JP3894246B2 - Glaze composition having conductivity and antibacterial properties - Google Patents

Glaze composition having conductivity and antibacterial properties Download PDF

Info

Publication number
JP3894246B2
JP3894246B2 JP00175398A JP175398A JP3894246B2 JP 3894246 B2 JP3894246 B2 JP 3894246B2 JP 00175398 A JP00175398 A JP 00175398A JP 175398 A JP175398 A JP 175398A JP 3894246 B2 JP3894246 B2 JP 3894246B2
Authority
JP
Japan
Prior art keywords
antibacterial
weight
glaze composition
glaze
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00175398A
Other languages
Japanese (ja)
Other versions
JPH11199273A (en
Inventor
吉弘 飯沢
昌子 浜口
崇 河島
Original Assignee
池袋琺瑯工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池袋琺瑯工業株式会社 filed Critical 池袋琺瑯工業株式会社
Priority to JP00175398A priority Critical patent/JP3894246B2/en
Publication of JPH11199273A publication Critical patent/JPH11199273A/en
Application granted granted Critical
Publication of JP3894246B2 publication Critical patent/JP3894246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ほうろう及び陶磁器の表面に施釉される釉薬組成物に関し、更に詳細には、パネル、容器、クリーンルーム壁、バスタブ、流し台等のほうろう製品や、タイル、衛生陶器等の陶磁器製品等のクリーン度合い、洗浄性や清潔さを要求される製品に用いられる導電性及び抗菌性を有する釉薬組成物に関する。
【0002】
【従来の技術・課題】
ほうろう製品や陶磁器製品の表面には、通常釉薬組成物が施釉されている。施釉層は、汚れにくく、洗浄が容易でクリーンであること等の機能を有する。また、最近では、抗菌性釉薬組成物を施釉した抗菌性を具備するものもある。
【0003】
従来の抗菌性釉薬組成物は、銀イオンや銅イオンのような重金属を含有するものであった。例えば、特開平3−146436号公報には、ほうけい酸ガラスを主体とし、銀イオン及び銅イオンからなる群から選択された1種以上の金属イオンを含み、更に、塩素、臭素またはヨウ素のようなハロゲン族イオンを含むことを特徴とする抗菌性ガラスが開示されている。
【0004】
しかし、上述のような抗菌性ガラスを施釉して得られた施釉層を備えてなるほうろう製品や陶磁器は、大腸菌や黄色ブドウ球菌に対して明確な抗菌作用は有するものの、釉薬組成物がけい酸アルカリ成分を含有するガラス成分よりなるものであるために、施釉層の体積抵抗率は1×1012〜1014Ωcm程度の絶縁材質であり、静電気により施釉層が帯電してほこり等が付着し易くなるという問題点があった。
【0005】
従って、本発明の目的は、導電性及び抗菌性を有する釉薬組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定の寸法、形状を有する金属繊維を抗菌性釉薬組成物に配合することにより、該釉薬組成物を施釉して得られる抗菌性施釉層の体積抵抗率を低下して導電性を付与することができることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明は、抗菌性釉薬組成物100重量部に対して、直径0.001〜20ミクロン、長さ0.5〜2000ミクロン、長さ/直径の形状比50以上の金属繊維を0.001〜1.5重量部含有してなる導電性及び抗菌性を有する釉薬組成物にある。
【0008】
【発明の実施の形態】
本発明の導電性及び抗菌性を有する釉薬組成物(以下、単に「本発明の釉薬組成物」と記載する)は、慣用の抗菌性フリットを含む抗菌性釉薬組成物に、直径0.01〜20ミクロン、長さ0.5〜2000ミクロン、長さ/直径の形状比50以上の金属繊維を添加、配合してなることを特徴とするものである。
【0009】
ここで、本発明の釉薬組成物に使用する金属繊維の直径は、金属繊維の添加量と釉薬組成物のスプレー施釉性との関係から細い程良く、0.01〜20ミクロン、好ましくは0.01〜1.0ミクロンの範囲内である。金属繊維の直径が0.01ミクロン未満のものは金属繊維自体の加工が難しく現状ではコストの面から使用することはできない。また、該直径が20ミクロンを超えると、釉薬組成物としてもスリップ粘性が乏しくなり、スプレー施釉性が著しく劣るために好ましくない。なお、金属繊維の直径は細いもの程、その見掛け体積は増加するので、金属繊維の添加量を少なくすることができ、更に、釉薬組成物の焼成作業や生産技術面でも利点がある。従って、コスト面での問題が解決できれば、0.01ミクロン未満の直径を有する金属繊維も使用可能であることは言うまでもない。
【0010】
また、金属繊維の長さは、0.5〜2000ミクロン、好ましくは20〜1000ミクロンの範囲内にある。ここで、金属繊維の長さが0.5ミクロン未満では、金属繊維自体のチップが難しく、また、該長さが2000ミクロンを超えると、釉薬組成物としてのスリップ粘性が乏しくなり、スプレー施釉性が著しく劣るために好ましくない。
【0011】
更に、金属繊維の長さ/直径の形状比は50以上である。該形状比が50未満であると、金属繊維を多量に配合しないと施釉層の導電性を向上させることができないために好ましくない。
【0012】
本発明の釉薬組成物において、使用する金属繊維の寸法は上記の範囲内であるが、後述するフリットと混合する際に、金属繊維の粉砕・切断が生じ、釉薬組成物を施釉する時には上述の範囲内よりも小さい金属繊維が若干混入することもあるが、このような金属繊維が存在していても得られる施釉層の導電性には何ら影響を及ぼすものではない。
【0013】
本発明の釉薬組成物に使用できる金属繊維は、例えばステンレス系金属、貴金属系金属、及び白金と白金族金属との合金からなる群から選択される1種または2種以上であり、特に、貴金属系金属、及び白金と白金族金属との合金からなる群から選択される1種または2種以上の金属繊維を使用することが好ましい。ここで、ステンレス系金属繊維としては、例えばSUS−316繊維(体積抵抗率:7.4×10-5Ωcm)、SUS−304繊維(体積抵抗率:7.2×10-5Ωcm)等を使用することができる。また、貴金属系金属繊維としては、例えばAg繊維(体積抵抗率:1.6×10-6Ωcm)、Au繊維(体積抵抗率:2.4×10-6Ωcm)、Pt繊維(体積抵抗率:10.6×10-6Ωcm)等を使用することができる。更に、白金と白金族金属との合金繊維としては、例えばPtと、Pd、Ir、Rh、OsまたはRuとの合金からなるものを使用することができる。
【0014】
なお、金属繊維の抗菌性釉薬組成物への添加量は、抗菌性釉薬組成物100重量部に対して0.001〜1.5重量部、好ましくは0.01〜0.05重量部である。金属繊維の添加量が0.001重量部未満であると導電性の大幅な向上が望めない。また、1.5重量部を超えて金属繊維を添加することも可能であるが、添加量の増加に見合うだけの効果の改善は期待できない。なお、金属繊維の添加量が上記範囲内であれば、釉薬組成物の施釉層での発泡や、凹凸現象がなく、良質の施釉層を形成することができる。
【0015】
次に、本発明の釉薬組成物に使用する抗菌性釉薬組成物は、抗菌性物質として銀、銅、亜鉛等を含有する慣用の抗菌性釉薬組成物の任意のものを使用することができ、特に限定されるものではない。例えば、抗菌性釉薬組成物としては下記のような組成を有するものを例示することができる:
(A)SiO+TiO+ZrO:40〜70重量%
ただし、SiO:40〜70重量%
TiO:0〜20重量%
ZrO:0〜10重量
B)RO:5〜22重量%(RはNa、KまたはLiを表す)
ただし、NaO:5〜22重量%
O:0〜16重量%
LiO:0〜10重量
C)RO:0〜8重量%(R’はCa、Ba、RbまたはMgを表す)
ただし、CaO:0〜8重量%
BaO:0〜6重量%
RbO:0〜8重量%
MgO:0〜6重量
D)B+Al:0〜22重量%
ただし、B:0〜22重量%
Al:0〜6重量
E)CoO+NiO+MnO:0〜5重量%
ただし、CoO:0〜5重量%
NiO:0〜5重量%
MnO:0〜5重量
F)AgO+CuO+ZnO:0.05〜20重量%(抗菌性物質)
ただし、AgO:0.05〜10重量%
CuO:0〜10重量%
ZnO:0〜10重量%
(E)F+Cl+Br:0〜2重量%(抗菌性物質)
ただし、F:0〜2重量%
Cl:0〜1重量%
Br:0〜1重量%
【0016】
なお、従来の抗菌性釉薬組成物には、抗菌性物質として銀が配合されているものが多い。このような抗菌性釉薬組成物において、銀は銀粉末、銀イオン(硝酸銀、塩化銀、臭化銀等)や酸化物(Ag2O)のような形態で添加されている。ここで、銀イオンや酸化物の形態で釉薬組成物に銀を添加しても、施釉層に導電性を付与することはできないが、銀粉末を添加すると、施釉層の体積抵抗率を低減して導電性を付与することができる。しかしながら、施釉層への静電気の帯電を防止するには、銀粉末は抗菌性釉薬組成物100重量部に対して数重量部程度の添加量では、導電性の向上に効果はなく、数十重量部程度添加することが必要となる。ところが、釉薬組成物に銀粉末のような金属粉末を数十重量部程度も添加すると、施釉表面が平滑になりにくく、且つ発泡現象が起こり、ほうろう製品や陶磁器製品として好ましくない。
【0017】
これに対して、本発明の釉薬組成物において、導電性を付与するための金属繊維として銀繊維も使用可能であるが、その添加量は抗菌性釉薬組成物100重量部に対して最大でも1.5重量部程度というような少量で、施釉層に良好な導電性を付与することができる。従って、抗菌性釉薬組成物に抗菌性物質として添加されている銀粉末と、本発明の釉薬組成物において、導電性を付与するために添加される銀繊維の作用、効果は全く異なるものであるばかりか、本発明の釉薬組成物においては、銀繊維は抗菌性物質としても作用する。なお、銀繊維以外の金属繊維についても、以下の実施例における抗菌性試験の結果から明らかなように、理由は定かではないが、従来の抗菌性釉薬組成物よりも優れた抗菌性を発揮することさえある。
【0018】
本発明の釉薬組成物は、従来のうわぐすりと同様にほうろう製品や陶磁器製品の基材となる金属基体上や陶磁器上に直接施釉することができ、体積抵抗率1×108Ωcm以下の良好な導電性を示す施釉層を提供することができる。
【0019】
【実施例】
以下に、実施例及び比較例を挙げて本発明の釉薬組成物を更に説明する。
実施例
以下の本発明品及び比較品の釉薬組成物に使用したうわぐすりの原料成分(重量%)は下記の通りである:
【0020】
【表1】

Figure 0003894246
【0021】
次に、表1のうわぐすりA及びBを用い、以下の表2に示すミル配合(金属繊維の他に、うわぐすり100重量部に対して粘土2重量部、CMC0.05重量部、亜硝酸ソーダ0.3重量部及び適量の水を添加)及び焼成条件で、厚さ1.0mm、直径105mmの低炭素鋼丸板に施釉した。
なお、ステンレス繊維は、ナス物産株式会社製の直径8ミクロン、長さ5mmのものであり、白金繊維(Pt繊維1)は、田中貴金属株式会社製の直径0.5ミクロン、長さ2mmのものであり、白金繊維(Pt繊維2)は、田中貴金属株式会社製の直径0.01ミクロン、長さ0.5ミクロンのものであり、銀粉は、粒径約3ミクロンのものである。
【0022】
次に、得られた試料を図1に示す三端子法による抵抗測定法で体積抵抗率を求め、得られた結果を表2に併記する。
【0023】
【表2】
Figure 0003894246
【0024】
上記表2から明らかなように、うわぐすりB(抗菌性釉薬組成物)に金属繊維を添加した本発明品1〜6は、うわぐすりAのみ並びにうわぐすりBのみの比較品7及び8に比べていずれも著しく体積抵抗率が小さく、良好な導電性を示した。また、うわぐすりBのみを施釉した比較品8においては、銀が酸化物形態で2重量%含まれているにも拘わらず、導電性の向上はなく、銀を酸化物形態で添加しても導電性の向上には寄与しないことが判った。更に、うわぐすりBに銀粉末を0.1重量部または1.5重量部配合した比較品9及び10においても、導電性の向上はなく、銀粉末を0.1〜1.5重量部程度添加しても効果がないことが判った。
【0025】
次に、本発明品2、4及び6並びに7及び8について、対象細菌として大腸菌と黄色ブドウ球菌を使用して抗菌性試験を行った。抗菌性試験方法は以下の通りであった。
(1)接種菌液として、対象細菌を液体培地で培養後、遠心分離して希釈水(0.85%減菌食塩水)に懸濁させた;
(2)接種菌液1mlを試験片の施釉層上に塗布し、37±1℃で0〜16時間の所定の期間にわたりふ卵器に保持した;
(3)試験片を希釈水で洗浄後25mlにし、細菌試験を行った;
(4)細菌試験方法は寒天培地法で行った。
得られた結果を表3に記載する。
【0026】
【表3】
Figure 0003894246
上記表3から明らかなように、本発明品2、4及び6は、従来品の抗菌性釉薬組成物であるうわぐすりBと同等またはそれ以上の抗菌性を示し、抗菌性釉薬組成物に金属繊維を添加しても、抗菌性に悪影響を及ぼすことがないばかりか、逆に、抗菌性がより良好となることもあることが判る。
【0027】
【発明の効果】
本発明によれば、施釉層の体積抵抗率が1×108Ωcm以下の良好な導電性を有し、非静電気帯電性能を有する抗菌性釉薬組成物を提供することができる。
【図面の簡単な説明】
【図1】本発明品及び比較品の体積抵抗率を測定するための三端子法による抵抗測定法の概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glaze composition applied to the surface of enamel and ceramics. More specifically, the present invention relates to enamel products such as panels, containers, clean room walls, bathtubs and sinks, and ceramic products such as tiles and sanitary ware. It is related with the glaze composition which has the electroconductivity and antibacterial property which are used for the product for which a degree, detergency, and cleanliness are required.
[0002]
[Conventional technologies and issues]
A glaze composition is usually applied to the surface of enamel products and ceramic products. The glazed layer has functions such as being hard to get dirty, easy to clean and clean. In addition, recently, some have antibacterial properties applied with an antibacterial glaze composition.
[0003]
Conventional antibacterial glaze compositions contain heavy metals such as silver ions and copper ions. For example, Japanese Patent Application Laid-Open No. 3-146436 discloses a borosilicate glass as a main component, including one or more metal ions selected from the group consisting of silver ions and copper ions, and further, like chlorine, bromine or iodine. An antibacterial glass characterized by containing a halogen ion is disclosed.
[0004]
However, enameled products and ceramics with a glazing layer obtained by glazing antibacterial glass as described above have a clear antibacterial action against Escherichia coli and Staphylococcus aureus, but the glaze composition is silicic acid. Since it is made of a glass component containing an alkali component, the volume resistivity of the glazed layer is an insulating material of about 1 × 10 12 to 10 14 Ωcm, and the glazed layer is charged by static electricity and dust or the like adheres to it. There was a problem that it became easy.
[0005]
Therefore, the objective of this invention is providing the glaze composition which has electroconductivity and antibacterial property.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors obtained a glaze composition by blending metal fibers having specific dimensions and shapes into the antibacterial glaze composition. It has been found that the volume resistivity of the antibacterial glazing layer can be lowered to impart conductivity, and the present invention has been completed.
[0007]
That is, in the present invention, the metal fiber having a diameter of 0.001 to 20 microns, a length of 0.5 to 2000 microns, and a length / diameter shape ratio of 50 or more is added to 100 parts by weight of the antibacterial glaze composition. It exists in the glaze composition which has electroconductivity and antibacterial property formed by containing 001-1.5 weight part.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The conductive and antibacterial glaze composition of the present invention (hereinafter simply referred to as “the glaze composition of the present invention”) has a diameter of 0.01 to 0.01 to the antibacterial glaze composition containing a conventional antibacterial frit. It is characterized by adding and blending metal fibers with a length of 20 microns, a length of 0.5 to 2000 microns, and a length / diameter shape ratio of 50 or more.
[0009]
Here, the diameter of the metal fiber used in the glaze composition of the present invention is preferably as small as possible because of the relationship between the amount of metal fiber added and the spray glazing property of the glaze composition, and is 0.01 to 20 microns, preferably 0.00. Within the range of 01 to 1.0 microns. If the diameter of the metal fiber is less than 0.01 microns, it is difficult to process the metal fiber itself, and it cannot be used from the viewpoint of cost. On the other hand, when the diameter exceeds 20 microns, the slip viscosity is poor as a glaze composition, and the spray glazing property is remarkably inferior. In addition, since the apparent volume increases as the diameter of the metal fiber is thinner, the amount of the metal fiber added can be reduced, and further, there are advantages in terms of baking operation and production technology of the glaze composition. Therefore, it goes without saying that metal fibers having a diameter of less than 0.01 microns can also be used if the cost problem can be solved.
[0010]
The length of the metal fiber is in the range of 0.5 to 2000 microns, preferably 20 to 1000 microns. Here, when the length of the metal fiber is less than 0.5 micron, it is difficult to chip the metal fiber itself. When the length exceeds 2000 microns, the slip viscosity as the glaze composition becomes poor, and the spray glazing property is reduced. Is not preferable because it is extremely inferior.
[0011]
Furthermore, the shape ratio of length / diameter of the metal fiber is 50 or more. If the shape ratio is less than 50, the electroconductivity of the glazed layer cannot be improved unless a large amount of metal fiber is blended.
[0012]
In the glaze composition of the present invention, the size of the metal fiber to be used is within the above range, but when mixed with the frit described later, the metal fiber is crushed and cut, and when the glaze composition is applied, Although metal fibers smaller than the range may be mixed in a little, even if such metal fibers are present, the conductivity of the obtained glazed layer is not affected at all.
[0013]
The metal fibers that can be used in the glaze composition of the present invention are, for example, one or more selected from the group consisting of stainless steel metals, noble metal metals, and alloys of platinum and platinum group metals. It is preferable to use one type or two or more types of metal fibers selected from the group consisting of a system metal and an alloy of platinum and a platinum group metal. Here, examples of the stainless steel metal fiber include SUS-316 fiber (volume resistivity: 7.4 × 10 −5 Ωcm), SUS-304 fiber (volume resistivity: 7.2 × 10 −5 Ωcm), and the like. Can be used. In addition, as the noble metal-based metal fiber, for example, Ag fiber (volume resistivity: 1.6 × 10 −6 Ωcm), Au fiber (volume resistivity: 2.4 × 10 −6 Ωcm), Pt fiber (volume resistivity) : 10.6 × 10 −6 Ωcm) or the like can be used. Furthermore, as an alloy fiber of platinum and a platinum group metal, for example, an alloy fiber made of an alloy of Pt and Pd, Ir, Rh, Os, or Ru can be used.
[0014]
The addition amount of the metal fiber to the antibacterial glaze composition is 0.001 to 1.5 parts by weight, preferably 0.01 to 0.05 parts by weight with respect to 100 parts by weight of the antibacterial glaze composition. . If the added amount of the metal fiber is less than 0.001 part by weight, a significant improvement in conductivity cannot be expected. Moreover, although it is possible to add a metal fiber exceeding 1.5 weight part, the improvement of the effect only commensurate with the increase in addition amount cannot be expected. In addition, if the addition amount of a metal fiber is in the said range, there is neither foaming nor an uneven | corrugated phenomenon in a glaze layer of a glaze composition, and it can form a good quality glaze layer.
[0015]
Next, the antibacterial glaze composition used in the glaze composition of the present invention can use any of the conventional antibacterial glaze compositions containing silver, copper, zinc, etc. as an antibacterial substance, It is not particularly limited. For example, examples of the antibacterial glaze composition include those having the following composition:
(A) SiO 2 + TiO 2 + ZrO 2 : 40 to 70% by weight
However, SiO 2: 40~70 weight%
TiO 2: 0~20 weight%
ZrO 2 : 0 to 10 % by weight
(B) R 2 O: 5~22 wt% (R represents Na, K or Li)
However, Na 2 O: 5 to 22% by weight
K 2 O: 0 to 16% by weight
Li 2 O: 0 to 10 % by weight
(C) R 'O: 0~8 wt% (R' represents Ca, Ba, Rb or Mg)
However, CaO: 0 to 8% by weight
BaO: 0 to 6% by weight
RbO: 0 to 8% by weight
MgO: 0 to 6 % by weight
(D) B 2 O 3 + Al 2 O 3: 0~22 wt%
However, B 2 O 3: 0~22 wt%
Al 2 O 3 : 0 to 6 % by weight
( E) CoO + NiO + MnO 2 : 0 to 5% by weight
However, CoO: 0 to 5% by weight
NiO: 0 to 5% by weight
MnO 2 : 0 to 5 % by weight
(F) Ag 2 O + CuO + ZnO: 0.05~20 wt% (antimicrobials)
However, Ag 2 O: 0.05 to 10% by weight
CuO: 0 to 10% by weight
ZnO: 0 to 10% by weight
(E) F + Cl + Br: 0 to 2% by weight (antibacterial substance)
However, F: 0 to 2% by weight
Cl: 0 to 1% by weight
Br: 0 to 1% by weight
[0016]
Many of the conventional antibacterial glaze compositions contain silver as an antibacterial substance. In such antibacterial glaze compositions, silver is added in the form of silver powder, silver ions (silver nitrate, silver chloride, silver bromide, etc.) and oxides (Ag 2 O). Here, even if silver is added to the glaze composition in the form of silver ions or oxides, conductivity cannot be imparted to the glazed layer, but adding silver powder reduces the volume resistivity of the glazed layer. Thus, conductivity can be imparted. However, in order to prevent static electricity from being applied to the glazed layer, silver powder is not effective in improving conductivity when added in an amount of several parts by weight with respect to 100 parts by weight of the antibacterial glaze composition, and several tens of weight. It is necessary to add about 1 part. However, when several tens of parts by weight of metal powder such as silver powder is added to the glaze composition, the surface of the glazed surface is difficult to be smooth, and a foaming phenomenon occurs, which is not preferable as an enamel product or a ceramic product.
[0017]
On the other hand, in the glaze composition of the present invention, silver fibers can be used as metal fibers for imparting conductivity, but the amount added is at most 1 with respect to 100 parts by weight of the antibacterial glaze composition. Good electrical conductivity can be imparted to the glazed layer with a small amount of about 0.5 parts by weight. Accordingly, the silver powder added as an antibacterial substance in the antibacterial glaze composition and the glaze composition of the present invention have completely different actions and effects of silver fibers added to impart conductivity. In addition, in the glaze composition of the present invention, silver fibers also act as antibacterial substances. As is clear from the results of antibacterial tests in the following examples, metal fibers other than silver fibers also demonstrate antibacterial properties superior to conventional antibacterial glaze compositions, although the reason is not clear. There is even a thing.
[0018]
The glaze composition of the present invention can be applied directly onto a metal substrate or ceramic as a base material for enamel products and ceramic products in the same manner as conventional glazes, and has a volume resistivity of 1 × 10 8 Ωcm or less. It is possible to provide a glazed layer exhibiting good conductivity.
[0019]
【Example】
Below, an Example and a comparative example are given and the glaze composition of this invention is further demonstrated.
Examples The raw material ingredients (% by weight) of glaze used in the following glaze compositions of the present invention and comparative products are as follows:
[0020]
[Table 1]
Figure 0003894246
[0021]
Next, using the glazes A and B of Table 1, the mill composition shown in the following Table 2 (in addition to metal fibers, 2 parts by weight of clay, 0.05 parts by weight of CMC with respect to 100 parts by weight of glaze, A low carbon steel round plate having a thickness of 1.0 mm and a diameter of 105 mm was glazed under the conditions of 0.3 part by weight of sodium nitrite and an appropriate amount of water) and firing conditions.
Stainless steel fiber is 8 microns in diameter and 5 mm in length from Nasushi Bussan Co., Ltd. Platinum fiber (Pt fiber 1) is 0.5 microns in diameter and 2 mm in length from Tanaka Kikinzoku Co., Ltd. The platinum fiber (Pt fiber 2) has a diameter of 0.01 microns and a length of 0.5 microns manufactured by Tanaka Kikinzoku Co., Ltd., and the silver powder has a particle size of about 3 microns.
[0022]
Next, the volume resistivity of the obtained sample is determined by the resistance measurement method by the three-terminal method shown in FIG. 1, and the obtained result is also shown in Table 2.
[0023]
[Table 2]
Figure 0003894246
[0024]
As is apparent from Table 2 above, the products 1 to 6 of the present invention obtained by adding metal fibers to glaze B (antibacterial glaze composition) are the glaze A only and the glaze B only comparative product 7 and Compared to 8, the volume resistivity was remarkably small and good conductivity was exhibited. Further, in the comparative product 8 with only the glaze B, although the silver content is 2% by weight in the oxide form, there is no improvement in conductivity, and silver is added in the oxide form. It was also found that it does not contribute to the improvement of conductivity. Further, in Comparative Products 9 and 10 in which 0.1 parts by weight or 1.5 parts by weight of silver powder was mixed with Uguri Buri B, there was no improvement in conductivity, and 0.1 to 1.5 parts by weight of silver powder was obtained. It was found that there was no effect even when added to the extent.
[0025]
Next, antibacterial tests were conducted on the inventive products 2, 4 and 6 and 7 and 8 using Escherichia coli and Staphylococcus aureus as target bacteria. The antibacterial test method was as follows.
(1) As an inoculum, the target bacteria were cultured in a liquid medium, centrifuged, and suspended in diluted water (0.85% sterilized saline);
(2) 1 ml of the inoculum was applied on the glazing layer of the test piece and kept in an incubator at 37 ± 1 ° C. for a predetermined period of 0 to 16 hours;
(3) The test piece was washed with dilution water to 25 ml, and a bacterial test was performed;
(4) The bacterial test method was an agar medium method.
The results obtained are listed in Table 3.
[0026]
[Table 3]
Figure 0003894246
As is apparent from Table 3 above, the products 2, 4 and 6 of the present invention exhibit antibacterial properties equivalent to or higher than that of the conventional antibacterial glaze composition, Uguisuri B, and are antibacterial glaze compositions. It can be seen that the addition of metal fibers not only has an adverse effect on antibacterial properties, but also may have better antibacterial properties.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the antimicrobial glaze composition which has the favorable electroconductivity whose volume resistivity of a glazing layer is 1 * 10 < 8 > ohm-cm or less, and has non-electrostatic charging performance can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a resistance measurement method by a three-terminal method for measuring the volume resistivity of a product of the present invention and a comparative product.

Claims (3)

抗菌性釉薬組成物100重量部に対して、直径0.01〜20ミクロン、長さ0.5〜2000ミクロン、長さ/直径の形状比50以上の金属繊維を0.001〜1.5重量部含有してなる導電性及び抗菌性を有する釉薬組成物。  0.001 to 1.5 weight of metal fiber having a diameter of 0.01 to 20 microns, a length of 0.5 to 2000 microns, and a length / diameter shape ratio of 50 or more with respect to 100 parts by weight of the antibacterial glaze composition The glaze composition which has electroconductivity and antibacterial property formed by containing a part. 金属繊維がステンレス系金属、貴金属系金属、及び白金と白金族金属との合金からなる群から選択される1種または2種以上である、請求項1記載の導電性及び抗菌性を有する釉薬組成物。  The glaze composition having conductivity and antibacterial properties according to claim 1, wherein the metal fibers are one or more selected from the group consisting of stainless steel metals, noble metal metals, and alloys of platinum and platinum group metals. object. 抗菌性釉薬組成物が抗菌性物質として銀を含有するものである、請求項1または2記載の導電性及び抗菌性を有する釉薬組成物。  The glaze composition having conductivity and antibacterial properties according to claim 1 or 2, wherein the antibacterial glaze composition contains silver as an antibacterial substance.
JP00175398A 1998-01-07 1998-01-07 Glaze composition having conductivity and antibacterial properties Expired - Fee Related JP3894246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00175398A JP3894246B2 (en) 1998-01-07 1998-01-07 Glaze composition having conductivity and antibacterial properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00175398A JP3894246B2 (en) 1998-01-07 1998-01-07 Glaze composition having conductivity and antibacterial properties

Publications (2)

Publication Number Publication Date
JPH11199273A JPH11199273A (en) 1999-07-27
JP3894246B2 true JP3894246B2 (en) 2007-03-14

Family

ID=11510348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00175398A Expired - Fee Related JP3894246B2 (en) 1998-01-07 1998-01-07 Glaze composition having conductivity and antibacterial properties

Country Status (1)

Country Link
JP (1) JP3894246B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148982B2 (en) * 2007-12-18 2013-02-20 池袋琺瑯工業株式会社 Glass lining top powder composition
JP5164550B2 (en) * 2007-12-18 2013-03-21 池袋琺瑯工業株式会社 Glass lining top powder composition
CN115490540A (en) * 2022-10-25 2022-12-20 科立视材料科技有限公司 Antibacterial ceramic and antibacterial performance enhanced preparation method thereof

Also Published As

Publication number Publication date
JPH11199273A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
US11066338B2 (en) Antimicrobial glaze and porcelain enamel via double layer glaze with high zinc content
US8278229B2 (en) Cover coating composition for glass lining
CN1843995A (en) Antibacterial enamel and preparation method thereof
CN101880177B (en) Self-cleaning antibacterial glaze used for sanitary ceramic ware
JP2016506350A (en) Glass frit antibacterial coating
JP3894246B2 (en) Glaze composition having conductivity and antibacterial properties
JP3783742B2 (en) Conductive glass lining composition
JPH0648766A (en) Glass frit composition
JP3432399B2 (en) Conductive glass lining composition
JP2010248071A (en) Highly washable glass molded article
JP5164550B2 (en) Glass lining top powder composition
JP3907978B2 (en) Conductive glass lining composition
JP4254975B2 (en) Lead-free green glaze for low-temperature firing
JPH03170343A (en) Glass composition
JPH07268653A (en) Aluminum enameled sheet having antibacterial property and antifungal property
JPH09263423A (en) Enamel graze having antifungal property
JP4597552B2 (en) High detergency glass molding
JP2003267750A (en) Glass composition for coating resistive element
JP2962504B2 (en) Enamel plate having antibacterial and antifungal properties and method for producing the same
JP5148982B2 (en) Glass lining top powder composition
KR20230052701A (en) Ceramic composition comprising antibacterial glass composition
JP2002012446A (en) Boric phosphoric acid glass for forming transparent insulation coating
JPS61151035A (en) Semiconductive glass
KR19990065204A (en) Conductive Glass Lining Composition
CN115490540A (en) Antibacterial ceramic and antibacterial performance enhanced preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees