JP3896176B2 - Near-infrared fluorescent tracer and fluorescent imaging method - Google Patents

Near-infrared fluorescent tracer and fluorescent imaging method Download PDF

Info

Publication number
JP3896176B2
JP3896176B2 JP14995996A JP14995996A JP3896176B2 JP 3896176 B2 JP3896176 B2 JP 3896176B2 JP 14995996 A JP14995996 A JP 14995996A JP 14995996 A JP14995996 A JP 14995996A JP 3896176 B2 JP3896176 B2 JP 3896176B2
Authority
JP
Japan
Prior art keywords
tracer
infrared
infrared fluorescent
dye
icg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14995996A
Other languages
Japanese (ja)
Other versions
JPH09309845A (en
Inventor
雅貴 治部
薫 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP14995996A priority Critical patent/JP3896176B2/en
Publication of JPH09309845A publication Critical patent/JPH09309845A/en
Application granted granted Critical
Publication of JP3896176B2 publication Critical patent/JP3896176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外線蛍光トレーサーに関する。
【0002】
【従来の技術】
厚みのある生体試料(人体等)の内部の様子を光を使って体外計測する手法は、医学研究や疾病の診断・治療にとって重要である。特に腫瘍の位置・大きさを画像診断によって予め知る事は、腫瘍の摘出にとって重要な技術であり、すでにいくつかの方法が知られている。
【0003】
例えば、放射性同位元素(RI)による腫瘍組織や神経軸策流の画像診断は、被爆・汚染の懸念があり管理が煩雑であるという問題がある。また、管理区域外では利用できないため、手術時への応用は難しいという問題がある。例えば、神経筋接合部近傍に物質を投与すると、神経細胞がその物質を取り込み、神経終端から細胞体に向かって能動的に運搬する現象(神経軸策流)が知られており、神経軸策流のスピードが正常に比べ低下している場合は、その神経細胞に何らかの障害があると診断できることが知られている。実際、この診断にRIを用いる試みがなされているが、腫瘍の診断と同様の問題点を有している。
【0004】
またX線CT技術は、被爆の問題は放射性同位元素の場合と同様であり、また、装置が大型であり、被験者を断層撮影装置の奥まった内部に置かなければならないので、手術時への応用は難しいという問題もある。
【0005】
【発明が解決しようとする課題】
本発明は以上の問題点に鑑みなされたものである。すなわち、厚みのある生体試料(人体等)の内部の様子を近赤外蛍光により体外計測するための毒性の低い生体に使用可能な新規トレーサーを提供するものであり、また該トレーサーを用いた体外計測イメージング法を提供するものである。
【0006】
【課題を解決するための手段】
近赤外光は生体への透過性が高いため、近赤外蛍光を放つ色素を体内に分布させてその体外計測を行い、種々の診断等に応用することが可能と考えられる。さらに、この方法においてはハロゲンランプ、CCDカメラ、光学フィルターとレンズなど、小型で安価な装置のみの構成で実現できる。
【0007】
一方、色素については、トレーサーとして生体に用いた場合はその毒性が問題になり、使用できる色素に制限がある。この毒性の問題から、トレーサー色素として使用可能なももの1つとしてインドシアニングリーンが実際に臨床応用されている。この色素は有機溶媒中で近赤外蛍光(835nm)を放ち、またこれを使って眼底血管を蛍光観察した例がある。
【0008】
しかし、この色素は無極性溶媒(有機溶媒等)中では蛍光性であるが、極性溶媒(水溶液等)中では無蛍光であり、上記の色素としてはこのままでは使用できないものである。
【0009】
本発明者は以上の点に鑑み鋭意研究し、毒性のない近赤外線蛍光色素を有し、しかも水溶性である新規な近赤外線蛍光トレーサーを見出すことに成功した。すなわち、インドシアニングリーンのような毒性の低い、しかし水溶液では実質的に蛍光性でない色素を適当な高密度リポ蛋白質等と複合体を形成することにより、蛍光性となることを見出し、この知見に基づき上記複合体を近赤外線蛍光トレーサーとすることに成功した。また被検出物を特異的に認識可能とする認識部をさらに有する近赤外線蛍光色素トレーサーを見出し、この知見に基づき上記複合体を、被検出物を特異的に認識する近赤外線蛍光トレーサーとすることに成功した。
【0010】
より詳しくは、本発明は、少なくとも近赤外線蛍光色素と、脂溶性成分を含有すR物質とを有する複合体からなる近赤外線蛍光トレーサーを提供するものである。
【0011】
また、本発明は、少なくとも近赤外線蛍光色素と、脂溶性成分を含有する物質と、被検出物認識部からなる近赤外線蛍光トレーサーを提供するものである。
【0012】
さらには、本発明は、赤外線蛍光色素がインドシアニングリーン系色素であり、前記脂溶性成分を含有する物質が高密度リポ蛋白質であることを特徴とする近赤外線蛍光トレーサーを提供するものである。
【0013】
また、本発明は、被検出物認識部が抗体であることを特徴とする近赤外線蛍光トレーサーを提供するものである。
【0014】
さらには、本発明は、近赤外線蛍光トレーサーを生体(ヒトを除く。)内に導入し、生体を励起光照射し、トレーサーからの近赤外線蛍光を検出することにより体外蛍光イメージングする方法を提供するものである。
【0015】
以下実施の形態に即して本発明をさらに詳しく説明する。
【0016】
【発明の実施の形態】
(近赤外線トレーサー)
本発明に係る近赤外線トレーサーは、近赤外領域に蛍光波長を有する色素を含むものであり、該蛍光を検出することにより追跡可能とするものである。ここで好ましい近赤外領域は、700nm、より好ましくは800nm以上の範囲であり、また上限は特に限定されないが、実際の有機系色素においては1200nm〜1600nm程度の範囲である。該色素自体は、少なくとも被検出物が存在する媒体中で蛍光性を有するものである必要があるが、以下に説明するように必ずしも水溶液中では蛍光性である必要はない。
【0017】
また、本発明に係るトレーサーを生物体内で使用する際には特に必要な特性として水溶性であること(生体内液体媒体に溶けること)と、該生体に対して毒性がないことが望ましい。上記の2つの特性を兼備する色素であれば本発明においては特に限定されることはないが、本発明においては、例えばインドシアニングリーン系の色素が好ましく使用可能である。実際インドシアニングリーン系の色素は水溶性であり、肝循環機能検査用薬として使用されるものであり毒性の点では問題はない。
【0018】
さらに、本発明に係る近赤外線トレーサーは、好ましくは該色素が他の生体成分に結合した複合体である。該色素が結合し得る他の生体成分としては、特に限定はないが、本発明に係るトレーサーの使用目的により種々の生体成分を選択可能である。例えば、(1)上記色素が生体内液体媒体(例えば血液、脊髄液等)に不溶性である場合に、可溶化するために種々の生体成分と複合体を形成させることも可能であるし、(2)逆に、上記色素が生体内液体媒体(例えば血液、脊髄液等)には可溶性であるにもかかわらず、水溶性の生体内液体媒体中では、十分蛍光性でなく、むしろ非水溶媒中で蛍光性となる場合に、種々の生体成分と複合体を形成させることで蛍光性とすることも可能であるし、(3)さらに、以下で説明するように本発明に係るトレーサーに被検出物を特異的に認識する部を導入するために適当な生体成分と複合体を形成することも可能である。
【0019】
実際、上記のインドシアニン系色素は、毒性の点ではまったく問題ではないが、水溶性溶媒中では実質的に非蛍光性である。従って、本発明の実施例で示されるように、インドシアニン色素を脂溶性成分を有する生体成分である高密度リポ蛋白質と複合体を形成させることにより、インドシアニン色素を含みかつインドシアニン色素を蛍光性とすることができる。
【0020】
さらに、好ましくは本発明に係る近赤外線トレーサーは、上記色素に他の生体成分を複合体化したものにさらに被検出物を特異的に認識する部を有するものである。上記認識部は、被検出物を特異的に認識すればよく、特に限定されることはない。例えばよく知られている、蛋白質−蛋白質の相互作用に基づくもの、例えば抗原抗体結合、レセプターリガンド結合等に基づくものが可能である。さらには、被検出物としては、特に限定されないが、種々の生体内の細胞(例えばガン細胞)が可能である。上記の認識部を設ける方法は、特に限定されないが、例えば通常の蛋白質の化学修飾反応で用いられる結合形成反応が好ましく使用可能である。上記説明した場合、蛍光色素を含み、かつ被検出物を特異的に認識する認識部を有するトレーサーが構成されることとなる。
【0021】
(近赤外線トレーサーを用いたイメージング)
本発明に係る近赤外線トレーサーは、生体内で生体内液体媒体中で可溶性であり、かつ近赤外線領域で蛍光性を有するものである。従って、該トレーサーを生体内に導入し、該トレーサーが、拡散または体液の流動等により生体内を移動し、その位置及び濃度変化を生体外から該トレーサーに基づく蛍光を観察することでリアルタイムにイメージングすることが可能となる。
【0022】
例えば、インドシアニングリーン−高密度リポ蛋白質(ICG−HDL)複合体に、抗腫瘍抗体を化学的に結合させることで、生体内での外腫瘍の位置及び大きさをリアルタイムで体外計測可能となる。この際イメージング装置が小型でリアルタイム計測できるので、該腫瘍の切除手術中にも用いることが出来るものである。この際腫瘍組織と正常組織の弁別がその場で出来るので、正常組織を無駄に切除したり腫瘍組織を切除し残す事がなくなることとなる。
【0023】
また他の表面抗原(組織表面に出たリセプター蛋白やウイルスの外皮蛋白)に対する抗体を標識することにより、腫瘍に限らず任意の抗原が生体内のどの部分に存在するのか、また、ウイルスに感染した組織はどれかを簡便かつ特異的に認識することが可能であり、種々の疾患への診断試薬及び診断方法へ使用可能となる。
【0024】
例えば、神経軸策流の画像診断として、上記ICG−HDL単体を神経筋接合部近傍に投与すれば、神経細胞に取り込まれ、軸策流に乗り、得られる蛍光を体外計測することで軸策流の測定が観察可能である。
【0025】
本発明に係る上記トレーサーを使用し、該トレーサーからの蛍光を体外計測するための装置についても特に限定はないが、通常の励起光源と、必要ならば励起光源用フィルターにより最適な励起光を試料の生体の外部へ照射し、該励起光により生じる該色素からの蛍光を蛍光検出器で検出する。この際必要ならば、該色素からの蛍光のみを選択するためにフィルターを使用することも可能である。さらに、得られた蛍光情報をデーター処理することによりイメージングするものが好ましい。この際上記データー処理装置につても特に限定されることはないが、例えば「ARGUS20(浜松ホトニクス株式会社製)」が使用可能である。
【0026】
さらには、上記説明したイメージングにより、本発明に係るトレーサー、例えばICG−HDLに抗腫瘍抗体を化学的に結合させることで、腫瘍の位置・大きさを体外計測できることとなる。この手法を例えば手術中に行うと、腫瘍組織と正常組織の正確な区別により、正常組織を無駄に切除したり腫瘍組織を切除し残すのを防ぐための装置の開発に利用され得ることとなる。この際、ICG−HDLへ抗体を結合させるには、すでに説明したように例えば、HDL部分と抗体を結合(蛋白質間の架橋反応、通常アミノ基間をグルタルアルデヒドで架橋する等)させる方法、または、ICG部分を抗体のアミノ基に架橋する方法等が可能である。
【0027】
(実施例)
以下のように、近赤外領域蛍光色素インドシアニングリーン(ICG)とヒト高密度リポプロテイン(HDL)との複合体(ICG−HDL)を調整したものを使用した。ここで使用したHDLは脂質と蛋白質が結合した血中蛋白成分である。ICGは上で説明したように該HDLの脂質部分に溶解して、その結果蛍光性となるものである。得られる複合体は水に可溶であり、従ってICG−HDLは生体内の種々の部分にも投与可能であり、かつその近赤外蛍光を体外から観測するものである。
【0028】
ICGは実際に臨床検査で人体に投与されているものであり、またHDLも元来生体成分であるので、この複合体を外部から人体に投与しても毒性は少ない。
【0029】
(1) ICG(ジアグノグリーン、第一製薬)20.5mgを蒸留水4mlに溶解し、約5.1mg/ml(=5.54mM)水溶液を調整した。
【0030】
ヒト高密度リポ蛋白溶液(HDL,Kappel社製、20mg/ml)250μlに、ICG水溶液2.5μlを加え攪拌し、色素ー蛋白複合体(ICG−HDL)を調整した。この複合体溶液中のICG濃度は約55.4μMである。
【0031】
(2) ICG−HDLの光学的特性。
【0032】
上記のICG−HDLをリン酸緩衝化生理食塩水(PBS)にて50倍に希釈し、この蛍光スペクトル(未補正)を測定した。また、比較のために同じ濃度の有機溶媒(DMSO)溶液のスペクトルも測定した。結果を図1に示す(なお、未補正のスペクトルであり、蛍光極大値は文献値(A. Schneider, A. Kaboth, L. Neuhauser : Detection of subretinal neovascular membranes with indocyanine green and an infrared scanning laser ophthalmoscope, American J. of Ophthalmol., 113-1, 45/51 (1992)とは一致しない)。
【0033】
この結果から、ICG−HDL複合体はDMSO溶液と同様の蛍光スペクトルを示すことが明らかである。すなわち、DMSO溶液に対して、ICG−HDLは58.3%の蛍光強度(波長835nm)を示す。
【0034】
(3) ICG−HDLを用いた近赤外線蛍光イメージング。
【0035】
上記得られた、ICG−HDLを実際に生きた実験動物に投与し、ICGの近赤外蛍光を画像化して、ICG−HDLが体内に分布していく様子を体外計測した。図2には本実施例で使用した測定系の概略を示す。すなわち、実験動物3にICG−HDLトレーサー4を導入した後、150Wのハロゲンランプにバントバスフィルター(中心波長720nm)を装着して励起光源1とし、この光を光ファイバー2を介して実験動物3に照射する。発生するICG−HDLの近赤外蛍光の検出にはTVレンズ(FUJINON CF8A1:1.8/8)を装着したCCDカメラ(C2400−75i 浜松ホトニクス(株)製)6を用いた。ただし、CCDカメラの赤外カットフィルターは除去し、TVレンズにシャープカットフィルター(透過波長840nm以上)5をセットする。CCDカメラ6の信号は画像処理装置7(ARGUS20(浜松ホトニクス(株)製))にて取り込む。
【0036】
すなわち、生後3日のウイスター系ラット(オス)の右脳にICG−HDL溶液25μlを注射器にて注入した。図3にその反射光像(シャープカットフィルターなし)と近赤外蛍光像(シャープカットフィルター装着)を示す。
【0037】
図3は投与直後の頭部の映像である(蛍光像におけるCCDカメラの露光時間は1秒間)。投与部位を中心に前頭部にICG−HDLが分布しているのが分かる。図4は投与後1時間の頭部の映像である(露光1秒間)。蛍光像よりICG−HDLの分布が後頭部に移ってきているのが分かる。また図5は投与後8時間の体全体の映像である(右が頭部、左が尾部。露光8秒間)。脊髄の終端にICG−HDLが移動してきたのが分かる。さらに、図6には、以上の時間変化の結果を、得られた蛍光強度と時間との関係を明らかにするために模式的に示したものである。
【0038】
この結果は、ICG−HDLが脳から脊髄の中へと、体表より深い部分を移動していく様子が生きた実験動物で経時的に観察できることを明確に示している。これはまた、厚みを持った生体試料の観察にICG−HDLをトレーサーとして使用可能であることを示している。
【0039】
【発明の効果】
本発明に係るトレーサーの構成、すなわち、近赤外領域蛍光色素と、適当な生体物質との複合体は、生体内体液中で可溶であり、さらに、水溶液では蛍光色素としては使用不可能である毒性の低い色素を水溶液でも蛍光性とするものである。従って、本発明に係るトレーサーを、蛍光検出装置(励起光源、CCDカメラ等の検出系、および画像処理装置)とともに用いることにより生体外で計測してイメージングすることが可能となる。
【0040】
すなわち、X線源・レ−ザ−光源・断層撮影用検知器・高速コンピューター等は必要なく、同等のイメージングが可能となる。さらに、簡便・安価なために、リアルタイムイメージング(例えば手術中)の応用も可能とする。
【0041】
また、ICG単体を用いた血管造影では適応部位が限られたが、ICG−HDLを用いればそうした制限はない。
【図面の簡単な説明】
【図1】インドシアニングリーン色素のDMSO中での蛍光スペクトルと、本発明に係るインドシアニン−高密度リポ蛋白質複合体の水溶液中での蛍光スペクトルを示す図である。
【図2】本発明に係るインドシアニン−高密度リポ蛋白質複合体をトレーサーとして用いた、イメージングのための測定系の概略を示す図である。
【図3】ICG−HDLを投与したラットの投与直後の反射光像(上)と近赤外蛍光像(下)を示す顕微鏡写真である。
【図4】ICG−HDLを投与したラットの投与後1時間の反射光像(上)と近赤外蛍光像(下)を示す顕微鏡写真である。
【図5】ICG−HDLを投与したラットの投与後8時間の反射光像(上)と近赤外蛍光像(下)を示す顕微鏡写真である。
【図6】ICG−HDLを投与したラットの投与後の時間変化の結果を、得られた蛍光強度と時間との関係を模式的に示した図である。
【符号の説明】
1…励起光源、2… 光ファイバー、3…試料(ラット新生児)、4…ICG−HDLトレーサー、5…シャープカットフィルター(840nm)、6… 検出機(カメラ)、7…画像処理装置、8…蛍光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a near infrared fluorescent tracer.
[0002]
[Prior art]
A technique for measuring the internal state of a thick biological sample (human body, etc.) using light is important for medical research and diagnosis / treatment of diseases. In particular, knowing the position and size of a tumor in advance by image diagnosis is an important technique for removing a tumor, and several methods are already known.
[0003]
For example, there is a problem that image diagnosis of a tumor tissue or a nerve axillary flow using a radioisotope (RI) has a problem of exposure and contamination and is complicated to manage. Moreover, since it cannot be used outside the management area, there is a problem that it is difficult to apply it during surgery. For example, when a substance is administered in the vicinity of the neuromuscular junction, a phenomenon is known in which nerve cells take up the substance and actively transport it from the nerve terminal toward the cell body (nerve axon flow). It is known that when the flow speed is lower than normal, the nerve cell can be diagnosed as having some kind of disorder. In fact, attempts have been made to use RI for this diagnosis, but it has the same problems as tumor diagnosis.
[0004]
The X-ray CT technology has the same exposure problems as those of radioisotopes, and the device is large and the subject must be placed inside the tomography device. There is also a problem that is difficult.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems. That is, the present invention provides a new tracer that can be used for a low-toxicity living body for measuring the internal state of a thick biological sample (human body, etc.) in vitro by using near-infrared fluorescence. A measurement imaging method is provided.
[0006]
[Means for Solving the Problems]
Since near-infrared light is highly permeable to living organisms, it is considered that pigments that emit near-infrared fluorescence are distributed in the body and measured outside the body, and can be applied to various diagnoses and the like. Further, this method can be realized only with a small and inexpensive apparatus such as a halogen lamp, a CCD camera, an optical filter and a lens.
[0007]
On the other hand, when used as a tracer in a living body, its toxicity becomes a problem, and there is a limit to the dye that can be used. Because of this toxicity problem, indocyanine green has actually been clinically applied as one of the tracer dyes that can be used. This dye emits near-infrared fluorescence (835 nm) in an organic solvent, and there is an example of using this to observe fluorescence of the fundus blood vessel.
[0008]
However, this dye is fluorescent in a nonpolar solvent (such as an organic solvent), but is non-fluorescent in a polar solvent (such as an aqueous solution), and cannot be used as it is.
[0009]
The present inventor conducted intensive research in view of the above points and succeeded in finding a novel near-infrared fluorescent tracer having a non-toxic near-infrared fluorescent dye and water-soluble. In other words, it was found that a dye having low toxicity such as indocyanine green but not substantially fluorescent in an aqueous solution becomes fluorescent by forming a complex with an appropriate high-density lipoprotein, etc. Based on this, the complex was successfully used as a near-infrared fluorescent tracer. In addition, a near-infrared fluorescent dye tracer that further has a recognition unit that can specifically recognize an object to be detected is found, and based on this knowledge, the complex is a near-infrared fluorescent tracer that specifically recognizes the object to be detected. succeeded in.
[0010]
More specifically, the present invention provides a near-infrared fluorescent tracer comprising a complex having at least a near-infrared fluorescent dye and an R substance containing a fat-soluble component.
[0011]
The present invention also provides a near-infrared fluorescent tracer comprising at least a near-infrared fluorescent dye, a substance containing a fat-soluble component, and an object recognition unit.
[0012]
Furthermore, the present invention provides a near-infrared fluorescent tracer characterized in that the infrared fluorescent dye is an indocyanine green dye, and the substance containing the fat-soluble component is a high-density lipoprotein.
[0013]
The present invention also provides a near-infrared fluorescent tracer characterized in that the object recognition portion is an antibody.
[0014]
Furthermore, the present invention provides a method for in vitro fluorescence imaging by introducing a near-infrared fluorescent tracer into a living body (excluding humans) , irradiating the living body with excitation light, and detecting near-infrared fluorescence from the tracer. Is.
[0015]
Hereinafter, the present invention will be described in more detail with reference to embodiments.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(Near-infrared tracer)
The near-infrared tracer according to the present invention contains a dye having a fluorescence wavelength in the near-infrared region, and can be traced by detecting the fluorescence. Here, the preferred near infrared region is 700 nm, more preferably 800 nm or more, and the upper limit is not particularly limited, but in an actual organic dye, it is in the range of about 1200 nm to 1600 nm. The dye itself needs to be fluorescent at least in a medium in which an object to be detected exists, but does not necessarily have to be fluorescent in an aqueous solution as described below.
[0017]
In addition, when the tracer according to the present invention is used in a living body, it is desirable that it is water-soluble (dissolvable in an in-vivo liquid medium) and has no toxicity to the living body. In the present invention, there is no particular limitation as long as the dye has both of the above two characteristics, but in the present invention, for example, an indocyanine green dye can be preferably used. In fact, indocyanine green pigments are water-soluble and are used as drugs for examining hepatic circulation function, and there is no problem in terms of toxicity.
[0018]
Furthermore, the near-infrared tracer according to the present invention is preferably a complex in which the dye is bound to another biological component. Other biological components to which the dye can bind are not particularly limited, but various biological components can be selected depending on the purpose of use of the tracer according to the present invention. For example, (1) when the dye is insoluble in an in vivo liquid medium (for example, blood, spinal fluid, etc.), it is possible to form a complex with various biological components for solubilization, 2) Conversely, although the above dye is soluble in an in vivo liquid medium (for example, blood, spinal fluid, etc.), it is not sufficiently fluorescent in a water-soluble in vivo liquid medium, rather it is a non-aqueous solvent. When it becomes fluorescent, it can be made fluorescent by forming a complex with various biological components. (3) Further, as described below, the tracer according to the present invention is covered. It is also possible to form a complex with an appropriate biological component in order to introduce a part that specifically recognizes the detected substance.
[0019]
In fact, the above indocyanine dyes are not problematic at all in terms of toxicity, but are substantially non-fluorescent in water-soluble solvents. Therefore, as shown in the examples of the present invention, the indocyanine dye is formed into a complex with a high-density lipoprotein, which is a biological component having a fat-soluble component, so that the indocyanine dye is contained and the indocyanine dye is fluorescent. Can be sex.
[0020]
Furthermore, the near-infrared tracer according to the present invention preferably has a part that specifically recognizes the detection object in addition to the above-mentioned dye complexed with another biological component. The recognition unit only needs to specifically recognize an object to be detected, and is not particularly limited. For example, the well-known one based on protein-protein interaction, such as one based on antigen-antibody binding, receptor ligand binding, or the like is possible. Furthermore, the detection object is not particularly limited, but various in vivo cells (for example, cancer cells) are possible. The method for providing the recognition unit is not particularly limited, but, for example, a bond formation reaction used in an ordinary protein chemical modification reaction can be preferably used. In the case described above, a tracer having a recognition unit that includes a fluorescent dye and specifically recognizes an object to be detected is configured.
[0021]
(Imaging using near infrared tracer)
The near-infrared tracer according to the present invention is soluble in an in-vivo liquid medium in vivo, and has fluorescence in the near-infrared region. Therefore, the tracer is introduced into the living body, and the tracer moves in the living body by diffusion or fluid flow of the body fluid, and its position and concentration change are imaged in real time by observing the fluorescence based on the tracer from outside the living body. It becomes possible to do.
[0022]
For example, by chemically binding an anti-tumor antibody to an indocyanine green-high density lipoprotein (ICG-HDL) complex, the position and size of an external tumor in vivo can be measured in vitro in real time. . At this time, since the imaging apparatus is small and can be measured in real time, it can also be used during the resection of the tumor. At this time, since the tumor tissue and the normal tissue can be discriminated on the spot, the normal tissue is not cut wastefully or the tumor tissue is not left uncut.
[0023]
In addition, by labeling antibodies against other surface antigens (receptor proteins and viral coat proteins that appear on the surface of tissues), it is possible to detect which part of an organism, not just a tumor, is present in an organism, and to be infected with a virus. Thus, any tissue can be easily and specifically recognized, and can be used for diagnostic reagents and diagnostic methods for various diseases.
[0024]
For example, as an image diagnosis of nerve axon flow, if the ICG-HDL alone is administered in the vicinity of the neuromuscular junction, it is taken up by nerve cells, rides on the axon flow, and measures the fluorescence obtained in vitro. Flow measurements are observable.
[0025]
There is no particular limitation on an apparatus for measuring the fluorescence from the tracer in vitro using the tracer according to the present invention. However, an optimal excitation light can be obtained by using a normal excitation light source and, if necessary, a filter for the excitation light source. The fluorescence from the dye produced by the excitation light is detected by a fluorescence detector. If necessary, a filter can be used to select only the fluorescence from the dye. Further, it is preferable to image the obtained fluorescence information by data processing. In this case, the data processing apparatus is not particularly limited. For example, “ARGUS20 (manufactured by Hamamatsu Photonics)” can be used.
[0026]
Furthermore, the position and size of the tumor can be measured in vitro by chemically binding the antitumor antibody to the tracer according to the present invention, for example, ICG-HDL, by the imaging described above. If this technique is performed, for example, during surgery, it can be used to develop an apparatus for preventing the normal tissue from being cut unnecessarily or leaving the tumor tissue excised by accurately distinguishing the tumor tissue from the normal tissue. . At this time, in order to bind the antibody to ICG-HDL, as already described, for example, a method of binding an HDL moiety and an antibody (crosslinking reaction between proteins, usually crosslinking between amino groups with glutaraldehyde, etc.), or A method of cross-linking the ICG moiety to the amino group of the antibody is possible.
[0027]
(Example)
As described below, a complex (ICG-HDL) of a near-infrared fluorescent dye indocyanine green (ICG) and human high-density lipoprotein (HDL) was used. HDL used here is a protein component in blood in which lipid and protein are combined. ICG dissolves in the lipid portion of the HDL as described above, resulting in fluorescence. The resulting complex is soluble in water, so ICG-HDL can be administered to various parts of the living body, and its near-infrared fluorescence is observed from outside the body.
[0028]
Since ICG is actually administered to the human body in clinical examinations, and HDL is also a biological component from the beginning, even if this complex is administered to the human body from the outside, there is little toxicity.
[0029]
(1) 20.5 mg of ICG (Diagono Green, Daiichi Pharmaceutical) was dissolved in 4 ml of distilled water to prepare an aqueous solution of about 5.1 mg / ml (= 5.54 mM).
[0030]
To 250 μl of human high density lipoprotein solution (HDL, manufactured by Kappel, 20 mg / ml), 2.5 μl of ICG aqueous solution was added and stirred to prepare a dye-protein complex (ICG-HDL). The ICG concentration in this complex solution is about 55.4 μM.
[0031]
(2) Optical characteristics of ICG-HDL.
[0032]
The above ICG-HDL was diluted 50 times with phosphate buffered saline (PBS), and the fluorescence spectrum (uncorrected) was measured. For comparison, the spectrum of an organic solvent (DMSO) solution having the same concentration was also measured. The results are shown in FIG. 1 (in addition, it is an uncorrected spectrum, and the fluorescence maximum value is a literature value (A. Schneider, A. Kaboth, L. Neuhauser: Detection of subretinal neovascular membranes with indocyanine green and an infrared scanning laser ophthalmoscope, American J. of Ophthalmol., 113-1, 45/51 (1992)).
[0033]
From this result, it is clear that the ICG-HDL complex shows the same fluorescence spectrum as that of the DMSO solution. That is, ICG-HDL exhibits a fluorescence intensity of 58.3% (wavelength 835 nm) with respect to a DMSO solution.
[0034]
(3) Near infrared fluorescence imaging using ICG-HDL.
[0035]
The obtained ICG-HDL was administered to a live animal, and the near-infrared fluorescence of ICG was imaged, and ICG-HDL was distributed in the body in vitro. FIG. 2 shows an outline of the measurement system used in this example. That is, after introducing the ICG-HDL tracer 4 into the experimental animal 3, a 150 W halogen lamp is attached to the Bunt Bass filter (center wavelength 720 nm) to form the excitation light source 1, and this light is transmitted to the experimental animal 3 via the optical fiber 2. Irradiate. A CCD camera (C2400-75i manufactured by Hamamatsu Photonics) 6 equipped with a TV lens (FUJINON CF8A1: 1.8 / 8) was used to detect the near-infrared fluorescence of the generated ICG-HDL. However, the infrared cut filter of the CCD camera is removed, and a sharp cut filter (transmitted wavelength 840 nm or more) 5 is set on the TV lens. The signal from the CCD camera 6 is captured by an image processing device 7 (ARGUS20 (manufactured by Hamamatsu Photonics)).
[0036]
That is, 25 μl of ICG-HDL solution was injected into the right brain of a 3-day-old Wistar rat (male) with a syringe. FIG. 3 shows a reflected light image (without a sharp cut filter) and a near-infrared fluorescent image (with a sharp cut filter).
[0037]
FIG. 3 is an image of the head immediately after administration (the exposure time of the CCD camera in the fluorescence image is 1 second). It can be seen that ICG-HDL is distributed in the frontal region around the administration site. FIG. 4 is an image of the head 1 hour after administration (exposure 1 second). It can be seen from the fluorescence image that the distribution of ICG-HDL has moved to the back of the head. FIG. 5 is an image of the whole body 8 hours after administration (right is head, left is tail, exposure 8 seconds). It can be seen that ICG-HDL has moved to the end of the spinal cord. Further, FIG. 6 schematically shows the result of the above time change in order to clarify the relationship between the obtained fluorescence intensity and time.
[0038]
This result clearly shows that ICG-HDL can be observed over time in living experimental animals as it moves deeper than the body surface from the brain into the spinal cord. This also indicates that ICG-HDL can be used as a tracer for observing a biological sample having a thickness.
[0039]
【The invention's effect】
The structure of the tracer according to the present invention, that is, a complex of a near-infrared fluorescent dye and an appropriate biological substance is soluble in body fluids and cannot be used as a fluorescent dye in an aqueous solution. A certain less toxic dye is fluorescent even in an aqueous solution. Therefore, by using the tracer according to the present invention together with the fluorescence detection device (excitation light source, detection system such as a CCD camera, and image processing device), it is possible to measure and image in vitro.
[0040]
That is, an X-ray source, a laser light source, a tomography detector, a high-speed computer, etc. are not necessary, and equivalent imaging is possible. Furthermore, since it is simple and inexpensive, real-time imaging (for example, during surgery) can be applied.
[0041]
In addition, in the angiography using ICG alone, the adaptation site is limited, but there is no such limitation if ICG-HDL is used.
[Brief description of the drawings]
FIG. 1 is a diagram showing a fluorescence spectrum of an indocyanine green dye in DMSO and a fluorescence spectrum in an aqueous solution of an indocyanine-high density lipoprotein complex according to the present invention.
FIG. 2 is a diagram showing an outline of a measurement system for imaging using an indocyanine-high density lipoprotein complex according to the present invention as a tracer.
FIG. 3 is a photomicrograph showing a reflected light image (upper) and a near-infrared fluorescent image (lower) immediately after administration of a rat administered with ICG-HDL.
FIG. 4 is a photomicrograph showing a reflected light image (upper) and a near-infrared fluorescent image (lower) after 1 hour of administration of a rat administered with ICG-HDL.
FIG. 5 is a photomicrograph showing a reflected light image (top) and a near-infrared fluorescent image (bottom) 8 hours after administration of a rat administered with ICG-HDL.
FIG. 6 is a diagram schematically showing the relationship between the obtained fluorescence intensity and time, as a result of time change after administration of a rat administered with ICG-HDL.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Excitation light source, 2 ... Optical fiber, 3 ... Sample (rat newborn), 4 ... ICG-HDL tracer, 5 ... Sharp cut filter (840 nm), 6 ... Detector (camera), 7 ... Image processing apparatus, 8 ... Fluorescence

Claims (7)

少なくとも近赤外線蛍光色素と、脂溶性成分を含有する物質とを有する複合体からなる近赤外線蛍光トレーサー。  A near-infrared fluorescent tracer comprising a complex having at least a near-infrared fluorescent dye and a substance containing a fat-soluble component. 前記近赤外線蛍光色素がインドシアニングリーン系色素であり、前記脂溶性成分を含有する物質が高密度リポ蛋白質であることを特徴とする請求項1に記載の近赤外線蛍光トレーサー。The near-infrared fluorescent tracer according to claim 1, wherein the near-infrared fluorescent dye is an indocyanine green dye, and the substance containing the fat-soluble component is a high-density lipoprotein. 請求項1または2に記載の近赤外線蛍光トレーサーを生体(ヒトを除く。)内に導入し、前記生体を励起光照射し、前記トレーサーからの近赤外線蛍光を検出することによる体外蛍光イメージング方法。An in vitro fluorescence imaging method by introducing the near-infrared fluorescent tracer according to claim 1 or 2 into a living body (excluding a human), irradiating the living body with excitation light, and detecting near-infrared fluorescence from the tracer. 少なくとも近赤外線蛍光色素と、脂溶性成分を含有する物質と、被検出物認識部からなる近赤外線蛍光トレーサー。A near-infrared fluorescent tracer comprising at least a near-infrared fluorescent dye, a substance containing a fat-soluble component, and an object recognition unit. 前記近赤外線蛍光色素がインドシアニングリーン系色素であり、前記脂溶性成分を含有する物質が高密度リポ蛋白質であることを特徴とする請求項4に記載の近赤外線蛍光トレーサー。The near-infrared fluorescent tracer according to claim 4, wherein the near-infrared fluorescent dye is an indocyanine green dye, and the substance containing the fat-soluble component is a high-density lipoprotein. 前記被検出物認識部が抗体であることを特徴とする請求項4または5に記載の近赤外線蛍光トレーサー。6. The near-infrared fluorescent tracer according to claim 4 or 5, wherein the object recognition unit is an antibody. 請求項4〜6のいずれか1項に記載の近赤外線蛍光トレーサーを生体(ヒトを除く。)内に導入し、前記生体を励起光照射し、前記トレーサーからの近赤外線蛍光を検出することによる体外蛍光イメージング方法。By introducing the near-infrared fluorescent tracer according to any one of claims 4 to 6 into a living body (excluding a human), irradiating the living body with excitation light, and detecting near-infrared fluorescence from the tracer. In vitro fluorescence imaging method.
JP14995996A 1996-05-21 1996-05-21 Near-infrared fluorescent tracer and fluorescent imaging method Expired - Fee Related JP3896176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14995996A JP3896176B2 (en) 1996-05-21 1996-05-21 Near-infrared fluorescent tracer and fluorescent imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14995996A JP3896176B2 (en) 1996-05-21 1996-05-21 Near-infrared fluorescent tracer and fluorescent imaging method

Publications (2)

Publication Number Publication Date
JPH09309845A JPH09309845A (en) 1997-12-02
JP3896176B2 true JP3896176B2 (en) 2007-03-22

Family

ID=15486349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14995996A Expired - Fee Related JP3896176B2 (en) 1996-05-21 1996-05-21 Near-infrared fluorescent tracer and fluorescent imaging method

Country Status (1)

Country Link
JP (1) JP3896176B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881777B2 (en) 1999-09-24 2011-02-01 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US8185176B2 (en) 2005-04-26 2012-05-22 Novadaq Technologies, Inc. Method and apparatus for vasculature visualization with applications in neurosurgery and neurology
US9421280B2 (en) 2005-04-26 2016-08-23 Novadaq Technologies Inc. Real time imaging during solid organ transplant
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10231624B2 (en) 2005-08-10 2019-03-19 Nov Adaq Technologies Ulc Intra-operative head and neck nerve mapping
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083486A (en) * 1998-05-14 2000-07-04 The General Hospital Corporation Intramolecularly-quenched near infrared fluorescent probes
ATE279411T1 (en) 1998-08-12 2004-10-15 Daiichi Pure Chemicals Co Ltd FLUORescent markers
US6167297A (en) * 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
ATE375749T1 (en) 1999-09-24 2007-11-15 Ca Nat Research Council DEVICE FOR PERFORMING INTRA-OPERATIVE ANGIOGRAPHY
DE60139705D1 (en) * 2000-11-09 2009-10-08 Sicel Technologies Inc IN-VIVO DETECTION OF BIOMOLECULAR CONCENTRATIONS BY FLUORESCENT MARKERS
JP4781548B2 (en) 2001-03-14 2011-09-28 浜松ホトニクス株式会社 Breast cancer detection device
US7734325B2 (en) * 2004-09-21 2010-06-08 Carestream Health, Inc. Apparatus and method for multi-modal imaging
JP2006234637A (en) * 2005-02-25 2006-09-07 Aquas Corp Concentration control method of chemical for water treatment, and tracer material for concentration control of chemical for water treatment
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US8041409B2 (en) 2005-09-08 2011-10-18 Carestream Health, Inc. Method and apparatus for multi-modal imaging
US8660631B2 (en) 2005-09-08 2014-02-25 Bruker Biospin Corporation Torsional support apparatus and method for craniocaudal rotation of animals
US8050735B2 (en) 2005-09-08 2011-11-01 Carestream Health, Inc. Apparatus and method for multi-modal imaging
US8203132B2 (en) 2005-09-08 2012-06-19 Carestream Health, Inc. Apparatus and method for imaging ionizing radiation
US20100220836A1 (en) 2005-09-08 2010-09-02 Feke Gilbert D Apparatus and method for multi-modal imaging
US8361775B2 (en) * 2008-05-14 2013-01-29 Novadaq Technologies Inc. Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging
US8956591B2 (en) * 2008-05-15 2015-02-17 Osaka Prefectural Hospital Organization Method for detecting cancer using ICG fluorescence method
US9244017B2 (en) 2011-05-26 2016-01-26 Altria Client Services Llc Oil detection process and apparatus
US9080987B2 (en) * 2011-05-26 2015-07-14 Altria Client Services, Inc. Oil soluble taggants
US9097668B2 (en) 2013-03-15 2015-08-04 Altria Client Services Inc. Menthol detection on tobacco
US10782279B2 (en) 2014-11-11 2020-09-22 Altria Client Services Llc Method for detecting oil on tobacco products and packaging

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881777B2 (en) 1999-09-24 2011-02-01 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US8185176B2 (en) 2005-04-26 2012-05-22 Novadaq Technologies, Inc. Method and apparatus for vasculature visualization with applications in neurosurgery and neurology
US9421280B2 (en) 2005-04-26 2016-08-23 Novadaq Technologies Inc. Real time imaging during solid organ transplant
US10231624B2 (en) 2005-08-10 2019-03-19 Nov Adaq Technologies Ulc Intra-operative head and neck nerve mapping
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JPH09309845A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP3896176B2 (en) Near-infrared fluorescent tracer and fluorescent imaging method
US10314490B2 (en) Method and device for multi-spectral photonic imaging
Tanaka et al. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping
US9717806B2 (en) Method for detecting cancer using ICG fluorescence method
JP3579424B2 (en) Analyte detection by the duration of luminescence at steady state.
US8865128B2 (en) Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
JP5991975B2 (en) Tumor site identification device and identification method
US8725225B2 (en) Intraoperative imaging of renal cortical tumors and cysts
BG65173B1 (en) Near infrared spectrum domain fluorescent contrast agent and fluorescence imaging
JP2004503279A (en) Optical imaging of in vivo guided signals under ambient light conditions
WO2008109832A2 (en) Viable near-infrared fluorochrome labeled cells and methods of making and using same
US20180164218A1 (en) Raman probe and methods of imaging
NO328630B1 (en) Near infrared, fluorescent contrast agent and fluorescence imaging
WO2014062716A1 (en) Systems, methods, and apparatus for imaging of diffuse media featuring cross-modality weighting of fluorescent and bioluminescent sources
US20080253968A1 (en) In vivo examination method
JP2005195379A (en) Neoplasm image detecting method, and device therefor
CN212913171U (en) Fluorescent camera based on indocyanine green
CN109073653A (en) For marking the injection composition of lesion
WO2022033151A1 (en) Fluorescent camera based on indocyanine green, and use thereof
JP6711601B2 (en) Contrast agent for photoacoustic imaging
JP2008069107A (en) Agent for fluorescent dyeing of tissue for endoscope
Fried et al. Diagnostic Applications of Lasers
Kolokolnikov et al. Infrared Finger-Piece Sensor for ICG Concentration Measurements
Miller Fluorescence Guided Tumor Imaging: Foundations for Translational Applications
Muguruma et al. Endoscopic Molecular Imaging in Gastrointestinal Oncology

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees