JP3893468B2 - Polysaccharide hydrogel and method for producing the same - Google Patents

Polysaccharide hydrogel and method for producing the same Download PDF

Info

Publication number
JP3893468B2
JP3893468B2 JP2004006504A JP2004006504A JP3893468B2 JP 3893468 B2 JP3893468 B2 JP 3893468B2 JP 2004006504 A JP2004006504 A JP 2004006504A JP 2004006504 A JP2004006504 A JP 2004006504A JP 3893468 B2 JP3893468 B2 JP 3893468B2
Authority
JP
Japan
Prior art keywords
polysaccharide
group
hyaluronic acid
amino group
phenolic hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004006504A
Other languages
Japanese (ja)
Other versions
JP2005200494A (en
Inventor
浩 宇山
栗沢元一
主恩 鄭
小林四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2004006504A priority Critical patent/JP3893468B2/en
Publication of JP2005200494A publication Critical patent/JP2005200494A/en
Application granted granted Critical
Publication of JP3893468B2 publication Critical patent/JP3893468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、多糖ハイドロゲル及びその製造方法に属し、特に細胞足場、薬剤キャリヤー等の生医学材料や化粧品もしくは食品用マトリックス素材に利用できるヒアルロン酸ハイドロゲル及びその製造方法に関するものである。   The present invention relates to a polysaccharide hydrogel and a method for producing the same, and particularly to a hyaluronic acid hydrogel that can be used for biomedical materials such as cell scaffolds and drug carriers, and matrix materials for cosmetics or foods, and a method for producing the same.

ヒアルロン酸は代表的なムコ多糖の一つであり、眼の硝子体、臍帯、結合組織、血液、関節液、動静脈壁などに広く存在する。合成法としてはこれまでに発酵合成法が工業的に確立され、化粧品原料、医薬品原料として供給されている。ヒアルロン酸の主たる用途として、高級化粧品の保湿成分、眼外科薬、関節症治療薬、術後癒着防止剤が挙げられる。また、ヒアルロン酸をはじめとする生体高分子の各種ゲルが、これに薬剤、細胞等の機能発現物質を含ませることにより、所望の時期に機能を発現させることを可能にするマトリックス材料として生医学、化粧品、食品等の幅広い分野で用いられている。   Hyaluronic acid is one of typical mucopolysaccharides and is widely present in the vitreous body of the eye, umbilical cord, connective tissue, blood, joint fluid, arteriovenous wall, and the like. As a synthesis method, a fermentation synthesis method has been established industrially so far and is supplied as a raw material for cosmetics and a raw material for pharmaceuticals. Main applications of hyaluronic acid include high-grade cosmetic moisturizing ingredients, ophthalmic surgical drugs, arthropathy therapeutics, and postoperative adhesion prevention agents. Biomedical as a matrix material that enables various gels of biopolymers such as hyaluronic acid to express their functions at desired times by including functionally expressed substances such as drugs and cells. It is used in a wide range of fields such as cosmetics and food.

ヒアルロン酸のゲルは、例えば酸性水溶液を冷却することにより物理ゲルとして得られることが知られているが、可逆的に水溶液になる性質から、安定性や持続性に欠けるといった問題点を有している(特許文献1、2&5)。
ヒアルロン酸のこのような性質を改善する目的で、ヒアルロン酸の化学修飾による架橋ハイドロゲルが知られている。代表的な架橋剤として、ビスエポキシド類、ジビニルスルホン、ジヒドラジン、ジヒドラジド、ポリイソシアネートが挙げられる(特許文献3&6)。また、ヒアルロン酸にメタクリルエステル等のビニル基を導入し、その後のビニル基のラジカル重合により架橋ハイドロゲルの合成が報告されている(特許文献4)。
Hyaluronic acid gel is known to be obtained as a physical gel by cooling an acidic aqueous solution, for example, but has the problem of lacking stability and durability due to the reversible nature of the aqueous solution. (Patent Documents 1, 2, and 5).
In order to improve such properties of hyaluronic acid, a crosslinked hydrogel obtained by chemical modification of hyaluronic acid is known. Representative crosslinking agents include bisepoxides, divinylsulfone, dihydrazine, dihydrazide, and polyisocyanate (Patent Documents 3 and 6). Moreover, the synthesis | combination of bridge | crosslinking hydrogel is reported by introduce | transducing vinyl groups, such as methacrylic ester, into hyaluronic acid, and the subsequent radical polymerization of a vinyl group (patent document 4).

特開平05− 58881号公報Japanese Patent Laid-Open No. 05-58881 特開平05−140201号公報Japanese Patent Laid-Open No. 05-140201 特開平09−59303号公報JP 09-59303 A 特開平10−67687号公報JP-A-10-67687 特開2000−230003号公報JP 2000-230003 A 特開2001−348401号公報JP 2001-348401 A

しかし、架橋剤を介する従来の架橋方法は、酸、アルカリの使用を必要とするため、生成ハイドロゲルのマトリックス材料としての用途に関して、ゲルに含ませるべき機能発現物質(薬剤、細胞等)をゲルの製造過程で変性させたり、失活させたりするといった問題点があった。また、架橋剤の多くは二官能性であることから、ゲル化に際して架橋剤と機能発現物質が反応することにより、機能発現物質が変性したり、失活したりする可能性があり、更に機能発現物質の徐放目的には適さない。ビニル重合によるゲル化の場合も開始剤により機能発現物質の変性や失活の可能性がある。更に、特許文献3及び6で得られたヒアルロン酸ゲルは、生分解性を有しないし、ジラウリン酸ジブチルスズのように毒性の高い金属触媒の添加を必要とする架橋方法(特許文献6)の場合、得られるハイドロゲルに金属触媒が残存する可能性があり、生医学材料として適さない。   However, since the conventional cross-linking method using a cross-linking agent requires the use of an acid or an alkali, the function-expressing substances (drugs, cells, etc.) to be included in the gel are gelled for use as a matrix material of the generated hydrogel. There was a problem that it was denatured or deactivated during the production process. In addition, since most of the crosslinking agents are bifunctional, there is a possibility that the function-expressing substance may be modified or deactivated by the reaction between the crosslinking agent and the function-expressing substance during gelation. Not suitable for sustained release of expressed substance. Even in the case of gelation by vinyl polymerization, the initiator may cause modification or deactivation of the function-expressing substance. Furthermore, the hyaluronic acid gel obtained in Patent Documents 3 and 6 is not biodegradable and is a crosslinking method that requires the addition of a highly toxic metal catalyst such as dibutyltin dilaurate (Patent Document 6). Further, there is a possibility that a metal catalyst may remain in the obtained hydrogel, which is not suitable as a biomedical material.

そのため、この発明の第一の課題は、生分解性を有して生体や環境に無害なヒアルロン酸ハイドロゲル等の多糖ハイドロゲルを提供することにある。第二の課題は、機能発現物質を安定して含ませることのできるヒアルロン酸ハイドロゲル等の多糖ハイドロゲルの製造方法を提供することにある。   Therefore, the first object of the present invention is to provide a polysaccharide hydrogel such as a hyaluronic acid hydrogel that is biodegradable and harmless to the living body and the environment. A second problem is to provide a method for producing a polysaccharide hydrogel such as a hyaluronic acid hydrogel that can stably contain a function-expressing substance.

その課題を解決するために、この発明の多糖ハイドロゲルの製造方法は、多糖に縮合剤を用いて重合性化合物を結合させた後、酵素にて処理することで重合硬化させることを特徴とする。
この発明の方法によれば、多糖に重合性化合物を結合させて得られる多糖誘導体を酵素で処理することで重合しているので、多糖とともに調合された機能発現物質がゲルの製造過程で変性したり失活したりすることはなく、その機能を維持した状態でゲル中に残る。また、この方法によれば、多糖誘導体と酵素を準備しておき、必要なときのみゲル化させることもできる。
In order to solve the problem, the method for producing a polysaccharide hydrogel of the present invention is characterized in that a polymerizable compound is bound to a polysaccharide using a condensing agent and then polymerized and cured by treatment with an enzyme. .
According to the method of the present invention, since the polysaccharide derivative obtained by binding the polymerizable compound to the polysaccharide is polymerized by treating with the enzyme, the function-expressing substance prepared together with the polysaccharide is denatured during the gel production process. It remains in the gel while maintaining its function. Further, according to this method, a polysaccharide derivative and an enzyme can be prepared and gelled only when necessary.

この発明の方法では酵素が触媒として機能しているだけで生成物に結合していないから、製造された多糖ハイドロゲルは、多糖と重合性化合物との縮合体の重合体であることを特徴とする。
前記多糖酸性多糖であり、前記重合性化合物下記一般式(1)で示される構造であることを要する
In the method of the present invention, since the enzyme functions as a catalyst and does not bind to the product, the produced polysaccharide hydrogel is a polymer of a condensate of a polysaccharide and a polymerizable compound. To do.
The polysaccharide is an acidic polysaccharide, and the polymerizable compound needs to have a structure represented by the following general formula (1).

Figure 0003893468
(式中、Rは、アルコール性水酸基、1級アミノ基、2級アミノ基またはカルボキシル基;aは、1〜10の整数;A1〜A5のうち1つまたは2つはフェノール性水酸基で、残りは水素原子または炭素数1〜6のアルコキシ基である。A1〜A5のうち2つがフェノール性水酸基である場合、2つのフェノール性水酸基はオルトまたはパラ位の位置関係にあるものとする。)
Figure 0003893468
Wherein R is an alcoholic hydroxyl group, a primary amino group, a secondary amino group or a carboxyl group; a is an integer of 1 to 10; one or two of A 1 to A 5 are phenolic hydroxyl groups The remainder is a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms, and when two of A 1 to A 5 are phenolic hydroxyl groups, the two phenolic hydroxyl groups are in the ortho or para position. To do.)

前記多糖をカルボン酸などの酸基を含む多糖とすることで、その酸基に重合性化合物のRが結合し、多糖がフェノール性水酸基を有する多糖誘導体となる。そして、多糖誘導体がフェノール性水酸基を有することで、酵素によって容易に重合しうるからである。
前記Rがアルコール性水酸基、1級アミノ基または2級アミノ基であると特に好ましい。これらの官能基は、酸性多糖の酸基と特異的に縮合するので、反応を制御しやすいからである。
By making the said polysaccharide into polysaccharide containing acid groups, such as carboxylic acid, R of the polymeric compound couple | bonds with the acid group, and polysaccharide becomes a polysaccharide derivative which has a phenolic hydroxyl group. And since a polysaccharide derivative has a phenolic hydroxyl group, it can superpose | polymerize easily with an enzyme.
R is particularly preferably an alcoholic hydroxyl group, a primary amino group or a secondary amino group. This is because these functional groups specifically condense with the acid groups of the acidic polysaccharide, making it easy to control the reaction.

前記多糖としてはヒアルロン酸が好ましく挙げられるが、アルギン酸などの他の多糖でもよい。アルギン酸もカルボン酸基を介して上記重合性化合物と容易に縮合し、酵素の作用で重合するし、その他の多糖も同様だからである。
前記縮合剤としては1,1−カルボニルジイミダゾール、ジシクロヘキシルカルボジイミドおよび3−(3−ジメチルアミノプロピル)−1−エチルカルボジイミド・塩酸塩のうちから選ばれる1種以上が挙げられる。
前記酵素としてはラッカーゼ、チロシナーゼ、カタラーゼ及びペルキシダーゼのうちから選ばれる1種以上が挙げられる。ラッカーゼ及びチロシナーゼは、ゲルの構成要素とならない他の薬品を一切加える必要がないので、ゲル化の際に機能発現物質が変性するおそれが全くない点で優れる。ペルオキシダーゼは、過酸化水素等の酸化剤と併用することで瞬時にゲル化させることができ、医療現場などで瞬間接着剤や止血剤などに適している。
The polysaccharide is preferably hyaluronic acid, but may be other polysaccharides such as alginic acid. This is because alginic acid is easily condensed with the polymerizable compound via a carboxylic acid group, polymerized by the action of an enzyme, and other polysaccharides are the same.
Examples of the condensing agent include one or more selected from 1,1-carbonyldiimidazole, dicyclohexylcarbodiimide, and 3- (3-dimethylaminopropyl) -1-ethylcarbodiimide / hydrochloride.
Examples of the enzyme include one or more selected from laccase, tyrosinase, catalase, and peroxidase. Laccase and tyrosinase are excellent in that there is no possibility that the function-expressing substance is denatured during gelation because there is no need to add any other chemicals that do not constitute gel components. Peroxidase can be instantly gelled when used in combination with an oxidizing agent such as hydrogen peroxide, and is suitable as an instantaneous adhesive or hemostatic agent at medical sites.

本発明によれば、酵素触媒を用いているので、常温、中性付近で架橋ヒアルロン酸ハイドロゲル等の多糖ハイドロゲルを容易に得ることができる。従って、出発物質の多糖とともに機能発現物質を調合しておけば、得られるゲル中に機能発現物質を含ませることができる。このヒアルロン酸ハイドロゲル等の多糖ハイドロゲルは透明性と生分解性を有するため、医薬、化粧品、食品等の広範な分野において利用することができる。   According to the present invention, since an enzyme catalyst is used, a polysaccharide hydrogel such as a crosslinked hyaluronic acid hydrogel can be easily obtained at normal temperature and near neutrality. Therefore, if a function-expressing substance is prepared together with the starting polysaccharide, the function-expressing substance can be included in the resulting gel. Since this polysaccharide hydrogel such as hyaluronic acid hydrogel has transparency and biodegradability, it can be used in a wide range of fields such as pharmaceuticals, cosmetics and foods.

多糖誘導体製造に用いられる重合性化合物は、重合性官能基としてフェノール性水酸基、多糖と結合させるための官能基としてアルコール性水酸基、1,2級アミノ基あるいはカルボキシル基を有する化合物である。フェノール性水酸基を1つ有する化合物の例としてはチラミンおよびホモバニリン酸誘導体類、またフェノール性水酸基を2つ有する化合物の例としてはドーパミン、ノルアドレナリンあるいはアドレナリンなどのカテコールアミン誘導体類があげられるが、特にチラミン誘導体類が好ましい。   The polymerizable compound used for the production of the polysaccharide derivative is a compound having a phenolic hydroxyl group as a polymerizable functional group and an alcoholic hydroxyl group, a primary, secondary amino group or a carboxyl group as a functional group for binding to the polysaccharide. Examples of compounds having one phenolic hydroxyl group include tyramine and homovanillic acid derivatives, and examples of compounds having two phenolic hydroxyl groups include catecholamine derivatives such as dopamine, noradrenaline or adrenaline, particularly tyramine derivatives. Are preferred.

多糖誘導体製造に用いられる溶媒としては、例えばジメチルホルムアミドおよびジメチルスルホキシドが挙げられるが、特にジメチルホルムアミドが好ましい。ヒアルロン酸が良く分散するからである。
重合硬化過程に用いられる酵素の起源については特に限定されるわけではないが次のものが挙げられる。まずラッカーゼ、チロシナーゼ(フェノールオキシダーゼ)等の銅酵素類の起源は、例えばウルシ、キノコ(ツチカブリ、マッシュルーム)、カビ(Polyporus vericolor)が挙げられる。またカタラーゼ、ペルキシダーゼ等のヒドロペルオキシダーゼ類の起源は、例えばウシ肝臓、ウマ血球、ヒト血球、M. lysodeikticus、西洋ワサビ、大豆、ダイコン、カブ、甲状腺、牛乳、腸、白血球、赤血球、酵母、Caldariomyces fumago、Steptococcus faecalisが挙げられる。この中で特にチロシナーゼとしてはマッシュルーム由来、ペルオキシダーゼとしては西洋ワサビ由来のものが好ましい。
Examples of the solvent used for producing the polysaccharide derivative include dimethylformamide and dimethylsulfoxide, and dimethylformamide is particularly preferable. This is because hyaluronic acid is well dispersed.
The origin of the enzyme used in the polymerization curing process is not particularly limited, but includes the following. First, examples of the origin of copper enzymes such as laccase and tyrosinase (phenol oxidase) include urushi, mushrooms (Tuchikaburi, mushrooms), and molds (Polyporus vericolor). The origins of hydroperoxidases such as catalase and peroxidase are, for example, bovine liver, horse blood cells, human blood cells, M. lysodeikticus, horseradish, soybean, radish, turnip, thyroid, milk, intestine, leukocytes, erythrocytes, yeast, Caldariomyces Examples include fumago and Steptococcus faecalis. Of these, tyrosinase is preferably derived from mushrooms, and peroxidase is preferably derived from horseradish.

本発明を実施例を用いて詳細に説明する。なお、本発明は実施例に限定されるものではない。
[ヒアルロン酸誘導体の製造]
The present invention will be described in detail with reference to examples. In addition, this invention is not limited to an Example.
[Production of hyaluronic acid derivatives]

製造例1
アルゴン雰囲気下、ヒアルロン酸(チッソ社製、塩酸で中和したもの)2.30gを乾燥ジメチルホルムアミド(溶媒)230mlに加え、撹拌により分散させた。1,1−カルボニルジイミダゾール(縮合剤)1.15gを加え、更に6時間撹拌した。次にチラミン(重合性化合物)0.18gを加え、48時間撹拌した。その後、減圧下で溶媒を留去し、残渣をアセトンで洗浄し、続いてメタノールで洗浄した。残渣を水50mlに分散させ、水酸化ナトリウムを加えて溶解させた。得られた溶液を排除分子量2千の透析チューブに入れ、透析により溶液中のポリマーを精製した。透析後、チューブ内の水溶液を凍結乾燥することにより、ヒアルロン酸誘導体を単離した。
Production Example 1
Under an argon atmosphere, 2.30 g of hyaluronic acid (manufactured by Chisso, neutralized with hydrochloric acid) was added to 230 ml of dry dimethylformamide (solvent) and dispersed by stirring. 1.15 g of 1,1-carbonyldiimidazole (condensing agent) was added, and the mixture was further stirred for 6 hours. Next, 0.18 g of tyramine (polymerizable compound) was added and stirred for 48 hours. Thereafter, the solvent was distilled off under reduced pressure, and the residue was washed with acetone and subsequently with methanol. The residue was dispersed in 50 ml of water and dissolved by adding sodium hydroxide. The obtained solution was put into a dialysis tube having an excluded molecular weight of 2,000, and the polymer in the solution was purified by dialysis. After dialysis, the hyaluronic acid derivative was isolated by lyophilizing the aqueous solution in the tube.

収量1.40g、数平均分子量4,500、分子量分布1.8、1H−NMRより求めたフェノール性水酸基導入率17%。
1H-NMR(D2O, ppm) 1.9(s, CH3C=O), 2.7 (br, CH2Ar), 3.1-3.9 (m, CH2N, CHN, CHO, CH2OH), 4.5 (br, CHO at 1 and 1` positions of hyaluronic acid), 6.7, 7.0 (br, Ar)
Yield 1.40 g, number average molecular weight 4,500, molecular weight distribution 1.8, phenolic hydroxyl group introduction rate 17% determined from 1 H-NMR.
1 H-NMR (D 2 O, ppm) 1.9 (s, CH 3 C = O), 2.7 (br, CH 2 Ar), 3.1-3.9 (m, CH 2 N, CHN, CHO, CH 2 OH), 4.5 (br, CHO at 1 and 1` positions of hyaluronic acid), 6.7, 7.0 (br, Ar)

製造例2
チラミン量を0.44gに変える以外は製造例1と同じ手法で反応を行ったところ、2.30gのヒアルロン酸誘導体が得られた。数平均分子量16,000、分子量分布3.5、1H−NMRより求めたフェノール性水酸基導入率36%。
Production Example 2
A reaction was carried out in the same manner as in Production Example 1 except that the amount of tyramine was changed to 0.44 g. As a result, 2.30 g of a hyaluronic acid derivative was obtained. Number average molecular weight 16,000, molecular weight distribution 3.5, 36% introduction of phenolic hydroxyl group determined from 1 H-NMR.

製造例3
チラミン量を0.087gに変える以外は製造例1と同じ手法で反応を行ったところ、2.20gのヒアルロン酸誘導体が得られた。数平均分子量220,000、分子量分布2.5、1H−NMRより求めたフェノール性水酸基導入率13%。
Production Example 3
A reaction was carried out in the same manner as in Production Example 1 except that the amount of tyramine was changed to 0.087 g. As a result, 2.20 g of a hyaluronic acid derivative was obtained. Number average molecular weight 220,000, molecular weight distribution 2.5, phenolic hydroxyl group introduction rate 13% determined from 1 H-NMR.

[ヒアルロン酸誘導体の硬化]
硬化例1
製造例1のヒアルロン酸誘導体50mgを水1mlに溶解させ、Mycelopthora属由来のラッカーゼを50ユニット加えたところ、2時間で透明なハイドロゲルが生成した。
[Hardening of hyaluronic acid derivatives]
Curing example 1
When 50 mg of the hyaluronic acid derivative of Production Example 1 was dissolved in 1 ml of water and 50 units of laccase derived from Mycelopthora was added, a transparent hydrogel was formed in 2 hours.

硬化例2
製造例1のヒアルロン酸誘導体50mgを水1mlに溶解させ、マッシュルーム由来のチロシナーゼ500ユニットを加えたところ、4時間で透明なハイドロゲルが生成した。
Curing example 2
When 50 mg of the hyaluronic acid derivative of Production Example 1 was dissolved in 1 ml of water and 500 units of mushroom-derived tyrosinase was added, a transparent hydrogel was formed in 4 hours.

硬化例3
製造例1のヒアルロン酸誘導体50mgと西洋ワサビペルオキシダーゼ1mgを水1mlに溶解させ、30%過酸化水素液を50μl加えたところ、瞬時に透明なハイドロゲルが生成した。
Curing example 3
When 50 mg of the hyaluronic acid derivative of Production Example 1 and 1 mg of horseradish peroxidase were dissolved in 1 ml of water and 50 μl of 30% hydrogen peroxide solution was added, a transparent hydrogel was instantaneously formed.

硬化例4
製造例2のヒアルロン酸誘導体50mgを水1mlに溶解させ、Mycelopthora属由来のラッカーゼを50ユニット加えたところ、1時間で透明なハイドロゲルが生成した。
Curing example 4
When 50 mg of the hyaluronic acid derivative of Production Example 2 was dissolved in 1 ml of water and 50 units of laccase derived from the genus Mycelopthora were added, a transparent hydrogel was formed in 1 hour.

硬化例5
製造例2のヒアルロン酸誘導体50mgと西洋ワサビペルオキシダーゼ1mgを水1mlに溶解させ、30%過酸化水素液を50μl加えたところ、瞬時に透明なハイドロゲルが生成した。
Curing example 5
When 50 mg of the hyaluronic acid derivative of Production Example 2 and 1 mg of horseradish peroxidase were dissolved in 1 ml of water and 50 μl of 30% hydrogen peroxide solution was added, a transparent hydrogel was instantaneously formed.

硬化例6
製造例3のヒアルロン酸誘導体100mgと西洋ワサビペルオキシダーゼ2mgを0.1Mリン酸緩衝液(PBS、pH7)2mlに溶解させ、30%過酸化水素液を50μl加えたところ、瞬時に透明なハイドロゲルが生成した。
Curing example 6
When 100 mg of the hyaluronic acid derivative of Production Example 3 and 2 mg of horseradish peroxidase were dissolved in 2 ml of 0.1 M phosphate buffer (PBS, pH 7) and 50 μl of 30% hydrogen peroxide solution was added, a transparent hydrogel was instantaneously formed. Generated.

硬化例7
製造例3のヒアルロン酸誘導体100mgを硬化例6で用いたものと同じPBS1.9mlに溶解させ、マッシュルーム由来のチロシナーゼ600ユニットのPBS溶液0.1mlを加えたところ、6時間で透明なハイドロゲルが生成した。このゲルの膨潤度を重量法により求めたところ、PBS中、2日間後に50倍であった。
Curing example 7
When 100 mg of the hyaluronic acid derivative of Production Example 3 was dissolved in 1.9 ml of PBS same as that used in Curing Example 6 and 0.1 ml of PBS solution of 600 units of tyrosinase derived from mushrooms was added, a transparent hydrogel was obtained in 6 hours. Generated. When the degree of swelling of this gel was determined by the gravimetric method, it was 50 times after 2 days in PBS.

比較例1
未修飾のヒアルロン酸50mgを水5mlに溶解させ、ラッカーゼ水溶液を50μl加えて3日間放置したが、ゲルは得られなかった。
比較例2
未修飾のヒアルロン酸50mgと西洋ワサビペルオキシダーゼ1mgを水5mlに溶解させ、30%過酸化水素液を50μl加えて3日間放置したが、ゲルは得られなかった。
Comparative Example 1
Although 50 mg of unmodified hyaluronic acid was dissolved in 5 ml of water and 50 μl of an aqueous laccase solution was added and left for 3 days, no gel was obtained.
Comparative Example 2
Although 50 mg of unmodified hyaluronic acid and 1 mg of horseradish peroxidase were dissolved in 5 ml of water and 50 μl of 30% hydrogen peroxide solution was added and left for 3 days, no gel was obtained.

[ヒアルロン酸ハイドロゲルの酵素分解]
硬化例7で調製したゲルを平板状に裁断し、50ユニット/mlのヒアルロニダーゼPBS溶液中に37℃にて浸漬し、ゲルの重量減少を経時的に測定した。比較のためにヒアルロニダーゼを含まないPBS溶液にも裁断したゲルを同様に浸漬し、重量減少を測定した。測定結果を図1に示す。図中、白丸はヒアルロニダーゼを含む溶液中での測定結果、白四角は含まない溶液中での測定結果である。
[Enzymatic degradation of hyaluronic acid hydrogel]
The gel prepared in Curing Example 7 was cut into a flat plate and immersed in a 50 unit / ml hyaluronidase PBS solution at 37 ° C., and the weight loss of the gel was measured over time. For comparison, the cut gel was immersed in a PBS solution not containing hyaluronidase in the same manner, and the weight loss was measured. The measurement results are shown in FIG. In the figure, white circles are measurement results in a solution containing hyaluronidase, and white squares are measurement results in a solution not containing white squares.

図1にみられるように、ヒアルロニダーゼを含まないPBS中では、ゲルの重量変化は全く観察されなかったのに対し、ヒアルロニダーゼを含むPBS溶液中では時間の経過とともにゲルの重量が直線的に減少した。この結果より、ヒアルロン酸ハイドロゲルが良好な生分解性を有し、また、ゲルは酵素によって表面より分解することがわかった。   As seen in FIG. 1, no gel weight change was observed in PBS without hyaluronidase, whereas the gel weight decreased linearly over time in PBS solution with hyaluronidase. . From this result, it was found that hyaluronic acid hydrogel has good biodegradability, and the gel is degraded from the surface by the enzyme.

硬化例7で合成したヒアルロン酸ハイドロゲルのヒアルロニダーゼ酵素の有無による分解率を示したグラフである。It is the graph which showed the decomposition rate by the presence or absence of the hyaluronidase enzyme of the hyaluronic acid hydrogel synthesize | combined in the hardening example 7.

Claims (8)

酸性多糖と下記一般式(1)で示される重合性化合物との縮合体の重合体であることを特徴とする多糖ハイドロゲル。
Figure 0003893468
(式中、Rは、アルコール性水酸基、1級アミノ基、2級アミノ基またはカルボキシル基;aは、1〜10の整数;A1〜A5のうち1つまたは2つはフェノール性水酸基で、残りは水素原子または炭素数1〜6のアルコキシ基である。A1〜A5のうち2つがフェノール性水酸基である場合、2つのフェノール性水酸基はオルトまたはパラ位の位置関係にあるものとする。)
A polysaccharide hydrogel, which is a polymer of a condensate of an acidic polysaccharide and a polymerizable compound represented by the following general formula (1) .
Figure 0003893468
Wherein R is an alcoholic hydroxyl group, a primary amino group, a secondary amino group or a carboxyl group; a is an integer of 1 to 10; one or two of A 1 to A 5 are phenolic hydroxyl groups The remainder is a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms, and when two of A 1 to A 5 are phenolic hydroxyl groups, the two phenolic hydroxyl groups are in the ortho or para position. To do.)
前記Rがアルコール性水酸基、1級アミノ基または2級アミノ基である請求項に記載の多糖ハイドロゲル。 The polysaccharide hydrogel according to claim 1 , wherein R is an alcoholic hydroxyl group, a primary amino group, or a secondary amino group. 前記酸性多糖がヒアルロン酸である請求項1〜のいずれかに記載の多糖ハイドロゲル。 Wherein the acidic polysaccharide is polysaccharide hydrogel according to any one of claims 1-2 is hyaluronic acid. 酸性多糖に縮合剤を用いて下記一般式(1)で示される重合性化合物を結合させた後、酵素にて処理することで重合硬化させることを特徴とする多糖ハイドロゲルの製造方法。
Figure 0003893468
(式中、Rは、アルコール性水酸基、1級アミノ基、2級アミノ基またはカルボキシル基;aは、1〜10の整数;A1〜A5のうち1つまたは2つはフェノール性水酸基で、残りは水素原子または炭素数1〜6のアルコキシ基である。A1〜A5のうち2つがフェノール性水酸基である場合、2つのフェノール性水酸基はオルトまたはパラ位の位置関係にあるものとする。)
A method for producing a polysaccharide hydrogel, characterized in that a polymerizable compound represented by the following general formula (1) is bound to an acidic polysaccharide by using a condensing agent and then polymerized and cured by treatment with an enzyme.
Figure 0003893468
Wherein R is an alcoholic hydroxyl group, a primary amino group, a secondary amino group or a carboxyl group; a is an integer of 1 to 10; one or two of A 1 to A 5 are phenolic hydroxyl groups The remainder is a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms, and when two of A 1 to A 5 are phenolic hydroxyl groups, the two phenolic hydroxyl groups are in the ortho or para position. To do.)
前記Rがアルコール性水酸基、1級アミノ基または2級アミノ基である請求項に記載の製造方法。 The production method according to claim 4 , wherein R is an alcoholic hydroxyl group, a primary amino group, or a secondary amino group. 前記酸性多糖がヒアルロン酸である請求項4〜5のいずれかに記載の製造方法。 The production method according to claim 4 , wherein the acidic polysaccharide is hyaluronic acid. 前記縮合剤が1,1−カルボニルジイミダゾール、ジシクロヘキシルカルボジイミドおよび3−(3−ジメチルアミノプロピル)−1−エチルカルボジイミド・塩酸塩のうちから選ばれる1種以上である請求項4〜6のいずれかに記載の製造方法。 The condensing agent is 1,1-carbonyldiimidazole, dicyclohexylcarbodiimide and 3- (3-dimethylaminopropyl) -1- claim 4 is at least one selected from among ethyl carbodiimide hydrochloride The manufacturing method as described in. 前記酵素がラッカーゼ、チロシナーゼ、カタラーゼ及びペルキシダーゼのうちから選ばれる1種以上である請求項4〜7に記載の製造方法。 The production method according to claim 4 , wherein the enzyme is one or more selected from laccase, tyrosinase, catalase, and peroxidase.
JP2004006504A 2004-01-14 2004-01-14 Polysaccharide hydrogel and method for producing the same Expired - Fee Related JP3893468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006504A JP3893468B2 (en) 2004-01-14 2004-01-14 Polysaccharide hydrogel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006504A JP3893468B2 (en) 2004-01-14 2004-01-14 Polysaccharide hydrogel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005200494A JP2005200494A (en) 2005-07-28
JP3893468B2 true JP3893468B2 (en) 2007-03-14

Family

ID=34820442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006504A Expired - Fee Related JP3893468B2 (en) 2004-01-14 2004-01-14 Polysaccharide hydrogel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3893468B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297360A (en) * 2006-05-08 2007-11-15 Ihara Suisan Kk Hydrogel, production method thereof and use thereof
JP2008174510A (en) * 2007-01-19 2008-07-31 Kyushu Univ Polycarbohydrate microparticle and method for producing the same
JP2012162621A (en) * 2011-02-04 2012-08-30 Osaka Univ Composition for hydrogel and manufacturing method thereof
JP6573873B2 (en) 2014-04-17 2019-09-11 典穂 神谷 Hydrogel production method, inclusion object inclusion method, and inclusion object release method

Also Published As

Publication number Publication date
JP2005200494A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
EP2820051B1 (en) Derivates based on hyaluronic acid, capable of forming hydrogels, method of preparation thereof, hydrogels based on said derivatives, method of preparation thereof and use
JP5123285B2 (en) Acrylic hyaluronic acid
JP6231115B2 (en) Glucose-responsive hydrogel comprising PBA grafted hyaluronic acid (HA)
US11389568B2 (en) Tyrosine peptide cross-linked biocompatible hydrogel and method of production
Carvalho et al. Production and characterization of a new dextrin based hydrogel
CN112805306B (en) Crosslinkable polymer, hydrogel and preparation method thereof
JP2013513671A (en) Oxidized derivative of hyaluronic acid, its preparation method and its modification method
JPH10502962A (en) Oxidase-promoted gelation of phenolic polymers
Peng et al. Scarless wound closure by a mussel-inspired poly (amidoamine) tissue adhesive with tunable degradability
JP3893468B2 (en) Polysaccharide hydrogel and method for producing the same
Hoque et al. Interaction chemistry of functional groups for natural biopolymer-based hydrogel design
CN1720264A (en) Aldonic acid esters, methods for producing the same, and methods for producing pharmaceutical active ingredients coupled to polysaccharides or polysaccharide derivatives on free amino groups
Belgodere et al. Attenuating fibrotic markers of patient-derived dermal fibroblasts by Thiolated lignin composites
Oh et al. A comparative study of enzyme-mediated crosslinking of catechol-and phenol-functionalized tetronic hydrogels
KR102315457B1 (en) Cross-linked material having adhension prepared by using tyrosinase derived from burkholderia, preparation method thereof and application thereof
JP2018162440A (en) Composition and use therefor
Yang et al. Design and Applications of Dynamic Hydrogels Based on Reversible C═ N Bonds
Shao et al. Dynamics in cellulose-based hydrogels with reversible cross-links
Jalalvandi et al. Physico-mechanical characterization of liquid versus solid applications of visible light cross-linked tissue sealants
KR20160063154A (en) Hydrogel anti-adhesion adjuvant and manufacturing method of the same
KR19990057607A (en) Chitosan Derivative Manufacturing Method
Cheng et al. Structure characterizations and protein resistance of chitosan membranes selectively crosslinked by poly (ethylene glycol) dimethacrylate
Carvalho et al. Hydrogels of enzymatically modified dextrin
河本大毅 Study of Chitosan Solubility and Chitosan-Based Application
de Kozlowski Development of a Starch-Based Mussel-Mimetic Adhesive Polymer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees