JP3893701B2 - Linear actuator and lens barrel using the same - Google Patents

Linear actuator and lens barrel using the same Download PDF

Info

Publication number
JP3893701B2
JP3893701B2 JP31176597A JP31176597A JP3893701B2 JP 3893701 B2 JP3893701 B2 JP 3893701B2 JP 31176597 A JP31176597 A JP 31176597A JP 31176597 A JP31176597 A JP 31176597A JP 3893701 B2 JP3893701 B2 JP 3893701B2
Authority
JP
Japan
Prior art keywords
magnetic
linear actuator
driving direction
driving
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31176597A
Other languages
Japanese (ja)
Other versions
JPH11150972A (en
Inventor
克 中尾
英一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31176597A priority Critical patent/JP3893701B2/en
Priority to GB9802511A priority patent/GB2323716B/en
Priority to US09/020,676 priority patent/US5939804A/en
Priority to KR1019980003665A priority patent/KR100306448B1/en
Priority to DE19805094A priority patent/DE19805094B4/en
Priority to CNB981044190A priority patent/CN1153079C/en
Publication of JPH11150972A publication Critical patent/JPH11150972A/en
Application granted granted Critical
Publication of JP3893701B2 publication Critical patent/JP3893701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリニアアクチュエータ、特にカメラ、ビデオカメラ等の撮像装置における撮影レンズを駆動するリニアアクチュエータ、光学機器及びレンズ鏡筒に関するものである。
【0002】
【従来の技術】
近年、ビデオカメラの技術の進歩は目覚ましく、デジタル記録、小型軽量化、長時間撮影化、高速、高倍率ズーム等多方面に渡って多くの性能向上が図られている。
【0003】
撮像部であるレンズ鏡筒においては、ズームレンズ群より後方のフォーカスレンズ群を光軸方向に位置可変することで焦点調整を行う、いわゆる「インナーフォーカス方式」が、小型化で有利なため、現在では多く用いられており、一般的にはマイコンに記憶された被写体距離毎の移動軌跡データを基に、フォーカスレンズ群が、ズームレンズ群の位置変化に従って光軸方向に移動して、レンズ鏡筒後部の撮像素子の結像面上に物体像を形成する構成になっている。
【0004】
ここで望遠側でのピント面の移動量が大きいという移動軌跡データの特性上から、フォーカスレンズ群をズームレンズ群に追随させて動かすには、ズームレンズ群よりもフォーカスレンズ群を速く移動させる必要があり、前記の性能向上の項目の中の高速ズーム及び長時間撮影を実現するために、このフォーカスレンズ群の駆動部分に、従来のステッピングモータに代わって、ズームレンズ群の位置変化に追随できる高速応答性と、低消費電力化に優れたボイスコイル型のリニアアクチュエータが採用されている。
【0005】
このフォーカスレンズを駆動する従来のレンズ駆動装置の構成を図8〜図10に基づいて説明する。図8は従来のレンズ鏡筒におけるレンズの駆動装置の内部斜視図、図9はそのレンズ駆動装置の横断面図、図10はそのレンズ駆動装置の縦断面図である。
【0006】
レンズホルダー51はフォーカスレンズ52を保持すると共に、光軸に平行に配され、両端をレンズ鏡筒53に固定されたガイドシャフト54a、54bに沿って光軸方向(X方向)に摺動自在に構成されている。
【0007】
このレンズホルダー51を光軸方向に駆動させるリニアアクチュエータの固定子として、駆動方向(X方向)と垂直に磁化されたマグネット55aと、コの字型のメインヨーク56a及び板状のサイドヨーク57aを、駆動方向(X方向)に略左右対称に成るよう構成した磁気回路58aと、この磁気回路58aと対向する様、相対する位置に略対称に配置したマグネット55bとメインヨーク56b及びサイドヨーク57bとから成る磁気回路58bの固定子がレンズ鏡筒53に設けられており、一方、可動子としてコイル59がマグネット55a、55bと所定の空隙を有するようにレンズホルダー51に固定されており、マグネット55a、55bの発生する磁束と直交する様コイル59に電流を流すことで、レンズホルダー51が光軸方向に駆動するしくみになっている。
【0008】
またこのレンズホルダー51を位置制御をするために、位置検出手段として固定側のレンズ鏡筒53には、磁気センサー60が磁気回路58a、58bの駆動方向(X方向)の対称中心かつ、この一対の磁気回路58a、58b間の対称中心位置に設けられている。一方、可動側のレンズホルダー51には、フェライト等の強磁性材を磁気ヘッドに対して一定速度で移動させることにより駆動方向に沿って所定のピッチでS極とN極を交互に着磁した磁気スケール61が、磁気センサー60の検出面に対して所定の距離をもって対向するように取り付けられている。磁気センサー60は磁界により抵抗値が変化する特性を持つNiFeやNiCo等の強磁性薄膜を材料としたMR素子62a、62bから構成された2相式の磁気抵抗型センサーで、このMR素子62a、62bは磁気スケール61のS極とN極までの着磁ピッチの1/4間隔で、駆動方向に設けられており、このMR素子62a、62bに流す電流の向きがマグネット65a、65bの磁化方向と平行になる方向に磁気センサー60と磁気スケール61はそれぞれ配置されている。
【0009】
ここで図6はMR素子52a、52bの磁気抵抗変化率特性を示す図、図7は位置検出手段の概略斜視図である。
【0010】
図6に示す磁気抵抗変化の方向性として、MR素子52a、52bの電流方向に対して垂直かつ検出面に垂直な方向(Y方向)の磁界に対しては、抵抗値はほとんど変化しないが、MR素子52a、52bの電流方向に対して垂直かつ検出面に平行な方向(X方向)の磁界に対しては抵抗値が大きく変化し、さらにMR素子52a、52bの電流方向に対して平行な方向(Z方向)の磁界に対しては抵抗値が若干変化するという特性をもつ。
【0011】
この特性から、図7に示す着磁パターンをもつ磁気スケールが磁気センサー50に対して位置変化することにより、X方向に発生する正弦波状の磁界強度変化パターンに対応してMR素子52a、52bの抵抗値が変化する。ここでY方向にもX方向と位相が180°異なる正弦波状の磁界強度変化パターンが発生するが、上記特性によりMR素子52a、52bの抵抗値はほとんど変化しない。
よってこのMR素子52a、52bに印加した電圧を出力信号とすると、出力信号は位相が90°異なる2つの正弦波状の波形となり、この2つの信号波形を信号処理回路(図示せず)で変調内挿処理することで、レンズホルダー51の位置や駆動方向が検出され、このデータに基づき制御回路(図示せず)によりレンズ52の位置を高精度に制御することができる。
【0012】
ここでX方向、Z方向に外乱磁場が有ると、X方向では、正弦波状の磁界強度変化パターンの信号に外乱磁場が重畳することで、信号波形がオフセットするため、出力信号の波形が歪み、位置検出の誤差が増加する。またZ方向は、磁気抵抗変化の感度が少ないものの、磁気抵抗変化率が減少し、MR素子の感度が落ちるという問題が発生する。
【0013】
この従来のレンズ駆動装置において、磁気回路58a、58bからの漏洩磁束が、磁気センサー60のMR素子62a、62bに与える影響について図11及び図12を用いて説明する。図11はこのリニアアクチュエータの横断面の磁束の流れを示す図で、図12は同縦断面の磁束の流れを示す図である。
【0014】
MR素子62a、62bはX方向及びZ方向に磁気抵抗が変化するという特性を持つが、磁気センサー60を一対の磁気回路58a、58bの駆動方向(X方向)の対称中心かつ、この一対の磁気回路58a、58b間の対称中心位置に設けたことによって、図11に示すようにMR素子位置でのX方向の漏洩磁束は微少な値になり、一方、図12に示すようにZ方向の漏洩磁束も互いに打ち消し合うことにより微少な値になる。
【0015】
よって上記構成により、駆動用の磁気回路58a、58bからの漏洩磁束の影響を磁気センサー60に与えない、S/N比の優れたレンズ駆動装置を実現している。
【0016】
【発明が解決しようとする課題】
しかしながら、上記のリニアアクチュエータを用いたレンズ鏡筒においては位置検出手段として、磁気スケールとMRセンサとからなる磁気式エンコーダを、1対の磁気回路の漏れ磁束の影響を受けないよう、相対する一対の磁気回路の側面中央かつ、駆動用コイルの外側に設ける必要があるため、磁気式エンコーダの厚み分だけ、幅方向のレンズ鏡筒のサイズが大きくなり、レンズ鏡筒の小型化が図れないという欠点を有していた。
【0017】
上記の問題に鑑み本発明の目的は、磁気センサーを位置検出手段としたリニアアクチュエータを用いたレンズ駆動装置において、この磁気センサーが駆動用磁気回路からの漏洩磁束の影響を受け難く、かつレンズ鏡筒の幅方向のサイズが大きくならない小型のレンズ鏡筒を、簡素な構成で安価に提供しようとするものである。
【0018】
【課題を解決するための手段】
この課題を解決するために本発明は、固定子と、所定の駆動方向に可動自在な可動子とを備えたリニアアクチュエータであって、
前記固定子は、前記駆動方向と垂直に磁化されたマグネットとヨークとを備え1つの磁気回路磁気センサーとを有し、
前記可動子は、前記マグネットと所定の空隙を有し前記マグネットの発生する磁束と直交する様に電流通電されることにより前記駆動方向に可動自在なコイルと、前記駆動方向に沿ってS極とN極が交互に着磁され、前記磁気センサーと所定の距離をもって対向する磁気スケールとを有し
前記1つの磁気回路は、前記駆動方向から見て略左右対称に構成され、
前記磁気センサーは、前記駆動方向から見た前記1つの磁気回路の略対称中心位置に配置されているものである。
【0023】
【発明の実施の形態】
以下、本発明のリニアアクチュエータを用いたレンズ鏡筒の実施の形態を、図面に基づいて説明する。図1は本発明の実施の形態におけるリニアアクチュエータを用いたレンズ駆動装置の内部斜視図、図2は本発明の実施の形態におけるリニアアクチュエータを用いたレンズ駆動装置の横断面図、図3は本発明の実施の形態におけるリニアアクチュエータを用いたレンズ駆動装置の縦断面図、図4は本発明の実施の形態におけるリニアアクチュエータの横断面の磁束の流れを示す図、図5は本発明の実施の形態におけるリニアアクチュエータの縦断面の磁束の流れを示す図である。
【0024】
まず本発明の実施の形態におけるリニアアクチュエータについて図1〜図3を用いて説明する。図1〜図3において、レンズホルダー1はレンズ2を保持すると共に、光軸に平行に配され、両端をレンズ鏡筒3に固定されたガイドシャフト4a、4bに沿って光軸方向(X方向)に摺動自在に構成されている。
【0025】
このレンズホルダー1を光軸方向に駆動させるリニアアクチュエータの固定子として、駆動方向(X方向)と垂直に磁化されたマグネット5と、コの字型のメインヨーク6及び板状のサイドヨーク7とを、駆動方向から見て左右対称で、駆動方向(X方向)にも略左右対称に成るよう構成した磁気回路8の固定子がレンズ鏡筒3に設けられており、一方また可動子としてコイル9がマグネット5と所定の空隙を有するようにレンズホルダー1に固定されており、マグネット5の発生する磁束と直交する様コイル9に電流を流すことで、レンズホルダー1が光軸方向に駆動するしくみになっている。
【0026】
またこのレンズホルダー1を位置制御をするため、位置検出手段として固定側のレンズ鏡筒3には、磁気センサー10が磁気回路8の駆動方向(X方向)の対称中心かつ、駆動方向から見た磁気回路8の対称中心位置に設けられており、一方、可動側のレンズホルダー1には、S極とN極を交互に着磁した磁気スケール11が、磁気センサー10の検出面に対して所定の距離をもって対向するように取り付けられている。
【0027】
また磁気回路8とコイル9の駆動部と、磁気センサー10と磁気スケール11の位置検出部は、それぞれ光軸(駆動)方向から見て、レンズ2を中心としたレンズ鏡筒3の4隅に設けられている。
【0028】
磁気センサー10は従来の技術の形態と同様に、強磁性薄膜を材料としたMR素子12a、12bから構成された2相式の磁気抵抗型センサーで、このMR素子12a、12bは、磁気スケール11のS極とN極までの着磁ピッチの1/4間隔で駆動方向に設けられており、このMR素子12a、12bに流す電流の向きが、マグネット5の磁化方向と垂直になる方向に磁気センサー10と磁気スケール11はそれぞれ配置されている。
【0029】
この本発明の実施の形態のレンズ駆動装置において、磁気回路8からの漏洩磁束が、磁気センサー10のMR素子12a、12bに与える影響について図4及び図5を用いて説明する。MR素子12a、12bはX方向及びZ方向に磁気抵抗が変化するという特性を持つことから、本実施の形態のように磁気回路8を駆動方向から見て左右対称に構成したことによって、図4に示すように、その対称中心に位置する磁気センサー10での方向の漏洩磁束の値は0になる。ここで磁気回路8が略対称形状であっても、また磁気センサー10がその対称中心位置付近にある場合でも、Z方向の漏洩磁束は微少な量となりその効果を失うものではない。
【0030】
また磁気回路8は駆動方向(X方向)におおよそ対称に構成されていることから、図5に示すように、その対称中心に位置する磁気センサー10のX方向の漏洩磁束は微少な値になる。
【0031】
本発明の実施の形態ではMR素子12a、12bに流す電流の向きをマグネット5の磁化方向(Y方向)と垂直になるように磁気センサー10を配置していることから、MR素子12a、12bの感度低下を防ぐことができるが、MR素子12a、12bに流す電流の向きがマグネット5の磁化方向(Y方向)と略垂直であってもその効果を失うものではない。
【0032】
また本発明の実施の形態では、MR素子を用いた磁気抵抗型の磁気センサー用いているが、磁力の強さに対応した出力信号を出すものであればその種類を問わず、センサーが磁気外乱を受け易い方向をZ方向に一致させるようセンサーを取り付けることで本発明はあらゆる種類の磁気センサーに適用できる。
【0034】
さらに本発明の実施の形態では、駆動部である磁気回路8及びコイル9と、位置検出部である磁気センサー10及び磁気スケール11をそれぞれレンズ鏡筒3の4隅に配置したことで、従来のレンズ駆動装置のように、位置検出部を、レンズ外側に配置した駆動用コイルの外側に設ける必要が無いため、レンズ鏡筒の幅方向のサイズが小さくなり、レンズ鏡筒3を小型化することができる。
【0035】
なお本発明は上記実施の形態を用いて説明したビデオカメラの移動レンズ群を駆動するリニアアクチュエータに限るものではなく、ハードディスクや光磁気ディスクなどの記録再生機器、プロッターやプリンタなどの印刷機器、ロボットなど産業機器の分野で用いられるリニアアクチュエータにも適用でき、これと同様の効果を上げることが可能である。
【0036】
【発明の効果】
以上のような構成とすることにより、本発明のリニアアクチュエータは、駆動方向から見て略左右対称に構成された磁気回路において、対称中心位置付近に磁気センサーを配置した位置検出手段を設けることにより、磁気センサーに飛び込む方向の漏洩磁束を低減することができる。
【0037】
さらに、磁気センサーをMR素子を用いた磁気抵抗型センサーとし、このMR素子に流れる電流の方向がマグネットの磁化方向と略垂直になるように磁気センサーを対称中心位置付近に設けることによって、磁気外乱によるMR素子の感度の劣化を防ぐという効果が得られる。
【0038】
さらに、このリニアアクチュエータを用いたレンズ鏡筒は、駆動手段及び位置検出手段を、それぞれ光軸方向から見て、移動レンズ群を中心としたレンズ鏡筒の4隅に設けたことにより、磁気に対する磁気回路からの漏れ磁束による悪影響を最小限にしつつ、レンズ鏡筒の4隅の空きスペースを有効に使うことで、レンズ鏡筒の幅方向のサイズを小さくでき、レンズ鏡筒の小型化を実現することができる。また駆動手段である磁気回路を1つにした、1極のリニアアクチュエータによって構成することにより、マグネットとヨークの部品点数を削減でき、その結果、簡素な構成のレンズ駆動装置を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるリニアアクチュエータを用いたレンズ駆動装置の内部斜視図
【図2】同横断面図
【図3】同縦断面図
【図4】本発明の実施の形態におけるリニアアクチュエータの横断面の磁束の流れを示す図
【図5】同縦断面の磁束の流れを示す図
【図6】MR素子の磁気抵抗変化率特性を示す図
【図7】位置検出手段の概略斜視図
【図8】従来のレンズ鏡筒におけるリニアアクチュエータを用いたレンズ駆動装置の内部斜視図
【図9】同横断面図
【図10】同縦断面図
【図11】従来のレンズ鏡筒におけるリニアアクチュエータの横断面の磁束の流れを示す図
【図12】同縦断面の磁束の流れを示す図
【符号の説明】
1 −−−レンズホルダー
2 −−−レンズ
3 −−−レンズ鏡筒
4a、4b −−−ガイドシャフト
5 −−−マグネット
6 −−−メインヨーク
7 −−−サイドヨーク
8 −−−磁気回路
9 −−−コイル
10−−−磁気センサー
11−−−磁気スケール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear actuator, in particular, a linear actuator that drives a photographing lens in an imaging apparatus such as a camera or a video camera, an optical device, and a lens barrel.
[0002]
[Prior art]
In recent years, video camera technology has been remarkably advanced, and many performance improvements have been made in various fields such as digital recording, reduction in size and weight, longer shooting, high speed, and high magnification zoom.
[0003]
In the lens barrel that is the imaging unit, the so-called “inner focus method”, which adjusts the focus by changing the position of the focus lens group behind the zoom lens group in the optical axis direction, is advantageous for downsizing. In general, the focus lens group moves in the optical axis direction according to the change in the position of the zoom lens group based on the movement trajectory data for each subject distance stored in the microcomputer. An object image is formed on the imaging surface of the rear image sensor.
[0004]
Here, due to the characteristics of the movement trajectory data that the amount of movement of the focus surface on the telephoto side is large, it is necessary to move the focus lens group faster than the zoom lens group to move the focus lens group following the zoom lens group. In order to realize high-speed zoom and long-time shooting among the performance improvement items described above, the drive portion of this focus lens group can follow the change in position of the zoom lens group instead of the conventional stepping motor. A voice coil type linear actuator excellent in high-speed response and low power consumption is adopted.
[0005]
A configuration of a conventional lens driving device for driving the focus lens will be described with reference to FIGS. 8 is an internal perspective view of a lens driving device in a conventional lens barrel, FIG. 9 is a transverse sectional view of the lens driving device, and FIG. 10 is a longitudinal sectional view of the lens driving device.
[0006]
The lens holder 51 holds the focus lens 52 and is arranged parallel to the optical axis, and is slidable in the optical axis direction (X direction) along guide shafts 54 a and 54 b fixed to the lens barrel 53 at both ends. It is configured.
[0007]
As a stator of a linear actuator that drives the lens holder 51 in the optical axis direction, a magnet 55a magnetized perpendicular to the driving direction (X direction), a U-shaped main yoke 56a, and a plate-shaped side yoke 57a. A magnetic circuit 58a configured to be substantially symmetrical with respect to the driving direction (X direction), a magnet 55b, a main yoke 56b, and a side yoke 57b disposed substantially symmetrically at opposite positions so as to face the magnetic circuit 58a. A stator of a magnetic circuit 58b is provided on the lens barrel 53, while a coil 59 is fixed to the lens holder 51 as a mover so as to have a predetermined gap with the magnets 55a and 55b. , 55b is caused to flow perpendicularly to the magnetic flux generated by the coil 59 so that the lens holder 51 can It has a mechanism to be driven in the direction.
[0008]
In addition, in order to control the position of the lens holder 51, the magnetic sensor 60 is provided in the lens barrel 53 on the fixed side as position detecting means, and the pair of the magnetic sensor 58 has a symmetrical center in the driving direction (X direction) of the magnetic circuits 58a and 58b. Are provided at the symmetrical center position between the magnetic circuits 58a and 58b. On the other hand, the movable lens holder 51 is magnetized with S poles and N poles alternately at a predetermined pitch along the driving direction by moving a ferromagnetic material such as ferrite at a constant speed with respect to the magnetic head. A magnetic scale 61 is attached so as to face the detection surface of the magnetic sensor 60 with a predetermined distance. The magnetic sensor 60 is a two-phase magnetoresistive sensor composed of MR elements 62a and 62b made of a ferromagnetic thin film such as NiFe or NiCo having a characteristic that the resistance value changes depending on the magnetic field. The MR element 62a, 62b is a ¼ interval of the magnetization pitch from the S pole to the N pole of the magnetic scale 61 and is provided in the driving direction. The direction of the current flowing through the MR elements 62a and 62b is the magnetization direction of the magnets 65a and 65b. The magnetic sensor 60 and the magnetic scale 61 are respectively arranged in a direction parallel to the magnetic field.
[0009]
FIG. 6 is a diagram showing the magnetoresistance change rate characteristics of the MR elements 52a and 52b, and FIG. 7 is a schematic perspective view of the position detecting means.
[0010]
As the directionality of the magnetoresistance change shown in FIG. 6, the resistance value hardly changes for a magnetic field in a direction (Y direction) perpendicular to the current direction of the MR elements 52a and 52b and perpendicular to the detection surface. The resistance value changes greatly with respect to a magnetic field perpendicular to the current direction of the MR elements 52a and 52b and parallel to the detection surface (X direction), and further parallel to the current direction of the MR elements 52a and 52b. The resistance value slightly changes with respect to the magnetic field in the direction (Z direction).
[0011]
From this characteristic, when the magnetic scale having the magnetization pattern shown in FIG. 7 changes its position with respect to the magnetic sensor 50, the MR elements 52a and 52b correspond to the sinusoidal magnetic field strength change pattern generated in the X direction. The resistance value changes. Here, a sinusoidal magnetic field strength change pattern having a phase difference of 180 ° from the X direction is also generated in the Y direction, but the resistance values of the MR elements 52a and 52b hardly change due to the above characteristics.
Therefore, when the voltage applied to the MR elements 52a and 52b is used as an output signal, the output signal has two sinusoidal waveforms that are 90 ° out of phase, and these two signal waveforms are modulated by a signal processing circuit (not shown). By performing the insertion process, the position and driving direction of the lens holder 51 are detected, and the position of the lens 52 can be controlled with high accuracy by a control circuit (not shown) based on this data.
[0012]
Here, if there is a disturbance magnetic field in the X direction and Z direction, the signal waveform is offset by superimposing the disturbance magnetic field on the signal of the sinusoidal magnetic field strength change pattern in the X direction, so that the waveform of the output signal is distorted. Position detection error increases. In the Z direction, although the magnetoresistive change sensitivity is low, there is a problem that the magnetoresistive change rate is reduced and the sensitivity of the MR element is lowered.
[0013]
In this conventional lens driving device, the influence of the leakage magnetic flux from the magnetic circuits 58a and 58b on the MR elements 62a and 62b of the magnetic sensor 60 will be described with reference to FIGS. FIG. 11 is a view showing the flow of magnetic flux in the transverse section of this linear actuator, and FIG. 12 is a view showing the flow of magnetic flux in the same longitudinal section.
[0014]
The MR elements 62a and 62b have a characteristic that the magnetoresistance changes in the X direction and the Z direction. However, the magnetic sensor 60 has a symmetrical center in the driving direction (X direction) of the pair of magnetic circuits 58a and 58b and the pair of magnetic elements. By providing at the symmetrical center position between the circuits 58a and 58b, the leakage flux in the X direction at the MR element position becomes a small value as shown in FIG. 11, while the leakage in the Z direction as shown in FIG. The magnetic flux also becomes a minute value by canceling each other.
[0015]
Therefore, the lens driving device having an excellent S / N ratio that does not give the magnetic sensor 60 the influence of the leakage magnetic flux from the driving magnetic circuits 58a and 58b is realized by the above configuration.
[0016]
[Problems to be solved by the invention]
However, in the lens barrel using the linear actuator described above, a magnetic encoder composed of a magnetic scale and an MR sensor is used as a position detecting means so as to be opposed to each other so as not to be affected by the leakage magnetic flux of a pair of magnetic circuits. Therefore, the size of the lens barrel in the width direction is increased by the thickness of the magnetic encoder, and the lens barrel cannot be reduced in size. Had drawbacks.
[0017]
In view of the above problems, an object of the present invention is to provide a lens driving device using a linear actuator having a magnetic sensor as a position detecting means, and the magnetic sensor is hardly affected by leakage magnetic flux from the driving magnetic circuit, and the lens mirror. A compact lens barrel that does not increase in size in the width direction of the tube is to be provided at a low cost with a simple configuration.
[0018]
[Means for Solving the Problems]
In order to solve this problem, the present invention is a linear actuator including a stator and a movable element movable in a predetermined driving direction,
The stator includes a magnetic circuit including a magnet and a yoke magnetized perpendicularly to the driving direction, and a magnetic sensor.
The mover, the magnet with a predetermined and movably coil in the driving direction by Rukoto current is energized so as perpendicular to the magnetic flux generated by the magnet has a gap, S poles along the driving direction And N poles are alternately magnetized, and have a magnetic scale facing the magnetic sensor with a predetermined distance ,
The one magnetic circuit is configured substantially symmetrically when viewed from the driving direction,
The magnetic sensor is disposed at a substantially symmetrical center position of the one magnetic circuit as viewed from the driving direction.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a lens barrel using the linear actuator of the present invention will be described below with reference to the drawings. FIG. 1 is an internal perspective view of a lens driving device using a linear actuator according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the lens driving device using a linear actuator according to an embodiment of the present invention, and FIG. 4 is a longitudinal sectional view of a lens driving device using a linear actuator in an embodiment of the invention, FIG. 4 is a diagram showing a flow of magnetic flux in a transverse section of the linear actuator in the embodiment of the present invention, and FIG. 5 is an embodiment of the present invention. It is a figure which shows the flow of the magnetic flux of the longitudinal cross-section of the linear actuator in a form.
[0024]
First, a linear actuator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3, the lens holder 1 holds the lens 2 and is arranged in parallel to the optical axis, and is guided along the optical axis direction (X direction) along guide shafts 4 a and 4 b fixed to the lens barrel 3 at both ends. ) Is slidable.
[0025]
As a stator of a linear actuator that drives the lens holder 1 in the optical axis direction, a magnet 5 magnetized perpendicular to the driving direction (X direction), a U-shaped main yoke 6 and a plate-shaped side yoke 7 The magnetic lens 8 is provided with a stator of the magnetic circuit 8 which is symmetrical with respect to the driving direction and substantially symmetrical with respect to the driving direction (X direction). 9 is fixed to the lens holder 1 so as to have a predetermined gap with the magnet 5, and the lens holder 1 is driven in the optical axis direction by passing a current through the coil 9 so as to be orthogonal to the magnetic flux generated by the magnet 5. It works.
[0026]
Further, in order to control the position of the lens holder 1, the magnetic sensor 10 is seen from the driving direction and the symmetrical center of the driving direction (X direction) of the magnetic circuit 8 in the lens barrel 3 on the fixed side as position detecting means. On the other hand, the movable lens holder 1 is provided with a magnetic scale 11 in which S poles and N poles are alternately magnetized with respect to the detection surface of the magnetic sensor 10. Are attached so as to face each other.
[0027]
The magnetic circuit 8 and the drive unit for the coil 9 and the position detection unit for the magnetic sensor 10 and the magnetic scale 11 are respectively located at the four corners of the lens barrel 3 centered on the lens 2 when viewed from the optical axis (drive) direction. Is provided.
[0028]
The magnetic sensor 10 is a two-phase magnetoresistive sensor composed of MR elements 12a and 12b made of a ferromagnetic thin film, as in the prior art. The MR elements 12a and 12b are magnetic scales 11. Are provided in the driving direction at intervals of 1/4 of the magnetization pitch from the S pole to the N pole, and the direction of the current flowing through the MR elements 12a, 12b is magnetic in the direction perpendicular to the magnetization direction of the magnet 5. The sensor 10 and the magnetic scale 11 are respectively arranged.
[0029]
In the lens driving device according to the embodiment of the present invention, the influence of the leakage magnetic flux from the magnetic circuit 8 on the MR elements 12a and 12b of the magnetic sensor 10 will be described with reference to FIGS. Since the MR elements 12a and 12b have a characteristic that the magnetic resistance changes in the X direction and the Z direction, the magnetic circuit 8 is configured symmetrically as viewed from the driving direction as in the present embodiment. As shown, the value of the leakage magnetic flux in the Z direction at the magnetic sensor 10 located at the center of symmetry is zero. Here, even if the magnetic circuit 8 has a substantially symmetric shape and the magnetic sensor 10 is in the vicinity of the symmetrical center position, the leakage magnetic flux in the Z direction is very small and the effect is not lost.
[0030]
Further, since the magnetic circuit 8 is configured approximately symmetrically in the driving direction (X direction), as shown in FIG. 5, the leakage flux in the X direction of the magnetic sensor 10 located at the center of symmetry is a small value. .
[0031]
In the embodiment of the present invention, since the magnetic sensor 10 is arranged so that the direction of the current flowing through the MR elements 12a and 12b is perpendicular to the magnetization direction (Y direction) of the magnet 5, the MR elements 12a and 12b Although a reduction in sensitivity can be prevented, the effect is not lost even if the direction of the current flowing through the MR elements 12a and 12b is substantially perpendicular to the magnetization direction (Y direction) of the magnet 5.
[0032]
In the embodiment of the present invention, a magnetoresistive magnetic sensor using an MR element is used. However, any sensor can be used as long as it outputs an output signal corresponding to the strength of the magnetic force. The present invention can be applied to all kinds of magnetic sensors by attaching the sensor so that the direction in which the light is easily received coincides with the Z direction.
[0034]
Furthermore, in the embodiment of the present invention, the magnetic circuit 8 and the coil 9 which are driving units, and the magnetic sensor 10 and the magnetic scale 11 which are position detecting units are arranged at the four corners of the lens barrel 3, respectively. Unlike the lens driving device, it is not necessary to provide the position detection unit outside the driving coil arranged outside the lens, so the size of the lens barrel in the width direction is reduced, and the lens barrel 3 is downsized. Can do.
[0035]
The present invention is not limited to the linear actuator that drives the moving lens group of the video camera described with reference to the above-described embodiment, but a recording / playback device such as a hard disk or a magneto-optical disk, a printing device such as a plotter or a printer, or a robot The present invention can also be applied to linear actuators used in the field of industrial equipment, and the same effects can be achieved.
[0036]
【The invention's effect】
With the configuration as described above, the linear actuator of the present invention provides a position detection means in which a magnetic sensor is disposed near the center position of symmetry in a magnetic circuit configured substantially symmetrically when viewed from the driving direction. The leakage magnetic flux in the Z direction jumping into the magnetic sensor can be reduced.
[0037]
Furthermore, the magnetic sensor is a magnetoresistive sensor using an MR element, and the magnetic sensor is provided near the symmetrical center position so that the direction of the current flowing through the MR element is substantially perpendicular to the magnetization direction of the magnet. The effect of preventing the deterioration of the sensitivity of the MR element due to is obtained.
[0038]
Further, in the lens barrel using this linear actuator, the driving means and the position detecting means are provided at the four corners of the lens barrel with the moving lens group as the center, respectively, when viewed from the optical axis direction. By effectively using the empty space at the four corners of the lens barrel while minimizing the adverse effects of magnetic flux leakage from the magnetic circuit, the size of the lens barrel can be reduced, and the lens barrel can be made smaller. can do. In addition, by using a single-pole linear actuator with a single magnetic circuit as a driving means, the number of parts of the magnet and the yoke can be reduced, and as a result, a lens driving device having a simple configuration can be provided at low cost. Can do.
[Brief description of the drawings]
FIG. 1 is an internal perspective view of a lens driving device using a linear actuator according to an embodiment of the present invention. FIG. 2 is a transverse cross-sectional view of the same. FIG. 5 is a diagram showing the flow of magnetic flux in the transverse section of the linear actuator. FIG. 5 is a diagram showing the flow of magnetic flux in the longitudinal section. FIG. 6 is a diagram showing the magnetoresistance change characteristic of the MR element. FIG. 8 is an internal perspective view of a lens driving device using a linear actuator in a conventional lens barrel. FIG. 9 is a transverse sectional view of the same. FIG. 10 is a longitudinal sectional view of the lens driving apparatus. Fig. 12 shows the flow of magnetic flux in the cross section of the linear actuator. Fig. 12 shows the flow of magnetic flux in the same vertical cross section.
DESCRIPTION OF SYMBOLS 1 --- Lens holder 2 --- Lens 3-Lens barrel 4a, 4b --- Guide shaft 5 --- Magnet 6 --- Main yoke 7 --- Side yoke 8 ---- Magnetic circuit 9 --- Coil 10 --- Magnetic sensor 11 --- Magnetic scale

Claims (5)

固定子と、所定の駆動方向に可動自在な可動子とを備え、
前記固定子は、前記駆動方向と垂直に磁化されたマグネットとヨークとを備えた1つの磁気回路磁気センサーとを有し、
前記可動子は、前記マグネットと所定の空隙を有し前記マグネットの発生する磁束と直交する様に電流通電されることにより前記駆動方向に可動自在なコイルと、前記駆動方向に沿ってS極とN極が交互に着磁され、前記磁気センサーと所定の距離をもって対向する磁気スケールとを有し
前記1つの磁気回路は、前記駆動方向から見て略左右対称に構成され、
前記磁気センサーは、前記駆動方向から見た前記1つの磁気回路の略対称中心位置に配置されているリニアアクチュエータ。
A stator and a movable element movable in a predetermined driving direction;
The stator has one magnetic circuit including a magnet and a yoke magnetized perpendicularly to the driving direction, and a magnetic sensor,
The mover, the magnet with a predetermined and movably coil in the driving direction by Rukoto current is energized so as perpendicular to the magnetic flux generated by the magnet has a gap, S poles along the driving direction And N poles are alternately magnetized, and have a magnetic scale facing the magnetic sensor with a predetermined distance ,
The one magnetic circuit is configured substantially symmetrically when viewed from the driving direction,
The magnetic sensor is a linear actuator disposed at a substantially symmetrical center position of the one magnetic circuit as viewed from the driving direction.
前記磁気回路は、前記駆動方向に略左右対称に構成され、The magnetic circuit is configured substantially symmetrically in the driving direction,
前記磁気センサーは、前記磁気回路の駆動方向における略対称中心位置に配置されている請求項1記載のリニアアクチュエータ。  The linear actuator according to claim 1, wherein the magnetic sensor is disposed at a substantially symmetrical center position in a driving direction of the magnetic circuit.
前記磁気センサーMR素子を用いた磁気抵抗型センサーであり
前記MR素子に流れる電流の方向が、前記マグネットの磁化方向および前記駆動方向と略垂直になるように前記磁気センサー配置されていることを特徴とする請求項1又は請求項2記載のリニアアクチュエータ。
The magnetic sensor is a magnetoresistive sensor using MR elements,
Direction of current flowing through the MR element, a linear actuator according to claim 1 or claim 2, wherein said magnetic sensor such that the magnetization direction and the driving direction substantially perpendicular of the magnet is located .
前記磁気回路は、前記MR素子に流れる電流の方向に略左右対称に構成されていることを特徴とする請求項3記載のリニアアクチュエータ。4. The linear actuator according to claim 3, wherein the magnetic circuit is substantially symmetrical with respect to the direction of the current flowing through the MR element. 移動レンズ群を含む光学系により結像面上に物体像を形成する光学機器において、この移動レンズ群を駆動する手段として請求項1又は、請求項2又は、請求項3記載のリニアアクチュエータを用いたことを特徴とするレンズ駆動装置。In an optical apparatus for forming an object image on an image plane by an optical system including a moving lens group, the linear actuator according to claim 1, 2 or 3 is used as means for driving the moving lens group. A lens driving device characterized by that.
JP31176597A 1997-02-10 1997-11-13 Linear actuator and lens barrel using the same Expired - Lifetime JP3893701B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP31176597A JP3893701B2 (en) 1997-11-13 1997-11-13 Linear actuator and lens barrel using the same
GB9802511A GB2323716B (en) 1997-02-10 1998-02-05 Linear actuator and optical equipment using the same
US09/020,676 US5939804A (en) 1997-02-10 1998-02-09 Linear actuator and optical equipment using the same
KR1019980003665A KR100306448B1 (en) 1997-02-10 1998-02-09 Linear actuator and optical equipment with the same
DE19805094A DE19805094B4 (en) 1997-02-10 1998-02-09 Linear drive and optical device using this
CNB981044190A CN1153079C (en) 1997-02-10 1998-02-10 Straight line movement promoting device and optical equipment using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31176597A JP3893701B2 (en) 1997-11-13 1997-11-13 Linear actuator and lens barrel using the same

Publications (2)

Publication Number Publication Date
JPH11150972A JPH11150972A (en) 1999-06-02
JP3893701B2 true JP3893701B2 (en) 2007-03-14

Family

ID=18021223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31176597A Expired - Lifetime JP3893701B2 (en) 1997-02-10 1997-11-13 Linear actuator and lens barrel using the same

Country Status (2)

Country Link
JP (1) JP3893701B2 (en)
KR (1) KR100306448B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336857A (en) * 2003-05-06 2004-11-25 Sony Corp Electromagnetic drive, lens drive, and imaging apparatus
JP2004343853A (en) * 2003-05-14 2004-12-02 Sony Corp Linear actuator, lens driver and imaging apparatus
JP4613703B2 (en) * 2005-06-08 2011-01-19 ソニー株式会社 Lens barrel and imaging device
JP4480086B2 (en) 2005-06-13 2010-06-16 ソニー株式会社 Lens barrel and imaging device
TWI307815B (en) * 2006-07-05 2009-03-21 Young Optics Inc Lens module
JP5370697B2 (en) * 2011-05-13 2013-12-18 株式会社安川電機 Linear motor
WO2017208877A1 (en) * 2016-06-03 2017-12-07 富士フイルム株式会社 Voice coil motor, lens moving device, and imaging device
JP6457701B2 (en) 2016-06-03 2019-01-23 富士フイルム株式会社 Voice coil motor, lens moving device, and imaging device

Also Published As

Publication number Publication date
KR19980071196A (en) 1998-10-26
JPH11150972A (en) 1999-06-02
KR100306448B1 (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3750251B2 (en) Linear actuator and optical equipment using it
US5939804A (en) Linear actuator and optical equipment using the same
US6456444B1 (en) Lens barrel
US5859733A (en) Apparatus for detecting and displaying position of a lens on an optical axis
JP3246241B2 (en) Optical device
KR100373295B1 (en) Lens barrels for video cameras and their linear transport devices.
US10790736B2 (en) Voice coil motor, lens moving device, and imaging apparatus
JP2012068339A (en) Position detection sensor and lens drive device
JP2012118517A (en) Camera shake correction unit
JP3893701B2 (en) Linear actuator and lens barrel using the same
JP6235450B2 (en) Image stabilization unit
JP3835429B2 (en) Lens driving device for imaging device
JPH11289743A (en) Linear actuator and lens driving device and lens barrel using the same
JP3489470B2 (en) Lens barrel
JP4751688B2 (en) Lens barrel
JP3965744B2 (en) Lens driving device and lens barrel
CN107561820B (en) Actuator, and lens unit and camera provided with same
JP3693059B2 (en) Lens barrel
JP2004336857A (en) Electromagnetic drive, lens drive, and imaging apparatus
US20130242421A1 (en) Position detection device, image pickup apparatus, and magnet
JPH0562383A (en) Disk drive device
JP2014130044A (en) Mobile unit
JPH03217806A (en) Lens position detector
JP2004334099A (en) Lens barrel and imaging apparatus using the same
JP3438416B2 (en) Linear feeder

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term