increased and high-speed treatment is performed.
[0003]
It is known that an anodized film formed by such an alumite treatment is hard and has excellent wear resistance. This anodized anodic oxide film has Al 2 O 3 as the main component and is said to have a porous pore layer (Revised 4th Edition Metal Handbook, The Japan Institute of Metals, December 20, 1982) ; Page 1313).
[0004]
[Problems to be solved by the invention]
By the way, when alumite treatment is performed, particularly when high-speed alumite treatment is performed, the anodic oxide film may become non-uniform and the surface roughness may deteriorate. In particular, it is generally considered that when the aluminum base material constituting the member to be processed contains Si particles, the anodic oxide film is likely to be non-uniform and the surface roughness is likely to be deteriorated. It is presumed that Si particles induce current density non-uniformity.
[0005]
In order to reduce the surface roughness of the anodized film, the present applicant has recently developed a method for improving the surface roughness by polishing the anodized film formed on the member to be processed with a grindstone. According to this method, the surface roughness of the anodized film can be reduced as compared with that before polishing.
However, in order to improve the surface roughness sufficiently, it is necessary to carry out finish polishing. Furthermore, since an expensive grinding wheel is used, the cost tends to be high. Moreover, since the clogging of the grindstone frequently occurs, the grindstone must be frequently replaced. Further, in the case of polishing with a grindstone, there is a limit to the increase in the processing speed with the grindstone, and the processing tends to be slow. Therefore, according to the method of polishing the anodized film with a grindstone, the price and productivity are not always sufficient.
[0006]
The present invention has been made in view of the above-described circumstances, and the problem of claims 1 and 2 is, of course, normal even when a high-speed alumite treatment is performed and the member to be treated contains Si. It is an object to provide an alumite treatment method that is advantageous for homogenization of an anodized film and uniformity of surface roughness even when the alumite treatment is performed and when the member to be treated does not contain Si. .
[0008]
[Means for Solving the Problems]
The present inventor has intensively developed an alumite treatment for forming an anodized film on a surface to be processed of an aluminum-based processed member, and is locally applied to the anodized film on the processed surface after or during the formation of the anodized film. It has been found that if a local compression process is applied by a strong compression body of a mechanical compression process means, the anodic oxide film can be made uniform and the surface roughness can be made uniform. It has been completed.
[0009]
The anodizing method of claim 1 is:
Using an aluminum-based processed member having a surface to be processed, a container for containing an alumite processing liquid, and a local compression processing means having a strong pressure member that applies local compression processing to the surface to be processed of the processed member,
In a state where the surface to be processed and the alumite treatment liquid are brought into contact with each other and the local compression processing means is set to the cathode, the member to be processed is energized to form an anodic oxide film on the surface to be processed. Implement the anodizing process to form,
During the formation of the anodic oxide film, local compression processing is applied to the anodic oxide film on the surface to be processed by the strong pressure member of the local compression processing means.
[0010]
The anodizing method of claim 2 is:
Using an aluminum-based processed member having a surface to be processed, a container for containing an alumite processing liquid, and a local compression processing means having a strong pressure member that applies local compression processing to the surface to be processed of the processed member,
In a state where the surface to be processed and the alumite treatment liquid are brought into contact with each other and the local compression processing means is set to the cathode, the member to be processed is energized to form an anodic oxide film on the surface to be processed. Implement the anodizing process to form,
During the formation of the anodic oxide film, a local compression process is applied to the anodic oxide film on the surface to be processed while rotating the high pressure member of the local compression processing means, and at least the surface layer portion of the pore layer of the anodic oxide film is bent. It is characterized by this.
[0012]
[Action]
According to the methods of claims 1 and 2, the alumite treatment step is performed in which the member to be treated is energized to form the anodized film on the surface to be treated of the member to be treated. After or during the formation of the anodic oxide film, a local compression process is applied to the anodized film on the surface to be processed by the high pressure member of the local compression processing means.
[0013]
According to the method of claim 1, at least the surface layer portion of the pore layer of the anodic oxide film is bent by the compression process by the local compression process, and the pore layer is subjected to the compression process while being subjected to the compression process. A form in which the surface layer portion is not substantially bent is included.
According to the method of claim 2, since the high pressure member of the local compression processing means is rotated, at least the surface layer portion of the pore layer of the anodized film is easily bent.
[0014]
According to the present invention , it is possible to exemplify a form in which the strong pressure roller protrudes radially outward from the peripheral wall of the base body by the biasing member during the local compression processing . Butt out the coercive roller is strongly pressed to the anodic oxide film of the processed surface of the member to be processed.
[0015]
【Example】
Examples of the present invention will be described below. This embodiment is a case where a member to be processed containing Si is subjected to high speed alumite treatment.
(Configuration of Example)
(apparatus)
First, the apparatus will be described. As shown in FIG. 1, a container 2 having a storage chamber 20 for storing an alumite treatment liquid 1 is provided. Further, a tank 3 in which the alumite treatment liquid 1 is stored in the tank chamber 30 is disposed. The tank 3 is provided with a cooling device 33 for maintaining the alumite treatment liquid 1 at a low temperature (for example, 5 ° C.).
[0016]
The holding member 21 of the container 2 holds a member to be processed 4 made of an aluminum alloy die-cast material. In this embodiment, the member 4 to be processed is used as a brake master cylinder which is a hydraulic component. The member 4 to be processed is integrally extended radially outward from the cylindrical body 45 having a suitable number of holes 43 in the peripheral wall 42, a bottom wall 46 that closes the lower end opening of the cylindrical body 45, and the cylindrical body 45. And has a flange 47. The cylindrical body 45 defines the hollow chamber 41. The hole 43 functions as an oil passage when the member to be processed 4 is used. The aluminum-based alloy forming the member to be processed 4 includes, for example, Si by weight of 5.0 to 15.0%, Mg of 0.25 to 0.6%, and Cu of 0.2% or less. ing. The aluminum-based alloy may be in a form that contains primary crystal Si particles in order to function as hard particles and ensure wear resistance, or a form that does not contain primary crystal Si particles. This is because the primary crystal Si particles are crystallized based on the Si content.
[0017]
In the hollow chamber 41 of the member to be processed 4, the burnish cylinder 50 of the burnishing apparatus 5 is inserted substantially coaxially with a ring-shaped gap 49.
Further, a supply path 37 that connects the tank 3 and the burnishing apparatus 5 is provided, and a pump 38 is disposed in the supply path 37. A discharge path 39 that connects the tank 3 and the discharge port 2 i of the container 2 is provided. When the pump 38 is operated, the alumite treatment liquid 1 in the tank 3 passes through the supply passage 37 and is supplied from the nozzle 37 h of the supply passage 37 to the inside of the burnish cylinder 50 of the burnishing apparatus 5. 50 d is supplied to the gap 49, passes through the hole 43 of the member to be processed 4, reaches the storage chamber 20 of the container 2, and further returns to the tank 3 through the discharge path 39. In this way, the alumite treatment liquid 1 circulates.
[0018]
As shown in FIGS. 2 and 3, the burnishing apparatus 5 is an apparatus that performs burnishing, which is one of the local compression processes. The burnish processing apparatus 5 includes a burnish cylinder 50 that functions as a base formed of a metal (for example, stainless steel) having corrosion resistance and conductivity with respect to the alumite treatment liquid, and a hard material that is rotatably held by the burnish cylinder 50. A strong pressure roller 52 as a strong pressure member formed of (for example, JIS SK material, SKD material, ceramic material, etc.) and the strong pressure roller 52 are protruded radially outward, that is, in the X1 direction from the opening 51 of the peripheral wall of the burnish cylinder 50. And an urging member 53. The burnish cylinder 50 is rotatable around its axis and movable in the vertical direction by a drive source (not shown).
[0019]
A part of the strong pressure roller 52 protrudes from the opening 51 of the burnish cylinder 50. The strong pressure roller 52 has a conical tapered surface 52c, and the biasing member 53 has a conical tapered surface 53c having a taper angle corresponding to the tapered surface 52c. When the urging member 53 moves in the axial length direction, that is, in the direction of the arrow Y1, the tapered surface 53c of the urging member 53 presses the tapered surface 52c of the strong pressure roller 52, thereby causing the strong pressure roller 52 to move outward in the radial direction, that is, in the arrow X1 direction. Project a predetermined amount.
[0020]
As shown in FIG. 1, a rectifier 6 that functions as a power feeding device is provided. The member 4 to be processed is electrically connected to the anode terminal 60 of the rectifier 6 through a power supply line 61. Therefore, the member to be treated 4 functions as an anode during the alumite treatment. The burnish cylinder 50 of the burnishing apparatus 5 is electrically connected to the cathode terminal 64 of the rectifier 6 via a feeder line 65. Accordingly, the varnish cylinder 50 functions as a cathode during anodizing.
[0021]
(Method)
Next, a method according to the present embodiment will be described. As shown in FIG. 1, the member 4 to be processed is held in the holding portion 21 of the container 2, and the member 4 to be processed is immersed in the alumite treatment liquid 1 in the container 2. Thereby, the cylindrical body 45 of the to-be-processed member 4 and the alumite processing liquid 1 are made to contact. In this state, the burnish cylinder 50 of the burnishing apparatus 5 and the inner peripheral surface of the cylinder 45 of the member to be processed 4 face each other with the alumite treatment liquid.
[0022]
Further, in this state, the strong pressure roller 52 is retracted and the protruding amount of the strong pressure roller 52 is suppressed, and the strong pressure roller 52 and the cylindrical body 45 of the processing target member 4 are maintained in a non-contact state.
In this state, an alumite treatment is performed for a predetermined time by energizing between the cathode and the anode. As a result, an anodic oxide film is formed on the inner peripheral surface, which is the surface to be processed, of the cylindrical body 45 of the member 4 to be processed. In this case, the burnish cylinder 50 of the burnishing apparatus 5 that functions as a cathode is appropriately moved in the directions of arrows Y1 and Y2.
[0023]
In this embodiment, the current density applied to the cathode and the anode is increased to perform high speed anodization. Then, when the inner diameter of the cylindrical body 45 of the member to be processed 4 on which the anodized film is formed reaches a predetermined dimension, the alumite treatment is stopped.
The conditions for the alumite treatment in this example are as follows. That is, the current density is 50 to 300 A / dm 2 , the time is 5 to 30 seconds, the alumite treatment liquid 1 is a sulfuric acid solution (about 10 to 30 vol%), and the treatment temperature of the alumite treatment liquid 1 is −10 ~ + 22 ° C.
[0024]
As a result of the alumite treatment, an anodic oxide film (film thickness 1 to 15 μm, hardness Hv 300 or less, surface roughness Rz 3.0 μm or less) is formed on the inner peripheral surface of the cylindrical body 45 of the member 4 to be processed.
Next, the strong pressure roller 52 is expanded radially outward, that is, in the direction of the arrow X1, while the varnish cylinder 50 of the burnishing apparatus 5 is rotated in one direction in the direction of the arrow C1, thereby locally compressing the anodic oxide film. Local compression processing, among the strong pressure roller 52 shown in FIG. 2, the outer diameter is achieved with a large large-diameter end portion 52f. Generally, the expansion amount of the strong pressure roller 52 is 10 to 50 μm, and the film compression rate is 5 to 15%. The film compressibility means [(thickness before processing−thickness after processing) / (thickness before processing)] × 100%.
[0025]
Thereby, the varnish processing which is an example of local compression processing is given to the anodic oxide film of the member 4 to be processed. At the time of such burnishing, the vanish cylinder 50 having the strong pressure roller 52 is appropriately moved along the axial length direction, that is, along the directions of the arrows Y1 and Y2. Thereby, the unevenness of the burnishing in the axial length direction of the burnish cylinder 50 is reduced or avoided. The burnishing is performed for a predetermined time. When the inner diameter of the cylindrical body 45 of the member 4 to be processed having the anodized film reaches a predetermined dimension, the burnishing process is stopped .
According to the present embodiment carried out such processes this anodic oxide film of the inner peripheral surface of the cylindrical body 45 of the member to be processed 4 is uniform, the surface roughness is small and Rz1.6~0.5Myuemu, surface roughness The degree was also good. Furthermore, the hardness of the anodic oxide film that has been burnished has also increased, and the wear resistance has been improved, making it more suitable as a sliding material.
[0026]
According to the present embodiment, the surface layer side of the pore layer of the anodic oxide film is crushed by the rolling strong pressure roller 52. Therefore, when the surface roughness of the anodic oxide film is measured with a surface roughness meter, the surface roughness is measured. The peaks and valleys of the roughness line indicating the roughness can be easily flattened, and can contribute to the improvement of the surface roughness.
As described above, according to this example, the surface roughness of the anodic oxide film can be reduced and the surface roughness can be improved by the burnishing process. Processing can be executed.
[0027]
In addition, according to the present embodiment, the surface of the anodic oxide film is compared with the grindstone method because the anodic oxide film is crushed by the rolling high pressure roller 52 as compared with the grindstone grinding method. The roughness is also good, and there are no problems caused by the grindstone such as clogging of the grindstone and wear of the grindstone. Accordingly, it is possible to solve the problem that has occurred in the grinding wheel polishing method in which the grinding wheel must be frequently replaced.
[0028]
When the anodic oxide film subjected to the vanishing process was observed with an electron microscope (SEM), the surface layer side of the pore layer of the anodic oxide film was bent. This photograph is shown in FIG. In the lower part of the photograph in FIG. 4, the reference dimensions of 50000 times and 100 nm are written as magnifications. According to this photograph, it can be seen that the pore layer of the anodic oxide film is bent in the direction perpendicular to the axis with respect to the pore core of the pore of the pore layer.
[0029]
Furthermore, when the high-speed alumite treatment is performed during the formation of the anodic oxide film as in this embodiment, the current density is high, and therefore the temperature of the member to be treated 4 tends to be high due to Joule heat. In this case, problems such as “burn” occur. In this respect, in the present embodiment, the burnishing device 5 in which the strong pressure roller 52 is retracted is used, and the alumite treatment is performed while rotating the burnish cylinder 50 of the burnishing device 5, so that centrifugal force also acts on the alumite treatment liquid. In particular, a centrifugal force also acts on the anodized treatment liquid in the gap 49. Therefore, the anodized treatment liquid flows not only by the driving force of the pump 38 but also by the centrifugal force, which is advantageous in increasing the flow rate of the anodized treatment liquid. Therefore, the circulation property of the alumite treatment liquid is improved, which is advantageous for reducing the increase in the temperature of the member 4 to be treated, and for reducing or avoiding “burning”.
[0030]
Further, since the strong pressure roller 52 can be expected to function as an agitating blade during anodizing, the anodizing treatment liquid accommodated in the member to be treated 4 can be agitated to avoid local accumulation of the anodizing treatment liquid. In this sense, the circulation property of the alumite treatment liquid is improved, which is advantageous in reducing or avoiding “burning”.
[0031]
According to this embodiment, the burnish cylinder 50 of the burnishing apparatus 5 not only holds the strong pressure roller 52 but also functions as a cathode during anodizing. Immediate Chi, the bar burnishing device 5 can be achieved both anodized and burnishing process. Therefore, according to the present embodiment, when the member 4 to be processed is held integrally with the holding portion 21 of the container 2, both the alumite treatment and the burnishing can be achieved without removing the member 4 to be processed, and the workability is also good.
[0032]
Further, according to the present embodiment, the high pressure roller 52 performs processing while pressing the inner peripheral surface of the cylindrical body 45 of the member 4 to be processed, which is a method of processing by repeating local compression. Therefore, the processing force can be reduced as compared with a mode in which the entire anodic oxide film is processed at one time, which is advantageous in avoiding cracking of the anodic oxide film. Moreover, it is advantageous for downsizing the burnishing apparatus 5.
[0033]
Furthermore, according to the present embodiment, the surface layer side of the pore layer of the anodized film can be bent as described above, so that not only the surface roughness is improved but also the varnishing is expected to be used as the pore layer sealing treatment. it can. Therefore, when the member to be treated 4 is used, it is possible to reduce or avoid the intrusion that may cause corrosion from entering the pores of the pore layer, thereby contributing to the improvement of the corrosion resistance of the anodic oxide film.
[0034]
Further, according to this embodiment, when another substance such as a colored substance is attached to the pores of the pore layer, it can be expected that the anodized film is subjected to a sealing process by applying a burnishing process. In addition, when a colored substance is attached to the pores of the pore layer, it is advantageous for reducing or avoiding the detachment of the colored substance attached to the pores of the pore layer due to the sealing action accompanying the burnishing. In terms of meaning, it can contribute to prevention of fading in the anodic oxide film.
[0035]
In addition, according to the present embodiment, the burnishing is performed on the anodized film of the member to be treated 4 in the alumite treatment liquid, which is a liquid, so that the frictional heat during the burnishing is reduced and the lubricity is ensured. It is advantageous, and therefore advantageous for good vanishing .
According to the embodiment noted above, the anodic oxide film is formed on the member to be processed 4 at A Rumaito process, then subjected to burnishing processing was discontinued anodized, further followed discontinued again anodized to burnishing processing in in you laminating an anodic oxide film on the member to be processed 4. Alternatively, a anodic oxide film may be formed on the member 4 to be processed by anodizing, and the anodized film being formed may be burnished.
[0036]
In the above example, the anodic oxide film immersed in the alumite treatment solution is burnished. However, the present invention is not limited to this, and the member to be treated 4 is taken out from the container 2 into the outside air during the burnishing. Among them, the anodic oxide film may be burnished.
According to the above-described embodiment, the high-speed alumite process is performed. However, the present invention is not limited to this, and a normal alumite process may be used. Furthermore, although the sulfuric acid solution is used as the alumite treatment liquid, the present invention is not limited to this, and a known alumite treatment liquid such as an oxalic acid solution or a chromic acid solution may be adopted.
[0037]
In the above-described example, the anodized film is formed on the inner peripheral surface of the cylindrical body 45 of the member 4 to be processed. However, the anodized film is formed on the outer peripheral surface of the cylindrical body 45 and the anodized film formed on the outer peripheral surface. The film may be strongly pressed by the strong pressure roller 52. In this case, the diameter of the burnish cylinder 50 of the burnishing apparatus 5 is larger than the diameter of the cylinder 45 of the member to be processed 4, and the outer peripheral surface of the cylinder 45 of the object to be processed 4 is the burnish cylinder of the burnishing apparatus 5. Surround with 50. Furthermore, an anodized film may be formed on both the inner peripheral surface and the outer peripheral surface of the cylindrical body 45 of the member 4 to be processed.
[0038]
Furthermore, although the substantially cylindrical strong pressure roller 52 having a taper is used as the strong pressure body, the present invention is not limited to this, and a spherical strong pressure body may be used.
5 and 6 show a modification of the burnishing apparatus. The varnish processing apparatus 80 shown in FIG. 5 includes a varnish cylinder 81, a strong pressure roller 82 held by the varnish cylinder 81, a rotary body 83 provided in the burnish cylinder 81, and a rotary body 83. And a hammer 84. As the rotating body 83 rotates, the hammer 84 strikes the strong pressure roller 82 to project outward in the radial direction of the burnish cylinder 81, so that the anodic oxide film on the inner peripheral surface of the cylindrical body 45 of the member 4 is locally Repeated compression process.
[0039]
According to the example in FIG. 6, an anodized film is formed on the inner peripheral surface of the cylindrical body 45 of the member to be processed 4, and the outer diameter is a minute amount larger than the inner diameter of the cylindrical body 45 of the member to be processed 4. A sphere 88 made of a hard material having the above is used. Since the spherical body 88 is forcibly press-fitted into the cylindrical body 45 of the member 4 to be processed, the anodized film on the inner peripheral surface of the cylindrical body 45 of the member 4 to be processed is subjected to compression processing.
[0040]
In each of the above examples, a varnish processing device that performs varnish processing as a local compression processing means is adopted, but is not limited thereto, and in some cases, a rotary forging device that forges while rotating a strong pressure body, A rotary swaging apparatus can also be employed.
In the above example, the basic shape of the member to be processed 4 is a cylindrical shape, but is not limited to this, and may be a flat plate shape, a disk shape, or a lump shape.
[0041]
In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be appropriately selected as necessary within the scope not departing from the gist.
(Appendix)
The following technical idea can also be grasped from the embodiment described above.
The method according to claim 1, wherein the local compression processing is performed in a liquid such as an alumite treatment liquid.
The method according to claim 1, wherein the member to be treated contains primary crystal Si particles.
○ The local compression processing means has a base made of a conductive material immersed in an alumite treatment solution, the base faces the surface to be treated of the member to be treated, and functions as a cathode during the alumite treatment. The apparatus according to claim 3.
A member made of an aluminum alloy that includes an anodic oxide film and in which the pore layer of the anodic oxide film is bent in a direction perpendicular to the axis with respect to the pore core of the pore of the pore layer.
-A member made of an aluminum alloy having an anodized film having a pore layer whose surface layer portion is locally compressed at least.
-An aluminum-based processed member having a sliding surface, a container for containing an alumite treatment liquid, and a local compression processing means having a strong pressure member that applies local compression processing to the sliding surface of the processed member. Using the alumite treatment step of forming an anodic oxide film on the sliding surface of the member to be processed by energizing the member to be processed while the sliding surface of the member to be processed and the alumite treatment liquid are in contact with each other A method for producing a sliding member, wherein a local compression process is applied to the anodic oxide film on the sliding surface by a strong pressure member of a local compression process means after or during the formation of the anodized film.
[0042]
【The invention's effect】
According to the methods of claims 1 and 2, even when a high-speed alumite treatment is performed, even when a member to be treated contains Si, of course, even when a normal alumite treatment is performed, Even when the processing member does not contain Si, the anodic oxide film becomes uniform, the surface roughness of the anodic oxide film becomes small, and the surface roughness becomes a good value.
[0043]
According to the method of claims 1 and 2, the high pressure roller body is processed while pressing the surface to be processed of the member to be processed, so to speak, it is a method of processing by repeating local compression. Therefore, the processing force can be reduced as compared with the case of processing the whole of the anodic oxide film at one time, which is advantageous for avoiding cracking of the anodic oxide film, and also for reducing the size of the local compression processing means.
[0044]
According to the method of claim 2, since the local compression processing is performed while rotating the high pressure body of the local compression processing means, it is advantageous for bending the surface layer side of the pore layer of the anodized film, A function as a process can also be expected. Therefore, when another substance is adhered to the pore layer, it is advantageous to reduce or avoid the substance from falling off the pores of the pore layer.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing an apparatus used in an embodiment.
FIG. 2 is a longitudinal sectional view of a main part of the burnishing device.
FIG. 3 is a cross-sectional view of a main part of the burnishing device.
FIG. 4 is a photomicrograph showing the metal structure in the pore layer of the anodized film.
FIG. 5 is a cross-sectional view schematically showing a state in which a member to be processed is burnished by a burnishing apparatus according to another example.
FIG. 6 is a longitudinal sectional view schematically showing a state in which a member to be processed is burnished by a burnishing apparatus according to another example.
[Explanation of symbols]
In the figure, 1 is an alumite treatment liquid, 2 is a container, 38 is a pump, 4 is a member to be treated, 45 is a cylindrical body, 5 is a varnish processing device (local compression processing means), 52 is a high pressure roller (high pressure body), Reference numeral 53 denotes an urging member.

Claims (2)

被処理面をもつアルミ系の被処理部材と、アルマイト処理液を収容する容器と、該被処理部材の被処理面に局部的圧縮加工を加える強圧体をもつ局部的圧縮加工手段とを用い、
該被処理部材の被処理面と該アルマイト処理液とを接触させ、且つ、該局部的圧縮加工手段を陰極に設定した状態で、該被処理部材に通電して該被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理工程を実施し、
該陽極酸化膜の形成中に、該被処理面の陽極酸化膜に該局部的圧縮加工手段の強圧体により局部的圧縮加工を加えることを特徴とするアルマイト処理方法。
Using an aluminum-based processed member having a surface to be processed, a container for containing an alumite processing liquid, and a local compression processing means having a strong pressure member that applies local compression processing to the surface to be processed of the processed member,
In a state where the surface to be processed of the member to be processed and the alumite treatment liquid are in contact with each other and the local compression processing means is set to the cathode, the surface to be processed is energized to the member to be processed. An anodizing process to form an anodic oxide film on the
An alumite treatment method comprising applying a local compression process to the anodized film on the surface to be processed by a strong pressure member of the local compression process means during the formation of the anodized film.
被処理面をもつアルミ系の被処理部材と、アルマイト処理液を収容する容器と、該被処理部材の被処理面に局部的圧縮加工を加える強圧体をもつ局部的圧縮加工手段とを用い、
該被処理部材の被処理面と該アルマイト処理液とを接触させ、且つ、該局部的圧縮加工手段を陰極に設定した状態で、該被処理部材に通電して該被処理部材の被処理面に陽極酸化膜を形成するアルマイト処理工程を実施し、
該陽極酸化膜の形成中に、該局部的圧縮加工手段の強圧体を回転させつつ、該被処理面の陽極酸化膜に局部的圧縮加工を加え、該陽極酸化膜のポア層の少なくとも表層部分を曲成することを特徴とするアルマイト処理方法。
Using an aluminum-based processed member having a surface to be processed, a container for containing an alumite processing liquid, and a local compression processing means having a strong pressure member that applies local compression processing to the surface to be processed of the processed member,
In a state where the surface to be processed of the member to be processed and the alumite treatment liquid are in contact with each other and the local compression processing means is set to the cathode, the surface to be processed is energized to the member to be processed. An anodizing process to form an anodic oxide film on the
During the formation of the anodized film, a local compression process is applied to the anodized film on the surface to be processed while rotating the high pressure member of the local compressing means, and at least the surface layer portion of the pore layer of the anodized film An alumite treatment method characterized by forming a curve.
JP14362095A 1995-06-09 1995-06-09 Anodizing method Expired - Fee Related JP3896598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14362095A JP3896598B2 (en) 1995-06-09 1995-06-09 Anodizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14362095A JP3896598B2 (en) 1995-06-09 1995-06-09 Anodizing method

Publications (2)

Publication Number Publication Date
JPH08337896A JPH08337896A (en) 1996-12-24
JP3896598B2 true JP3896598B2 (en) 2007-03-22

Family

ID=15342990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14362095A Expired - Fee Related JP3896598B2 (en) 1995-06-09 1995-06-09 Anodizing method

Country Status (1)

Country Link
JP (1) JP3896598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595830B2 (en) * 2006-02-23 2010-12-08 株式会社デンソー Anodized processing method and apparatus, and anodized processing system
JP4868020B2 (en) 2008-12-26 2012-02-01 株式会社デンソー Aluminum anodizing method and anodized aluminum

Also Published As

Publication number Publication date
JPH08337896A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
JP5149607B2 (en) Friction stirrer and friction stir process
HUT73477A (en) Method for treating a metal surface
EP2460909B1 (en) Conditioning of an aluminium strip
JP2010037607A (en) Aluminum alloy member and method of manufacturing the same
JP2008535672A (en) Super-finished high density carbide
Fayazfar et al. An overview of surface roughness enhancement of additively manufactured metal parts: a path towards removing the post-print bottleneck for complex geometries
US20070137037A1 (en) Controlled surface modification as an intermediate step in the surface texturing of work rolls
KR100936395B1 (en) Manufacturing method shell
JP3896598B2 (en) Anodizing method
US20130248486A1 (en) Electron beam polishing of aluminum
JP2011137206A (en) Plating pretreatment method of aluminum alloy
JP4060627B2 (en) Roughened steel sheet and roughening method
JP2011162850A (en) Plating pretreatment method for aluminum alloy
JP2017066526A (en) Method for manufacturing member having metal composite layer and member having aluminum nickel composite layer
CA2540340C (en) Surface modification of aluminum alloy products for micro-arc oxidation processes
TWI489008B (en) Metal substrate having wear resistance and lubricity and method for manufacturing the same
US20070137038A1 (en) Work rolls having an engineered surface texture prepared by controlled surface modification after chrome coating
US20020033379A1 (en) Method for hydrophilic treatment of metal surface
WO2014024899A1 (en) Surface modification method for carbon steel
US8840739B2 (en) Corrosion resistance of magnesium alloy article surfaces
JPH10315651A (en) Manufacture of support for lithographic printing plate
JP6097904B2 (en) Surface processing method of aluminum substrate
CN111349930A (en) Aluminum alloy laser surface composite modification method
JP2007111742A (en) Roll for discharge coating rolling, consumable electrode for surface treatment and discharge coating device of roll for rolling, and surface treatment method of roll for rolling
JPH10237693A (en) Sliding member made of aluminum alloy and cylinder made of aluminum alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees