JP3893178B2 - Cleaning method for power generation equipment - Google Patents

Cleaning method for power generation equipment Download PDF

Info

Publication number
JP3893178B2
JP3893178B2 JP31794096A JP31794096A JP3893178B2 JP 3893178 B2 JP3893178 B2 JP 3893178B2 JP 31794096 A JP31794096 A JP 31794096A JP 31794096 A JP31794096 A JP 31794096A JP 3893178 B2 JP3893178 B2 JP 3893178B2
Authority
JP
Japan
Prior art keywords
blowing
cleaning method
cleaning
power generation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31794096A
Other languages
Japanese (ja)
Other versions
JPH09173999A (en
Inventor
ヨルディ ブルーノ
クスケ ラルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of JPH09173999A publication Critical patent/JPH09173999A/en
Application granted granted Critical
Publication of JP3893178B2 publication Critical patent/JP3893178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G5/00Cleaning by distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes

Description

【0001】
【発明の属する技術分野】
本発明は請求項1の上位概念部に記載の方法に関する。
【0002】
【従来の技術】
発電設備、特にガス−蒸気−発電設備においては、殊に蒸気導管、蒸発器、過熱器等のクリーニングを行わなければならい。このような、通常最初の運転の前に行われるクリーニングの最終目的は、装置群、特に流体機械、例えば蒸気タービンを、上記システムの組立又は修理中に不可避的に生じる汚れから保護することにある。これらのプロセスについては従来「ブローイングアウト(blowing out)」という技術用語が使用されている。
【0003】
基本的には2つの方法が公知である。即ち高い動圧比で連続的にクリーニングする方法及び周期的なブローイングアウトサージによって大きな熱的ショックを起こす方法である。
【0004】
高い動圧での連続的なブローイングアウトでは迅速に良好なクリーニング効果がえられる。しかし例えばクリーニングされるべき蒸気系が冷え、続いて再度さらにクリーニングするために蒸気が負荷されると、熱的ショックによって極めて効果的な付加的なクリーニング効果が認められる。このことは、蒸気系中になお汚れが存在した印として評価することができる。高い動圧を用いるこの方法は、過熱器の前又は過熱器自体中に水を噴射することによって熱的ショックを生ぜしめようとするものである。蒸気導管中における過熱器下流側の熱的ショックの効果の発生は極めて僅かである。さらにこのような手段に対して特に言える重要なことは、多くの廃熱ボイラーのメーカーが過熱器の前又は間に水を噴射することに反対を表明しているという事実である。熱サイクル(thermal cycle)によるブローイングアウトにはさらに、該方法の実施に長い時間を要するという決定的な欠点があることは疑う余地がない。
【0005】
2つの廃熱ボイラを備えた従来型式の中出力の発電設備の熱サイクルによるブローイングアウトにはほぼ20日間のクリーニング時間が設けられねばならない。これに対して高い動圧比での連続的なブローイングアウトではほぼ3日乃至5日を要するにすぎない。しかしこの場合クリーニング効果はもはやあまり高くない。
【0006】
【発明が解決しようとする課題】
本発明の課題は、はじめに述べた形式の方法においてクリーニング作用を著しく高めかつブローイングアウトの時間を著しく短縮することにある。
【0007】
【課題を解決するための手段】
上記の課題は本発明によれば、請求項1記載の特徴を有する手段によって解決されている。
【0008】
【発明の効果】
本発明の重要な利点は、先に述べた方法の長所を、これらの方法に付随する短所を生じさせることなく、生かした点に認められる。
【0009】
本発明の方法では高い動圧を用いて数時間の間ブローイングアウトが行われる。ブローイングアウト時間はこの場合、蒸気発生のために使用される鉱物質を除去した水の供給又はその生産量に依存する。従って例えば夜間にブローイングアウトが行われ、これによって系がこの時間の間冷やされ、かつ次のブローイングアウトのための新しい、鉱物質を除去した水を調製する水調製設備が使用される。後続のブローイングアウトはこの場合、上に述べたような大きなクリーニング効果をもたらす熱的ショックを生じさせる。冷却後その都度高い動圧をもって連続的なブローイングアウトが続けて繰り返されることによって先行の熱的ショックの大きなクリーニング効果が強められ、この場合十分なクリーニング効果には僅かなサイクルを必要とするに過ぎない。
【0010】
本発明の課題の解決手段のさらに別の有利な構成は特許請求の範囲のさらに別の請求項に記載の通りである。
【0011】
【発明の実施の形態】
以下に本発明の一実施例を図について詳細に説明する。この場合、本発明の従来の技術に対する特徴を明確にしかつ本発明の理解のために、従来の方法と本発明の方法の両方が図示されている。本発明の直接の理解に必要でない事項は省略されている。同一の方法過程は異なる図においても同一の符号が付されている。
【0012】
図1a及び1b図は組み立てられた状態における発電設備の装置群に対する、大きな熱的ショックを生ぜしめる短いサイクルのブローイングアウトサージ(衝撃)による、従来技術に属するクリーニング法を示す。個々のブローイングアウトサージA、Bは、適宜の媒体によって、図の横軸tに示されているように、全体でほぼ12時間行われる。使用された媒体の温度Tはほぼ500〜550℃であるのに対して、動圧比Pは>1である。このようなブローイングアウト法の利点及び欠点については既に記載の通りである。要するに、この熱的ショックサイクルによるブローイングアウトは良好なクリーニング効果を生じるが、このために必要な長い時間は、発電設備を最大限に利用するという現代の観点からは許容できない。
【0013】
図2a及び2bは、組み立てられた状態における発電設備の装置群を、時間を示す横軸上の曲線C、Dで示されている、連続的なブローイングアウトによってクリーニングするための、従来技術に属するクリーニング法を示す。使用される媒体の温度Tは比較的低い、400℃にとどまっているのに対して、この場合ほぼ3の高い動圧比Pでブローイングアウトが行われている。このブローイングアウト法の利点及び欠点も既に記載の通りである。要するに、比較的高い動圧比を用いる連続的ブローイングアウト法では、迅速に良好なクリーニング効果が達成されるが、熱的ショックの発生がないため固着する汚れ部分の徹底した除去がえられない。
【0014】
図3a及び3bは組み立てられた状態における発電設備の装置群の本発明によるクリーニング法を示す。この方法では、400℃より上の平均温度T及び、ほぼ4及びこれより高い高い動圧比Pで作業が行われる。この作業は、横軸t上の区分から分かるように数時間に亘る、曲線E、Fで示されているブローイングアウトによって行われる。この場合ブローイングアウト時間は主に、蒸気の発生に必要な鉱物質を除去した水の調製貯蔵量若しくはその生産量に左右される。従って、例えば夜間にブローイングアウトが行われ、その結果、クリーニングされるべき系がこの時間中冷却され、かつ水調製設備が、該方法が再度行われる前に、後続のブローイングアウトのための鉱物質を除去した水を調製することができる。高い動圧比Pで数時間に亘って行われる後続のブローイングアウト(曲線E及びF参照)は熱的ショックの大きなクリーニング効果を強化する。ブローイングアウト中の高い動圧比は高い速度によって生ぜしめられる。高い速度は、クリーニングされるべき系内に低い圧力、ひいては比較的大きな比容積がある場合に、生ぜしめられる。このようなコンディションは有利には、一時的な導管中に圧力損出の極めて小さい消音器を設けると共に該導管中に水を噴射することによってえられる。一時的導管の始端に直接的にこの水噴射が行われることによって、クリーニングされるべき系中に低い圧力が生じ、同時に蒸気の多量のコンディショニングが生じる。その結果この方法では、図2a及び2bに示す方法においても認められる付加的な効果が生じる。即ち一時的なブローイングアウト導管は、従来技術に属する他の方法におけるように大きな応力を受けない。図2a、bに示す方法に対する利点は、水消費量が僅かであることにある。それというのは、多くの場合、利用できる水量は限られているからである。本発明の方法のさらに別の利点は、ガスタービンが50回に至るまで始動と停止の負荷を受けなければならない図1a、bによる方法に対して、たんにほぼ5回の始動と停止の負荷を受けるに過ぎないため、ガスタービンが著しく保護されることにある。
【図面の簡単な説明】
【図1】従来技術に属するブローイングアウト法のグラフを示す図
【図2】従来技術に属する別のブローイングアウト法のグラフを示す図
【図3】本発明によるブローイングアウト法のグラフを示す図
【符号の説明】
T 設備の温度
t 時間
p 動圧比
A 温度Tとの関連における熱的ショック、回数、持続時間
B 動圧比pとの関連における熱的ショック、回数、持続時間
C 温度Tとの関連における連続ブローイングアウト、持続時間
D 動圧比pとの関連における連続ブローイングアウト、持続時間
E 温度Tとの関連における熱的ショック−連続ブローイングアウト、持続時間
F 動圧比pとの関連における熱的ショック−連続ブローイングアウト、持続時間
[0001]
BACKGROUND OF THE INVENTION
The invention relates to a method according to the superordinate concept part of claim 1.
[0002]
[Prior art]
In power generation facilities, especially gas-steam-power generation facilities, steam conduits, evaporators, superheaters, etc. must be cleaned. The ultimate goal of such cleaning, usually performed before the first run, is to protect the devices, especially fluid machines, such as steam turbines, from contamination that inevitably occurs during assembly or repair of the system. . The technical term “blowing out” is conventionally used for these processes.
[0003]
Basically, two methods are known. That is, a method of continuously cleaning at a high dynamic pressure ratio and a method of causing a large thermal shock by a periodic blowing out surge.
[0004]
Good blowing effect can be obtained quickly by continuous blowing out at high dynamic pressure. However, for example, if the steam system to be cleaned cools and is subsequently loaded with steam for further cleaning, a very effective additional cleaning effect is recognized by thermal shock. This can be evaluated as a sign that dirt was still present in the steam system. This method of using high dynamic pressure attempts to create a thermal shock by injecting water before the superheater or into the superheater itself. The occurrence of thermal shock effects downstream of the superheater in the steam conduit is very slight. Also of particular importance to such measures is the fact that many waste heat boiler manufacturers have expressed opposition to injecting water before or during the superheater. There is no doubt that blowing out by a thermal cycle also has the decisive drawback of taking a long time to perform the method.
[0005]
Cleaning time of almost 20 days must be provided for blowing out by thermal cycle of a conventional medium power generation facility with two waste heat boilers. On the other hand, continuous blowing out at a high dynamic pressure ratio requires only about 3 to 5 days. In this case, however, the cleaning effect is no longer very high.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to significantly enhance the cleaning action and to significantly reduce the blow-out time in a method of the type described at the outset.
[0007]
[Means for Solving the Problems]
According to the invention, the above problem is solved by means having the features of claim 1.
[0008]
【The invention's effect】
An important advantage of the present invention is recognized in that the advantages of the methods described above are exploited without causing the disadvantages associated with these methods.
[0009]
In the method of the present invention, blowing out is performed for several hours using high dynamic pressure. The blowing out time in this case depends on the supply of water from which minerals used for steam generation have been removed or on the production volume. Thus, for example, blowing out takes place at night, whereby the system is cooled during this time and a water preparation facility is used to prepare new, demineralized water for the next blowing out. Subsequent blowing out in this case causes a thermal shock that results in a large cleaning effect as described above. After cooling, the continuous blowing-out is repeated with high dynamic pressure each time, and the large cleaning effect of the preceding thermal shock is strengthened. In this case, only a few cycles are required for sufficient cleaning effect. Absent.
[0010]
Further advantageous configurations of the solution to the problem of the invention are as set out in the further claims.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In this case, both the conventional method and the method of the present invention are shown in order to clarify the features of the present invention over the prior art and to understand the present invention. Items that are not necessary for a direct understanding of the invention are omitted. The same method steps are denoted by the same reference symbols in different figures.
[0012]
FIGS. 1a and 1b show a cleaning method belonging to the prior art with a short cycle of blowing-out surge that produces a large thermal shock to a group of power generation equipment in the assembled state. The individual blowing-out surges A and B are carried out for about 12 hours in total by an appropriate medium as shown by the horizontal axis t in the figure. The temperature T of the medium used is approximately 500-550 ° C., whereas the dynamic pressure ratio P is> 1. The advantages and disadvantages of such a blowout method have already been described. In short, blowing out by this thermal shock cycle produces a good cleaning effect, but the long time required for this is unacceptable from the modern point of view of making maximum use of the power generation equipment.
[0013]
FIGS. 2a and 2b belong to the prior art for cleaning a group of power generation equipment in the assembled state by continuous blowing out, indicated by curves C, D on the horizontal axis indicating time. The cleaning method is shown. While the temperature T of the medium used remains relatively low, 400 ° C., in this case, blowing out is performed at a high dynamic pressure ratio P of about 3. The advantages and disadvantages of this blowing-out method are already described. In short, in the continuous blowing-out method using a relatively high dynamic pressure ratio, a good cleaning effect can be achieved quickly, but since there is no occurrence of thermal shock, thorough removal of the adhered dirt portion cannot be obtained.
[0014]
Figures 3a and 3b show the cleaning method according to the invention of a group of power generation equipment in the assembled state. In this method, the operation is carried out at an average temperature T above 400 ° C. and a dynamic pressure ratio P of approximately 4 and higher. This operation is performed by blowing out as shown by curves E and F over several hours as can be seen from the section on the horizontal axis t. In this case, the blowing-out time mainly depends on the amount of prepared and stored water from which minerals necessary for generating steam are removed or the amount of production. Thus, for example, a blowout is performed at night, so that the system to be cleaned is cooled during this time and the water preparation facility is used for subsequent blowout minerals before the process is performed again. Water from which water has been removed can be prepared. Subsequent blowing out (see curves E and F), which takes place over several hours at a high dynamic pressure ratio P, enhances the high thermal shock cleaning effect. The high dynamic pressure ratio during blowing out is caused by the high speed. A high speed is created when there is a low pressure in the system to be cleaned and thus a relatively large specific volume. Such a condition is advantageously obtained by providing a silencer with a very low pressure loss in a temporary conduit and injecting water into the conduit. This injection of water directly at the beginning of the temporary conduit creates a low pressure in the system to be cleaned and at the same time a large amount of steam conditioning. As a result, this method has the additional effect that is also observed in the method shown in FIGS. 2a and 2b. That is, the temporary blowing out conduit is not subject to significant stress as in other methods belonging to the prior art. The advantage over the method shown in FIGS. 2a, b is that the water consumption is small. This is because in many cases the amount of water available is limited. Yet another advantage of the method of the present invention is that it is only about 5 starting and stopping loads, compared to the method according to FIGS. 1a and b where the gas turbine must be subjected to starting and stopping loads up to 50 times. The gas turbine is significantly protected.
[Brief description of the drawings]
FIG. 1 is a diagram showing a graph of a blowing out method belonging to the prior art. FIG. 2 is a diagram showing a graph of another blowing out method belonging to the prior art. FIG. 3 is a diagram showing a graph of a blowing out method according to the present invention. Explanation of symbols]
T Facility temperature t Time p Dynamic pressure ratio A Thermal shock in relation to temperature T, number of times, duration B Thermal shock in relation to dynamic pressure ratio p, number of times, duration C Continuous blowing out in relation to temperature T , Duration D continuous blowing out in relation to dynamic pressure ratio p, duration E thermal shock in relation to temperature T—continuous blowing out, duration F thermal shock in relation to dynamic pressure ratio p—continuous blowing out, Duration

Claims (6)

組み立てられた状態における発電設備の装置群を媒体の吹き込みによってクリーニングする方法において、熱的に調製された、圧力下の媒体を数時間に亘って吹き込み、この方法工程に続いて休止過程をおいて、該休止過程中に装置群を冷却し、装置群の冷却後、間欠的に、熱的ショックによるクリーニング効果を生ぜしめる、少なくとも1回のさらに別の吹き込みを行うことを特徴とする、発電設備の装置群のクリーニング法。In a method for cleaning a group of power generation equipment in an assembled state by blowing in a medium, a thermally prepared medium under pressure is blown in for several hours, followed by a pause process following this method step. The power generation equipment is characterized in that the apparatus group is cooled during the pause process, and after the apparatus group is cooled, at least one further blowing is performed intermittently to produce a cleaning effect by a thermal shock. Cleaning method for various devices. 吹き込みを少なくとも6時間の時間に亘って行うことを特徴とする、請求項1記載のクリーニング法。The cleaning method according to claim 1, wherein the blowing is performed for a period of at least 6 hours. 媒体を400℃より高い温度及び3より大きい動圧比で吹き込むことを特徴とする、請求項1記載のクリーニング法。The cleaning method according to claim 1, wherein the medium is blown at a temperature higher than 400 ° C. and a dynamic pressure ratio higher than 3. 吹き込み用媒体として蒸気を使用することを特徴とする、請求項1記載のクリーニング法。The cleaning method according to claim 1, wherein steam is used as the blowing medium. 蒸気に水が混合されることを特徴とする、請求項4記載のクリーニング法。The cleaning method according to claim 4, wherein water is mixed with the steam. 蒸気吹き込みと平行して、及び又は蒸気吹き込みの前若しくは後に、水が、クリーニングされるべき装置群内へ一緒に入れられることを特徴とする、請求項4記載のクリーニング法。5. Cleaning method according to claim 4, characterized in that the water is put together into the group of devices to be cleaned in parallel with and / or before or after steam blowing.
JP31794096A 1995-12-02 1996-11-28 Cleaning method for power generation equipment Expired - Fee Related JP3893178B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545035A DE19545035A1 (en) 1995-12-02 1995-12-02 Process for cleaning units of a power plant
DE19545035.3 1995-12-02

Publications (2)

Publication Number Publication Date
JPH09173999A JPH09173999A (en) 1997-07-08
JP3893178B2 true JP3893178B2 (en) 2007-03-14

Family

ID=7779049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31794096A Expired - Fee Related JP3893178B2 (en) 1995-12-02 1996-11-28 Cleaning method for power generation equipment

Country Status (4)

Country Link
EP (1) EP0776707B1 (en)
JP (1) JP3893178B2 (en)
CN (1) CN1131738C (en)
DE (2) DE19545035A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0122856D0 (en) * 2001-09-22 2001-11-14 Imi Plc Liquid heating apparatus
EP1797969A1 (en) * 2005-12-16 2007-06-20 Siemens Aktiengesellschaft Method end device for cleaning parts of a power station by blowing a medium and measuring device for measuring the degree of purity of the medium
CN101655335B (en) * 2008-08-19 2011-08-03 华北电力科学研究院有限责任公司 Device and method for thermal cleaning of direct air cooling system
CN103574585A (en) * 2012-07-26 2014-02-12 中国石油化工股份有限公司 Method for removing scale of waste heat boiler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2202465B2 (en) * 1972-01-17 1976-11-04 Raab Karcher GmbH, 4300 Essen PROCEDURE FOR GENERAL CLEANING OF THE FIRE-SIDE OF THE REAR HEATING SURFACES OF LARGE BOILERS
US4141754A (en) * 1977-05-10 1979-02-27 Svenska Rotor Maskiner Aktiebolag Apparatus and method for cleaning the heat exchanging surfaces of the heat transfer plates of a rotary regenerative heat exchanger
US4377420A (en) * 1980-03-06 1983-03-22 United Technologies Corporation Removal of carbonaceous material from gas turbine cavities
US4581074A (en) * 1983-02-03 1986-04-08 Mankina Nadezhda N Method for cleaning internal heat transfer surfaces of boiler tubes
DE3317099A1 (en) * 1983-05-10 1984-11-15 Kraftwerk Union AG, 4330 Mülheim POSITIONING DEVICE FOR THE REMOTE CONTROLLED INSPECTION, CLEANING AND REPAIR OF THE PARALLEL TUBES OF A TUBE BUNDLE
US4853014A (en) * 1987-07-27 1989-08-01 Naylor Industrial Services, Inc. Method and apparatus for cleaning conduits
DE4216383A1 (en) * 1992-05-18 1993-11-25 Siemens Ag Process for cleaning a closed container

Also Published As

Publication number Publication date
CN1131738C (en) 2003-12-24
EP0776707A3 (en) 1998-05-20
CN1156241A (en) 1997-08-06
EP0776707B1 (en) 2000-12-20
EP0776707A2 (en) 1997-06-04
JPH09173999A (en) 1997-07-08
DE19545035A1 (en) 1997-06-05
DE59606231D1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
JP4987005B2 (en) Method for cleaning gas turbine component cavities
WO1995011379A3 (en) Partial oxidation process with production of power
DE60034423D1 (en) Apparatus and method for heating cooling steam in a combined cycle power plant
CA2342345A1 (en) High power density combined cycle power plant system and method
EP0759098B1 (en) Effective cleaning method for turbine airfoils
EP3992432A3 (en) Systems and methods of servicing equipment
JP3893178B2 (en) Cleaning method for power generation equipment
AU2002346494A1 (en) Method for detecting heat exchanger tube failures and their location
JPH10131717A (en) Combined cycle power generating plant
CA2245639A1 (en) Recovery type steam-cooled gas turbine
EP0974737A4 (en) Combined cycle power plant
US10625357B2 (en) Braze repair of turbomachine engine component
EP0979932A4 (en) Gas turbine for combined cycle power plant
SU120087A1 (en) Semi-closed gas turbine installation
CN202360756U (en) Sealing device of four-in-one set shaft
CN219795342U (en) Novel structure honeycomb seal structure
US5007970A (en) Process for the cleaning of steam generator heating surfaces
JP2005214033A (en) Blast furnace gas pressure power generating plant and method of flushing turbine blade in the power generating plant
Belik Power-to-Heat Integration in Solid Media Thermal Energy Storage: Increasing System Cost Efficiency and Flexibility
JP2000009308A (en) Preventing device for white smoke of exhaust gas for water spray type gas turbine
US20130233349A1 (en) Systems and Methods to Clean Gas Turbine Fuel Chamber Components
JPH11303647A (en) Combined power generation system
CA2284493A1 (en) Combined cycle electric power generating plant
RU93053972A (en) STEAM TURBINE COOLING METHOD
JPH08210104A (en) Moisture removing device for steam turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060306

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees