JP3895150B2 - Polyester resin molded product - Google Patents

Polyester resin molded product Download PDF

Info

Publication number
JP3895150B2
JP3895150B2 JP2001340125A JP2001340125A JP3895150B2 JP 3895150 B2 JP3895150 B2 JP 3895150B2 JP 2001340125 A JP2001340125 A JP 2001340125A JP 2001340125 A JP2001340125 A JP 2001340125A JP 3895150 B2 JP3895150 B2 JP 3895150B2
Authority
JP
Japan
Prior art keywords
pet
ptt
crystallization
temperature
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001340125A
Other languages
Japanese (ja)
Other versions
JP2003138030A (en
Inventor
拓 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2001340125A priority Critical patent/JP3895150B2/en
Publication of JP2003138030A publication Critical patent/JP2003138030A/en
Application granted granted Critical
Publication of JP3895150B2 publication Critical patent/JP3895150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエチレンテレフタレート(PET)とポリトリメチレンテレフタレート(PTT)とのブレンド成形品に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
PETは、耐熱性、耐衝撃性等の機械的性質、更に透明性、耐薬品性等に優れていることから、ボトル、フィルム、繊維等に広く利用されている。ところが、PETは結晶化速度が極めて遅く成形性に劣るという欠点があり、PETの射出成形品については、現在、結晶核剤や可塑剤の添加、ガラス繊維の添加により成形性の向上が図られている。
【0003】
一方、2種以上の熱可塑性樹脂をブレンドし、それぞれの樹脂の長所を発現させるポリマーブレンドの研究も各種行われており、PETに対しても多種多様な熱可塑性樹脂のブレンドが提案されており、特に相溶性の良好な他のポリエステルとのブレンドは、好結果が期待されている。例えば、更なる高強度化、耐熱性の向上を図る目的で、PETにポリブチレンテレフタレート(PBT)やポリエチレンナフタレート(PEN)をブレンドする技術が行われている。
【0004】
しかしながら、これらの手法では、高強度化、耐熱性の向上はある程度実現できるが、結晶化速度の促進には結びつかず、成形加工性の点で未だ不十分であった。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来技術の問題点に鑑み鋭意検討した結果、PETに対しPTTを特定条件でブレンドして得られる成形品は、結晶化速度が顕著に増大し、成形加工性に優れたものであるという知見を得て、本発明を完成するに至った。
【0006】
即ち、本発明は、ポリエチレンテレフタレートとポリトリメチレンテレフタレートとを、ポリエチレンテレフタレートの融点より50〜80℃高い温度で1〜10分間溶融混練することにより溶融混合物を調製し、次いで250〜300℃で0.1〜5分間かけて成形加工してなるポリエステル樹脂成形品である。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。まず、本発明に用いられるポリエチレンテレフタレート(PET)とは、テレフタル酸又はそのエステル形成誘導体とエチレングリコール又はそのエステル形成誘導体を重縮合して得られるポリエステルであって、イソフタル酸等の公知のコモノマーを少量導入した共重合体であっても良い。
【0008】
また、本発明に用いられるポリトリメチレンテレフタレート(PTT)とは、テレフタル酸又はそのエステル形成誘導体と1,3−プロパンジオール又はそのエステル形成誘導体を重縮合して得られるポリエステルであって、イソフタル酸等の公知のコモノマーを少量導入した共重合体であっても良い。
【0009】
グリコール鎖のメチレン基数が偶数のエチレングリコールや1,4−ブタンジオールから誘導されるPETやPBTに対し、PTTはメチレン基数が奇数の1,3−プロパンジオールから誘導されるため、ポリマー物性、特に結晶化およびレオロジー的挙動が特異であるとされ、PETとPBTの長所を併せ持つポリマーとして注目されている。
【0010】
本発明の特徴は、PETにPTTを配合し、PETの融点より50〜80℃高い温度で1〜10分間両者を溶融混練した後、250〜300℃で0.1〜5分間かけて成形加工する点にある。
【0011】
ここで、一般的なポリマーブレンドにおいては、ブレンドする2種のポリマーの内の融点が高いほうのポリマーの融点付近もしくはそれより若干高い温度で溶融混練するのが通常であるが、本発明の如きPET(融点約250℃近辺)とPTT(融点約225℃近辺)のブレンド系に上記手法を適用し、PETの融点付近もしくはそれより若干高い温度で溶融混練したのでは本発明所期の効果は発現せず、PETの融点より50〜80℃高い温度で溶融混練しないと結晶化速度の増大効果は得られない。ここで、溶融混練時間は、1〜10分間程度が好ましい。
【0012】
また、本発明では、PETとPTTを溶融混練した後、250〜300℃の温度範囲で0.1〜5分間、好ましくは0.5〜3分間かけて成形加工し、相分離構造を発現させることが必要である。熱処理する目的温度は、PETとPTTのブレンド物の融点温度(Tm)である250℃以上、且つPETとPTTの相分離温度付近である300℃以下の範囲である。このような温度で、0.1〜5分間かけて成形加工すると、球晶サイズが微細化し、結晶化速度が顕著に増大する。
【0013】
即ち、PETとPTTのブレンド物の場合、前記高温の溶融温度で相溶し、その温度以下では液々相分離を生じることから、UCST(upper critical solution temperature ;上限臨界共溶温度)型の相図を有すると考えられる。また、上記の如く、ブレンド物を降温させ、等温結晶化させると、2μm 程度の微細な球晶が得られる。その結果、後記する実施例1及び比較例1〜2のデータである図1の等温結晶化中の積分強度Qの経時変化の結果から明らかなように、PET単体及びPTT単体の場合、結晶化が終了するまで、それぞれ約27秒及び28秒かかるのに対し、50/50ブレンド物の場合、わずか5秒で結晶化が終了する。
【0014】
ここで、結晶化速度は、線成長速度と結晶核生成頻度との積で表されるが、ブレンド物の線成長速度はPTT単体のそれに比べ速くならなかったことから、ブレンド物における結晶化速度の増大は主に結晶核生成頻度の増加によるものと考えられる。本発明では、上記高温での溶融混練から相分離温度近辺への降温により、スピノーダル分解が進行して濃度揺らぎが増大し、それに伴うup−hill−diffusionにより結晶核の形成が誘発され、結晶化が加速されたものと推測できる。
【0015】
本発明では、PETとPTTのブレンド比率は、一般に両者の合計中、PTTが20〜80重量%程度が好ましい。この範囲を外れると、各々ホモポリマーに近い組成物となるため、十分な結晶化速度加速効果を得られない。
【0016】
本発明の溶融混合物の混練方法は、押出機、押出成形機、ミキサー等により行えばよく特に限定されないが、一軸または二軸の押出機により行うのが好ましい。また、溶融混練後の熱処理の方法も特に限定されないが、混合物を直ちに250〜300℃の温度に冷却し、0.1〜5分間保持して行う方法、或いは溶融混練後、熱処理を経ることなく冷却し、通常の溶融混合物を得て、次に成形を行うまでの間に250〜300℃に0.1〜5分間保持して行う等の方法が考えられる。
【0017】
また、本発明では、上記の如く成形と同時に相分離させた、或いは相分離化された溶融混合物をPETの一般的な成形温度である260〜320℃で成形加工して、ボトル、フィルム、繊維等の各種成形品とすることができる。また、本発明の樹脂成形品には、成形加工や成形品の用途に応じて、ガラス繊維や各種ミネラル等のフィラー充填剤、各種ポリマー改質剤、酸化防止剤や難燃剤等の各種添加剤を用いることができる。
【0018】
本発明の組成物の成形方法は射出成形、押出成形、ブロー成形等、特に限定されるものではないが、特に好ましくは射出成形が望ましい。
【0019】
【実施例】
以下、実施例により本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1
ポリエチレンテレフタレート(PET;ウィンテックポリマー社製、融点250 ℃、重量平均分子量60000 )50重量部とポリトリメチレンテレフタレート(PTT;融点225 ℃、メルトフローインデックス60g/10分・250 ℃)50重量部を、小型混練成形機(CSI社製、Minimaxミキシングエクスツルーダー)を用い、300 ℃で5分間混練し、透明で均一な混合溶融物を得た。この混合溶融物を、270 ℃に保持した銅製のプレートを有する熱プレス機(井元製作所製)で1分間かけて圧延した。その後、室温まで冷却し、薄いフィルム状となった混練物を取り出した。
【0020】
このフィルムについて、縦型光散乱測定装置(プリンストン社製、TE/CCD−512−TMK/1)により、180 ℃での等温結晶化過程を、フィルムの光学異方性に起因する散乱光成分(Hv散乱)を用いて観察したところ、図1に示す光散乱積分強度時間発展曲線を得た。光散乱積分強度が飽和した時点で定義される結晶化時間を評価したところ、5秒であった。
【0021】
結晶化したフィルムを、偏光顕微鏡(オリンパス社製、BX50F4)により直交ニコル下で観察したところ、図2に示すように微細な結晶が緻密に充填している様子が観察された。
比較例1
実施例1のPETとPTTの混合物の代わりに、PET100 重量部を用いた以外は、実施例1と同様にしてフィルムを得て、結晶化の観察を行った。180 ℃結晶化において、光散乱積分強度で示される結晶化時間は、図1に示すように27秒と非常に長かった。また、直交ニコル下の偏光顕微鏡観察によると、図2に示すように球晶と呼ばれる大きな結晶構造が比較的粗に見られ、均一で緻密な結晶構造が得られていないことがわかった。
比較例2
比較例1のPETの代わりにPTT100 重量部を用いて同様にしてフィルムを得て、結晶化の観察を行った。180 ℃結晶化において、光散乱積分強度で示される結晶化時間は、図1に示すように28秒と非常に長く、また、直交ニコル下の偏光顕微鏡観察による結晶構造は、図2に示すように不均一で粗であった。
実施例2〜3
実施例1のPETとPTTの比率を、それぞれ30重量部/70重量部、および70重量部/30重量部に変更した以外は、同様にしてフィルムを得て、結晶化時間の測定を行った。図3に、PETとPTTの比率が0/100 、30/70、50/50、70/30、100 /0の場合の結晶化時間を示す。30/70、70/30の何れの組成でも、PET単独、PTT単独の場合に比べ、結晶化時間短縮の顕著な効果が認められた。
比較例3
PET50重量部とPTT50重量部を、実施例1の小型混練成形機を用い、300 ℃で5分間混練し、透明で均一な混合溶融物を得た。この混合溶融物を、320 ℃に保持した銅製のプレートを有する熱プレス機(井元製作所製)で1分間かけて圧延した。その後、室温まで冷却し、薄いフィルム状となった混練物を取り出した。
【0022】
このフィルムについて、実施例1と同様の方法により、縦型光散乱装置を用いて180 ℃での等温結晶化過程を観察したところ、図4に示す光散乱積分強度時間発展曲線を得た。図4から結晶化時間を評価したところ、38秒であった。即ち、270 ℃で圧延を行った場合の5秒に比べ、著しく遅い結晶化時間であることが確認された。
【図面の簡単な説明】
【図1】 PET単体、PTT単体及びPET/PTT(50/50)ブレンド物から得たフィルムについての、等温結晶化中の積分強度Qの経時変化の結果を示すグラフである。
【図2】 実施例1、比較例1〜2で得た結晶化したフィルムを偏光顕微鏡で観察した図であり、(a) はPET単体、(c) はPTT単体、(b) はPET/PTT(50/50)のものである。
【図3】 PET/PTTの結晶化時間の組成依存性を示すグラフである。
【図4】 PET/PTT(50/50)ブレンド物の熱処理温度(Ta)の違いによる光散乱積分強度Qの経時変化の結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blend molded article of polyethylene terephthalate (PET) and polytrimethylene terephthalate (PTT).
[0002]
[Prior art and problems to be solved by the invention]
PET is widely used in bottles, films, fibers and the like because of its excellent mechanical properties such as heat resistance and impact resistance, as well as transparency and chemical resistance. However, PET has the disadvantage that its crystallization rate is very slow and inferior in moldability. For PET injection-molded products, improvement of moldability is currently achieved by adding crystal nucleating agents and plasticizers, and adding glass fibers. ing.
[0003]
On the other hand, various researches have been conducted on polymer blends that blend two or more types of thermoplastic resins to develop the advantages of each resin, and a variety of blends of thermoplastic resins have also been proposed for PET. In particular, blends with other polyesters having good compatibility are expected to produce good results. For example, for the purpose of further increasing the strength and improving the heat resistance, a technique of blending polybutylene terephthalate (PBT) or polyethylene naphthalate (PEN) with PET has been performed.
[0004]
However, these methods can achieve high strength and heat resistance to some extent, but they do not lead to acceleration of the crystallization speed and are still insufficient in terms of moldability.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-mentioned problems of the prior art, the present inventors have found that a molded product obtained by blending PTT with PET under specific conditions has a significantly increased crystallization speed and is excellent in molding processability. As a result, the present invention has been completed.
[0006]
That is, the present invention prepares a molten mixture by melt-kneading polyethylene terephthalate and polytrimethylene terephthalate at a temperature 50 to 80 ° C. higher than the melting point of polyethylene terephthalate for 1 to 10 minutes, and then 0 to 250 to 300 ° C. A polyester resin molded product formed by molding for 1 to 5 minutes.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. First, the polyethylene terephthalate (PET) used in the present invention is a polyester obtained by polycondensation of terephthalic acid or an ester-forming derivative thereof and ethylene glycol or an ester-forming derivative thereof, and is a known comonomer such as isophthalic acid. A copolymer introduced in a small amount may be used.
[0008]
The polytrimethylene terephthalate (PTT) used in the present invention is a polyester obtained by polycondensation of terephthalic acid or an ester-forming derivative thereof and 1,3-propanediol or an ester-forming derivative thereof. A copolymer in which a small amount of a known comonomer such as the above is introduced may also be used.
[0009]
Compared to PET and PBT derived from ethylene glycol or 1,4-butanediol having an even number of methylene groups in the glycol chain, PTT is derived from 1,3-propanediol having an odd number of methylene groups. Crystallization and rheological behavior are considered to be unique and attract attention as a polymer having the advantages of PET and PBT.
[0010]
The feature of the present invention is that PTT is blended with PET, both are melt-kneaded at a temperature 50 to 80 ° C. higher than the melting point of PET for 1 to 10 minutes, and then molded at 250 to 300 ° C. for 0.1 to 5 minutes. there to that point to.
[0011]
Here, in a general polymer blend, melt kneading is usually performed at a temperature near or slightly higher than the melting point of the higher polymer of the two polymers to be blended. If the above method is applied to a blend system of PET (melting point around 250 ° C.) and PTT (melting point around 225 ° C.) and melt-kneaded at a temperature near or slightly higher than the melting point of PET, the expected effect of the present invention is not exhibited, the effect of increasing the crystallization rate is not kneaded at 5 0 to 80 ° C. higher temperatures Ri by the melting point of the PET can not be obtained. Here, the melt kneading time is preferably about 1 to 10 minutes.
[0012]
In the present invention, after the melt-kneading the PET and PTT, 0.1 to 5 minutes at a temperature range of 250 to 300 ° C., preferably molded under factory over 0.5 to 3 minutes, expressing a phase separation structure It is necessary to make it. The target temperature for the heat treatment is in the range of 250 ° C. or higher, which is the melting point temperature (Tm) of the blend of PET and PTT, and 300 ° C. or lower, which is near the phase separation temperature of PET and PTT. In such a temperature, if you molded over 0.1-5 minutes, and miniaturization spherulite size, crystallization rate increases significantly.
[0013]
That is, in the case of a blend of PET and PTT, they are compatible at the high melting temperature, and liquid-liquid phase separation occurs below that temperature. Therefore, a UCST (upper critical solution temperature) type phase is used. It is considered to have a figure. Moreover, when the blend is cooled and isothermally crystallized as described above, fine spherulites of about 2 μm are obtained. As a result, as is apparent from the results of the change over time in the integrated intensity Q during isothermal crystallization in FIG. 1 which is data of Example 1 and Comparative Examples 1 and 2 described later, in the case of PET alone and PTT alone, crystallization occurs. It takes about 27 seconds and 28 seconds to complete, respectively, whereas for a 50/50 blend, crystallization is completed in as little as 5 seconds.
[0014]
Here, the crystallization rate is represented by the product of the line growth rate and the crystal nucleation frequency, but the line growth rate of the blend was not faster than that of the single PTT, so the crystallization rate in the blend was This increase is thought to be mainly due to the increase in the frequency of crystal nucleation. In the present invention, spinodal decomposition proceeds and concentration fluctuations increase due to the temperature drop from the melt kneading at the high temperature to the vicinity of the phase separation temperature, and crystal nucleus formation is induced by the accompanying up-hill-diffusion to cause crystallization. Can be assumed to be accelerated.
[0015]
In the present invention, the blend ratio of PET and PTT is generally preferably about 20 to 80% by weight of PTT in the total of both. If it is out of this range, it becomes a composition close to a homopolymer, and a sufficient crystallization speed acceleration effect cannot be obtained.
[0016]
The method for kneading the molten mixture of the present invention is not particularly limited as long as it is carried out by an extruder, an extruder, a mixer or the like, but it is preferably carried out by a uniaxial or biaxial extruder. Also, the method of heat treatment after melt-kneading is not particularly limited, but the method is a method in which the mixture is immediately cooled to a temperature of 250 to 300 ° C. and held for 0.1 to 5 minutes, or after melt-kneading and without undergoing heat treatment. A method such as cooling, obtaining a normal molten mixture, and holding at 250 to 300 ° C. for 0.1 to 5 minutes before the next molding can be considered.
[0017]
In the present invention, the molten mixture phase-separated or phase-separated at the same time as molding as described above is molded at a general molding temperature of PET of 260 to 320 ° C. to form bottles, films and fibers. It can be set as various molded products such as. The resin molded product of the present invention includes various fillers such as glass fiber and various minerals, various polymer modifiers, antioxidants, flame retardants, etc. Can be used.
[0018]
The molding method of the composition of the present invention is not particularly limited, such as injection molding, extrusion molding, blow molding and the like, but injection molding is particularly preferable.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these.
Example 1
50 parts by weight of polyethylene terephthalate (PET; Wintech Polymer, melting point 250 ° C., weight average molecular weight 60000) and 50 parts by weight of polytrimethylene terephthalate (PTT; melting point 225 ° C., melt flow index 60 g / 10 min. 250 ° C.) The mixture was kneaded at 300 ° C. for 5 minutes using a small kneading machine (manufactured by CSI, Minimax mixing extruder) to obtain a transparent and uniform mixed melt. This mixed melt was rolled for 1 minute with a hot press machine (manufactured by Imoto Seisakusho) having a copper plate maintained at 270 ° C. Then, it cooled to room temperature and took out the kneaded material used as the thin film form.
[0020]
This film was subjected to isothermal crystallization process at 180 ° C. by a vertical light scattering measuring device (manufactured by Princeton, TE / CCD-512-TMK / 1), and a scattered light component (due to optical anisotropy of the film) Observation using (Hv scattering) gave the light scattering integrated intensity time evolution curve shown in FIG. The crystallization time defined when the light scattering integrated intensity was saturated was 5 seconds.
[0021]
When the crystallized film was observed with a polarizing microscope (Olympus, BX50F4) under crossed Nicols, a state in which fine crystals were densely packed as shown in FIG. 2 was observed.
Comparative Example 1
A film was obtained in the same manner as in Example 1 except that 100 parts by weight of PET was used instead of the mixture of PET and PTT in Example 1, and crystallization was observed. In crystallization at 180 ° C., the crystallization time indicated by the light scattering integrated intensity was very long as 27 seconds as shown in FIG. Further, according to observation with a polarizing microscope under crossed Nicols, it was found that a large crystal structure called a spherulite was seen relatively coarsely as shown in FIG. 2, and a uniform and dense crystal structure was not obtained.
Comparative Example 2
A film was obtained in the same manner using 100 parts by weight of PTT instead of PET of Comparative Example 1, and crystallization was observed. In crystallization at 180 ° C., the crystallization time indicated by the light scattering integrated intensity is very long as 28 seconds as shown in FIG. 1, and the crystal structure by polarization microscope observation under crossed Nicols is as shown in FIG. It was uneven and rough.
Examples 2-3
A film was obtained in the same manner except that the ratio of PET and PTT in Example 1 was changed to 30 parts by weight / 70 parts by weight and 70 parts by weight / 30 parts by weight, respectively, and the crystallization time was measured. . FIG. 3 shows the crystallization time when the ratio of PET to PTT is 0/100, 30/70, 50/50, 70/30, 100/0. In any of the compositions 30/70 and 70/30, a remarkable effect of shortening the crystallization time was recognized as compared with the cases of PET alone and PTT alone.
Comparative Example 3
50 parts by weight of PET and 50 parts by weight of PTT were kneaded at 300 ° C. for 5 minutes using the small kneading machine of Example 1 to obtain a transparent and uniform mixed melt. This mixed melt was rolled for 1 minute with a hot press machine (manufactured by Imoto Seisakusho) having a copper plate maintained at 320 ° C. Then, it cooled to room temperature and took out the kneaded material used as the thin film form.
[0022]
With respect to this film, an isothermal crystallization process at 180 ° C. was observed using a vertical light scattering apparatus in the same manner as in Example 1. As a result, a light scattering integrated intensity time development curve shown in FIG. 4 was obtained. The crystallization time was evaluated from FIG. 4 and found to be 38 seconds. That is, it was confirmed that the crystallization time was remarkably slow compared with 5 seconds when rolling at 270 ° C.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of changes over time in integrated intensity Q during isothermal crystallization for films obtained from PET alone, PTT alone and a PET / PTT (50/50) blend.
FIG. 2 is a diagram obtained by observing the crystallized film obtained in Example 1 and Comparative Examples 1 and 2 with a polarizing microscope, (a) PET alone, (c) PTT alone, (b) PET / PTT (50/50).
FIG. 3 is a graph showing the composition dependency of the crystallization time of PET / PTT.
FIG. 4 is a graph showing the results of changes over time in the light scattering integral intensity Q depending on the difference in heat treatment temperature (Ta) of a PET / PTT (50/50) blend.

Claims (1)

ポリエチレンテレフタレートとポリトリメチレンテレフタレートとを、ポリエチレンテレフタレートの融点より50〜80℃高い温度で1〜10分間溶融混練することにより溶融混合物を調製し、次いで250〜300℃で0.1〜5分間かけて成形加工してなるポリエステル樹脂成形品。A melt mixture is prepared by melting and kneading polyethylene terephthalate and polytrimethylene terephthalate at a temperature 50 to 80 ° C. higher than the melting point of polyethylene terephthalate for 1 to 10 minutes, and then at 250 to 300 ° C. for 0.1 to 5 minutes. Polyester resin molded product formed by molding.
JP2001340125A 2001-11-06 2001-11-06 Polyester resin molded product Expired - Fee Related JP3895150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340125A JP3895150B2 (en) 2001-11-06 2001-11-06 Polyester resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340125A JP3895150B2 (en) 2001-11-06 2001-11-06 Polyester resin molded product

Publications (2)

Publication Number Publication Date
JP2003138030A JP2003138030A (en) 2003-05-14
JP3895150B2 true JP3895150B2 (en) 2007-03-22

Family

ID=19154374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340125A Expired - Fee Related JP3895150B2 (en) 2001-11-06 2001-11-06 Polyester resin molded product

Country Status (1)

Country Link
JP (1) JP3895150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021620A1 (en) * 2003-08-29 2005-03-10 Toyo Boseki Kabushiki Kaisya Polyester film
KR101018199B1 (en) * 2004-04-12 2011-02-28 도요 보세키 가부시키가이샤 Polyester resin, molded articles thereof, and process for production of the articles
JP2006257157A (en) * 2005-03-15 2006-09-28 Asahi Kasei Chemicals Corp Thermoplastic resin composition
CN115304890B (en) * 2021-05-07 2024-02-27 北京水木滨华科技有限公司 Poly (2-methylpropanediol terephthalate) and polyethylene terephthalate blend composition
CN115305594B (en) * 2021-05-07 2024-02-23 北京水木滨华科技有限公司 Process for improving polyethylene terephthalate with poly-2-methylpropanediol terephthalate as rheology modifier

Also Published As

Publication number Publication date
JP2003138030A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
CN107075188B (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
JP6457644B2 (en) POLYLACTIDE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
KR101427127B1 (en) Process for production of injection-molded article of polylactic acid resin
KR20130106393A (en) Stereocomplex polylactic acid film and resin composition
KR101715608B1 (en) Polylactic acid composition of filament for improving printing speed
KR101685761B1 (en) 3d printer filament using biodegradable resin composition having improved whiteness and mechanical properties
JP3895150B2 (en) Polyester resin molded product
BR112017028117B1 (en) POLYESTER COMPOSITION, ARTICLE, ARTICLE PREPARATION METHOD AND USE OF BICARBONATE SALT
CN104004329A (en) Low-melting-point scratch-resistant polycarbonate composition and preparing method of low-melting-point scratch-resistant polycarbonate composition
KR101820247B1 (en) Resin compositions for improving clarity and thermal resistance of stereocomplexed polylactic acid
JPH07196895A (en) Liquid-crystal polyester resin composition
US8231937B2 (en) Compartmentalized chips with similar polymers of different viscosities for improved processability
KR101813403B1 (en) 3-dimension printer polylactic acid filament charcoal composition which has excellent heat resistance and mechanical property
KR101812884B1 (en) Polylactic acid composition of filament for improving printing speed
JP3355061B2 (en) Thermoplastic resin composition, injection molding method and injection molded article thereof
JPH05194847A (en) Polymer composition for producing in-situ composite molding
Li et al. Preparation and performance of poly (lactic acid)-γ-cyclodextrin inclusion complex-poly (lactic acid) multibranched polymers by the reactive extrusion process
JP4186477B2 (en) Resin composition and molded article comprising the same
KR101834697B1 (en) Polylactic acid composition of filament for improving printing speed
KR101813402B1 (en) 3-dimension printer polylactic acid filament ocher composition which has excellent heat resistance and mechanical property
KR101711279B1 (en) 3d printer stereocomplexed polylactic acid filament composition for improving 3d printing speed
JPH11199761A (en) Liquid crystalline polymer molding
CN111171506B (en) Low-internal-stress polycarbonate material and preparation method thereof
WO2005113636A1 (en) Process for lowering the melt viscosity of polyesters
Cappiello et al. Study of compostable materials for the production of transparent food containers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees