JP3892720B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP3892720B2
JP3892720B2 JP2001383137A JP2001383137A JP3892720B2 JP 3892720 B2 JP3892720 B2 JP 3892720B2 JP 2001383137 A JP2001383137 A JP 2001383137A JP 2001383137 A JP2001383137 A JP 2001383137A JP 3892720 B2 JP3892720 B2 JP 3892720B2
Authority
JP
Japan
Prior art keywords
horizontal
seismic isolation
isolation device
hole
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001383137A
Other languages
Japanese (ja)
Other versions
JP2003184949A (en
Inventor
滋 藤本
博志 丹羽
安彦 相田
洋 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001383137A priority Critical patent/JP3892720B2/en
Publication of JP2003184949A publication Critical patent/JP2003184949A/en
Application granted granted Critical
Publication of JP3892720B2 publication Critical patent/JP3892720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震装置に関し、特に、大規模変電所や大型産業プラント電源室に設置される大重量の変圧器などの機器に好適な免震装置に関する。
【0002】
【従来の技術】
一般に、変電所や産業プラント電源室に設置される変電機器は、暴風雨や地震などでずれたり、転倒しないようにするための耐震構造として、設置される基礎床とボルトなどの固定部材にて結合されるようになっている。
【0003】
以下、図16を参照して大規模変電所や大型プラント電源室に設置される大型の変電機器の固定方法の従来例について説明する。大規模変電所や大型プラント電源室に設置される機器の中でも大型で重量の大きいものとして、例えば変圧器がある。変圧器は、変電機器本体1と、電力を入出力するための電力線5と絶縁材であるブッシング4で構成される。また、このような変電機器における耐震構造は、変電機器本体1を設置した支持架台2と、これを支持する複数の埋込み金具43にて結合・固定して、想定した地震時に作用する地震荷重に耐え固定状態を維持するように構成されている。埋込み金具43は、金属棒でできていて、地面6内に設置された基礎3の基礎床内に埋め込まれている。
【0004】
このように構成された変電機器本体1の耐震構造においては、地震時においては大きな地震加速度が生じるため、変電機器本体1には地震荷重として、水平方向にずれようとする移動力および高い重心位置による転倒力などが発生する。この時、この地震荷重は、埋込み金具43に対して水平せん断力および引き抜き力が作用する。固定部材である埋込み金具43は、耐震設計で想定した地震荷重に耐えるような強度を持つ構造として設計、製作される。このようにして、想定した地震に対して、変電機器本体1を基礎3に固定することにより地震による転倒などの被害を防ぐようになっている。
【0005】
【発明が解決しようとする課題】
上述の従来の変電機器の耐震構造においては、以下のような五つの課題があった。
一つは、強度の高い固定部材により変電機器を基礎に固定した場合、建物内の設置場所の地震加速度が地震動により予想以上に増幅した場合や比較的大きな地震が発生した時、固定部材が破損せずに変電機器を固定状態に保った場合には、変電機器は大きな地震荷重を直接受けることになる。このため、変電機器において耐震上脆弱な部分、例えば、いわゆる瀬戸物(セラミックス)材料でできているブッシング(碍子)は、金属部材に比べ強度が非常に弱いため、破断あるいは折損し、絶縁機能喪失が起こったり、電力線や変電機器本体に損傷を与え、変電機器としての機能を喪失する恐れがある。すなわち、支持部の固定部材の固定強度が高過ぎても変電機器に悪影響を及ぼすという課題があった。
【0006】
二つ目は、大地震が発生し、変電機器に設計地震力を上回る地震荷重が作用した場合や、建物内の設置場所の地震加速度が地震動により大幅に増幅した場合には、支持部の固定部材が破断する。この場合、大きな地震荷重を受けるだけでなく、変電機器が固定機能を喪失し、大きな滑りや転倒現象を発生し、ブッシング、電力線が破断や切断したり、変電機器本体が大きな損傷を受ける可能性が大きい。さらに、大きな滑り現象により、他の機器への接触、衝突により、他の機器を破壊するような連鎖的な破壊、破損現象を起こし、変電機器システム全体の機能喪失を招き、電力供給を受けている産業プラント全体や公共施設、病院、住宅への社会的、産業システム全体への連鎖的被害を発生、増幅させる恐れがある。
【0007】
また、このような連鎖的被害が増幅すると、電力という社会インフラの長期にわたる機能喪失により、社会全体の地震後の復旧活動にも大きな悪影響を及ぼすおそれがある。1995年の兵庫県南部地震、1999年のトルコのアジャエリ地震、台湾の集集地震では、このような電力インフラの被害が社会的な問題となった。近い将来、日本においても数十年以内に、東海地震、東南海地震、南海地震などが非常に高い確率で発生することが政府や気象庁より公表されている。すなわち、現在の変電機器の耐震構造では、設計地震荷重を越える大地震に対しては、変電機器本体が破損するだけでなく、周辺機器・システム、周辺産業プラントや社会へ大きな悪影響を及ぼすという課題があった。
【0008】
三つめは、現在の電源インフラで稼働中の既存変電機器の多くは、過去の耐震設計基準に従って設計、製作、設置されているので、近年見直されている想定地震動の地震荷重に十分対応できていないばかりか、屋外配置の使用年月長い変電機器については支持部材や固定部材は劣化や腐食により本来の設計強度が低下している可能性がある。このような変電機器は現在予想されているような大地震に対しては大きな被害が生じることが予想される。このような変電機器に対しては、改めて補強対策や耐震・免震対策を講じる必要があるが、大型で大重量を持つ変電機器の支持部材や固定部材を改造、再設置するのは、対策設計方法、費用、設置方法、設置工事期間などにおいて非常に困難が伴うという課題があった。
【0009】
四つめは、新設の変電機器には、様々な耐震・免震対策が可能であるが、従来の固定部材を用いた基礎固定方式の既に述べた一つ目の課題の解決が可能な対策である変電機器を積層ゴムなどの水平方向に柔らかいばねで支持したばね支持免震方式にも以下に述べるような課題がある。変電機器を積層ゴムなどの水平方向に柔らかいばねで支持したばね支持免震方式は、変電機器と積層ゴムなどのばねとで構成される固有振動数を設置されている地盤の卓越振動数や地震動の卓越振動成分領域より十分低くすることにより、地盤や地震動との共振を避け、変電機器の地震加速度応答すなわち作用する地震荷重を大幅に低減することができる。しかしながら、加速度応答を大幅低減するかわりに積層ゴムなどの柔らかいばね部の相対変位が非常に増幅する。
【0010】
兵庫県南部地震や台湾地震などの震度7クラスの地震では少なくとも数十センチの相対変位が生じる可能性がある。このため、変電機器と他の周辺機器との間に連結されている電力線が大きく引っ張られることになるため、電力線の切断やこれを支持している碍子が破断、破壊する可能性が高い。また、免震装置自体の価格が高く、構造も大きいため、既存の支持架台や基礎の構造に対して大幅な変更が必要であるため設置コストが高い。
【0011】
さらに、柔らかいばね支持であるため、強風、暴風時あるいは弱震、軽震時には、変電機器本体が大きな風荷重や比較的小さい地震荷重を受け、ばねには風荷重や地震荷重に応じた変形が生じる。変位量は大地震ほどではないが、比較的頻繁に発生するため、変電機器と他の周辺機器との間に連結されている電力線が引っ張られ、電力線や碍子が荷重を受け続けることになる。特に、碍子は繰り返し荷重に対する疲労強度は低いため、強度が劣化し、破損する可能性が高くなる。
【0012】
以上のように、従来の積層ゴムなどの柔らかいばね支持による免震方式では、設置コストが高いことや、風や小さな地震から大地震まで全ての事象に対して、相対変位が発生するため、電力線や碍子が頻繁に引っ張り荷重を受け、損傷したり破損する可能性が高くなるという課題があった。
【0013】
五つめは、変電機器を積層ゴムなどの水平方向に柔らかいばねで支持したばね支持免震方式における上記四つ目の課題の解決が可能な対策の一つである、滑り支承(滑り摩擦方式)を用いた免震方式(特願平11−371003)にも以下に述べるような課題がある。
【0014】
特願平11−371003の「システムフロアおよびその構成方法」で提案されている免震装置は、水平方向の滑り方式を採用しており、一定の摩擦荷重以下の地震荷重や風荷重には滑らず、固定装置として機能する。また、大地震が発生し、この作用している摩擦荷重を上回る地震荷重が設置構造物に発生するとすべりが生じ、設置構造物には摩擦荷重以上の荷重は伝わらないため、設置構造物の転倒や損傷を防ぐことが可能である。
【0015】
この特許の免震装置は、その対象が建屋室内のフロア上の軽い机や比較的低コストで損傷時の影響が小さいOA機器類であり、地震時の各種機器の損傷を最小限にくい止め、OAフロア上で業務している従業員の保護を目的としており、また、この免震装置1体あたりの支持質量は大きくとも数十〜百kg程度であるため、各免震装置は簡素にできており、各免震装置に作用する支持荷重を均一にするような機能を有していない。このような特許の免震装置では、フロア上に設置する機器や机、書類棚等の配置や設置方法などによって、各免震装置への支持荷重に大きなばらつきが生じ、実際の重心と免震装置による免震系作用中心との大きなずれ、すなわち、偏心が生じる。
【0016】
このような状態で比較的大きな地震が発生した場合、まず、大きな支持荷重を受けている免震装置やこれを支える固定部材が破損する可能性がある。次に、地震荷重が免震装置の摩擦力を越え、作動した場合には、大きな支持荷重を受けた免震装置やこれを支える固定部材にはそれに比例した水平方向の地震荷重が作用するため、これらが破断する可能性がある。
【0017】
さらに、フロア全体は、重心と免震作用中心との偏心により、並進運動だけでなく、フロア水平面内の回転運動が励起されるため、フロア周辺に向かうに従って、予想以上の地震応答加速度が発生し、機器や棚に転倒や損傷を与える恐れがある。また、回転運動の励起により、フロア外周部の免震装置にはより大きな滑り変位が生じるため、設計で想定した滑り量を越え、免震装置が破損したり、フロア外周部が壁に衝突、破壊し、最終的にはフロア全体が破壊する恐れがある。
【0018】
このようなOAフロア用特許の免震装置構造を、大型変電機器のような大型重量機器にそのまま適用すると、変電機器重量が数百トン、免震装置1体あたりの支持質量が数千kgから数万kgとなるため、次のような問題が生じる恐れがある。
【0019】
大型で大重量の変電機器を支持する支持架台は、大型となるため、製作時のゆがみや、大重量を支持した時のゆがみなどにより、この支持架台の各部設置高さに違いが異なるため、支持架台に設置する複数の免震装置の支持荷重には大きなばらつきが生じる可能性が高い。基礎から浮いてしまい荷重を分担しないものから、設計荷重の数倍以上を分担するものまでのばらつきが生じる可能性が高い。
【0020】
OAフロア用の免震装置と同じ構造では、各免震装置の支持荷重を均一に調整する機能がないため、各免震装置の支持荷重は大きなばらつきが生じるとともに、免震構造を有する変電機器としての全体の構造系重心と免震作用力中心との間にずれ(偏心)が生じる。この場合、重心と免震作用力中心とが大きな差が生じるため、大地震時には、構造系重心による免震作用力中心に対するモーメント(回転力)が作用し、上記OAフロア用免震装置の場合と同様の回転変位による異常挙動が増幅されて、変電機器に大きな損傷をもたらす恐れがある。
【0021】
さらに、地震時、大きな支持荷重を受けた免震装置やこれを支える固定部材には、大きな支持荷重に加えて、この支持荷重に比例した水平方向の地震荷重が作用するため、これらが破損する可能性がある。このような偏心と支持荷重のばらつきの影響が重なり、最終的には、変電機器本体の破壊だけでなく、周辺変電機器を含めた変電機器システムに大きな損傷や影響をもたらす恐れがある。
【0022】
このような問題を解決するには、免震支持点を3点とすれば、原理的に各免震装置には均一荷重が作用するが、大型変電機器のような大型構造物では、支持荷重の分散化を図る必要があるため、3点より多くの免震装置で支持せざるを得ない。このような場合、荷重支持を受け持つ各免震装置には上記に述べたような支持荷重の大きなばらつきは避けられない。従って、大型で大重量の変電機器を多数の免震装置により支持する場合には、免震装置1体あたりの支持荷重の大荷重化を避け、分散し、均一化するためには、各免震装置単位で、支持荷重を調整する機能が必要不可欠である。
【0023】
以上のように、変電機器の耐震対策においては、低コストで設置でき、設計想定地震力や風荷重に対しては、しっかりとした固定機能により固定し、変電機器を暴風や比較的小さい地震から保護し、また、設計地震荷重以上の大地震に対しては、変電機器に作用する地震荷重をできるだけ低減し、大きな損傷に至らないようにさせ、周辺機器にも損傷を与えないようにして変電機器システム全体の機能を最小限維持・保護するような、最適な耐震構造や耐震・免震対策に対する要求が高まりつつある。
【0024】
また、大型で大重量の変電機器に対して特願平11−371003の「システムフロアおよびその構成方法」で提案されているような免震装置の機能を適用するためには、免震装置自体の構造強度や摩擦部材に十分な強度を持たせることや、免震装置の設置により大幅な作用中心の偏心が起こらないように免震装置の支持荷重を調整、均一化することや、異常挙動が発生した場合の挙動抑制を行うなどの機能を新たに付加する必要がある。
【0025】
本発明は上記従来技術の課題を解決するためになされたものであり、既存の変電機器から新設の変電機器までに容易に適用でき、簡単な構造で安価に製造および施工が可能で、変電機器への最適な免震機能を提供することのできる免震装置を得ることを目的とする。
【0026】
【課題を解決するための手段】
本発明は上記目的を達成するものであって、請求項の発明は、架台に複数個が取り付けられて、水平で平坦な上向きの滑り面に対して水平方向に滑動可能に接して前記架台の重力荷重を前記滑り面に伝達する免震装置であって、この免震装置の設置時に前記架台に対して決まった位置に配置される上部部材と、この上部部材との上下方向の相対位置を調節でき、前記滑り面と接する下部部材と、を有するとともに、前記架台は水平で平坦な下向きのパッド対向面を有し、このパッド対向面と前記上部部材との間に挟まれて前記架台の重力荷重を前記上部部材に伝達する弾性パッドを有し、この弾性パッドの前記パッド対向面および前記上部部材との接触部における摩擦係数が、前記滑り材と下部部材との接触部における摩擦係数よりも大きいことを特徴とする
【0027】
請求項の発明は、架台に複数個が取り付けられて、水平で平坦な上向きの滑り面に対して水平方向に滑動可能に接して前記架台の重力荷重を前記滑り面に伝達する免震装置であって、この免震装置の設置時に前記架台に対して決まった位置に配置される上部部材と、この上部部材との上下方向の相対位置を調節でき、前記滑り面と接する下部部材と、前記架台と前記滑り面との間の水平方向の相対的動きを抑制する減衰装置を有し、前記減衰装置は、前記架台に取り付けられて上下方向に貫通する貫通孔を有する水平拘束部材と、前記滑り材に対して相対的に固定され、上下方向に延びて前記貫通孔を貫通する可撓性のある弾塑性部材とを有するとともに、前記水平拘束部材に前記貫通孔よりも大きな水平固定部材穴が設けられ、この水平固定部材穴の一部を覆うように水平拘束隙間調整部材が取り付けられ、この水平拘束隙間調整部材に前記貫通孔が設けられていることを特徴とする。
【0028】
また、請求項の発明は、請求項の発明において、前記弾塑性部材は前記貫通孔を隙間を有して貫通しているとともに、前記隙間は、前記弾塑性部材が前記貫通孔を貫通する位置において設計上の最大の水平方向相対変位よりも小さいこと、を特徴とする。
【0029】
請求項の発明は、基礎床面と変電機器を設置する支持架台との間に設置され、基礎床面から伝達される地震動を低減する変電機器の免震装置において、前記基礎床面上の少なくも一部に形成された滑り面と、その滑り面上に複数配置された滑動可能な摩擦部材と、これら摩擦部材が底面に取り付けられ上下方向に高さ調節が可能な複数の支柱と、これら支柱の上部が少なくとも水平方向に拘束された支持架台とを具備し、前記支柱は、下面に摩擦部材を取り付けた下部支柱と上面に支持架台と少なくとも水平方向に拘束される上部支柱で構成され、これら下部支柱と上部支柱とが上下方向にねじ連結され、ねじ連結により、支柱への荷重支持を行うとともに下部支柱と上部支柱との間の上下方向間隔調整を行う機能を有するとともに、前記上部支柱は、その上部支柱上面の一部に上方向に向けて固定・設置された棒状部材を支持架台下方より、少なくとも支持架台下部の支持板の一部に前記上部支柱の棒状部材を貫通させるために設けた貫通穴に、一部に棒状部材を貫通させる穴を持ち、上下方向に柔性を有した支持部材であり、上部支柱上面および支持架台下面に対する接触摩擦係数が前記滑り面と摩擦部材との間の摩擦係数より大きい材質を有し、この材質により上部支柱と支持架台との間の水平方向の力の伝達部材を兼ねる弾性パッドを介して、貫通させるとともに、貫通した上部支柱上面の棒状構造上部の雄ねじ部分に、この雄ねじに対応した雌ねじを有するナット部材をねじ込み、支持架台に設置されたことを特徴とする。
【0030】
請求項の発明は、基礎床面と変電機器を設置する支持架台との間に設置され、基礎床面から伝達される地震動を低減する変電機器の免震装置において、前記基礎床面上の少なくも一部に形成された滑り面と、その滑り面上に複数配置された滑動可能な摩擦部材と、これら摩擦部材が底面に取り付けられ上下方向に高さ調節が可能な複数の支柱と、これら支柱の上部が少なくとも水平方向に拘束された支持架台と、支持架台に複数配置され水平面内方向に作用する減衰装置とを具備するとともに、前記減衰装置は、支持架台に複数配置され水平方向面内に上下方向に対する貫通孔を有する水平拘束部材と、それぞれの水平拘束部材に対して、弾塑性部材の下部が基礎床面内に埋め込まれた固定用埋め込み部材に設置・固定され、前記弾塑性部材の上部が水平拘束部材の貫通孔を貫通し、少なくとも前記貫通孔位置にて貫通孔内周面と前記弾塑性部材の外周面との間に隙間を有するように配置した弾塑性部材とで構成されたことを特徴とする。
【0046】
また、請求項の発明は、請求項の発明において、前記水平拘束部材は、前記支持架台に固定・設置された固定部材と、固定部材上に水平方向に張り出し設置され、その水平面内の一部に前記弾塑性部材の最大外径と前記貫通孔最小内径との間の隙間が、前記免震装置における設計最大すべり変位より小さくなるような貫通孔を設けた水平固定部材とで、構成されたことを特徴とする。
【0047】
また、請求項の発明は、請求項の発明において、前記水平拘束部材は、前記支持架台に固定・設置された固定部材と、固定部材上に水平方向に張り出し設置され、その設置高さを固定部材上で任意に設置でき、かつ、その水平面内の一部に前記弾塑性部材の最大外径と前記貫通孔最小内径との間の隙間が、前記免震装置における設計最大すべり変位より小さくなるような貫通孔を設けた水平固定部材と、水平固定部材上面あるいは下面上に設置され、前記水平固定部材の貫通孔の最小内径より小さい最小内径を持つ貫通孔を持ち、その水平方向設置位置を水平固定部材上で任意に調整できる水平固定補助部材とで、構成されたことを特徴とする。
【0048】
また、請求項の発明は、請求項5乃至7のいずれかの発明において、前記弾塑性部材は、金属部材の円柱棒で形成された構造と、その下部が上部の外径以上の外径を持つ雄ねじで形成された構造と、雄ねじ構造でない上部が前記水平拘束部材の水平固定部材の貫通孔位置高さを越える長さを持つように形成された構造と、上部の少なくとも任意の一箇所にてその外周面が断面方向において対向する面を少なくとも2箇所を切り欠いた構造とで、構成されたことを特徴とする。
【0049】
また、請求項の発明は、請求項5乃至8のいずれかの発明において、前記固定用埋め込み部材は、基礎床内にその上面の高さ位置が少なくとも基礎床面以上となるように埋め込まれ、固定されるように形成された構造と、その上面の一部に下方向内部に向かって弾塑性部材下部の雄ねじに対応し、そのねじ長さが弾塑性部材の雄ねじ部の長さより長い雌ねじを形成した構造とで、構成されたことを特徴とする。
【0050】
【発明の実施の形態】
以下、本発明に係る免震装置の実施の形態について、図面を参照して説明する。ここでは変電機器の免震装置を例にとって説明するが、他の機器にも適用可能なことはいうまでもない。また、以下の説明で、従来技術とあるいは各実施の形態同士で共通または類似の部分には同じ符号を付して、重複説明は適宜省略する。
【0051】
[第1の実施の形態]
まず、図1〜5を参照して第1の実施の形態を説明する。図1において、基礎3が、地面6に埋め込まれて設置されている。この基礎3の上に、上面が水平でかつ平坦で滑らかな滑り板10が複数個配置され、固定されている。滑り板10の上に、変電機器本体1を設置した支持架台2が、滑り板11と接触する面に摩擦部材9が取り付けられた複数の支柱8により支持されている。変電機器本体1の上部にはブッシング4を介して電力線5が周辺機器と連結されている。
【0052】
免震機能を果たす免震装置7は、滑り板10と支柱8,12より構成されている。滑り板10は、ほぼ円形またはほぼ正方形の板で、基礎3上に接着あるいはボルトなどにより固定される。滑り板10の材質は、ステンレス鋼板、クロムなどの硬質メッキをした鋼板、フッ素樹脂材を塗布した鋼板などが適している。滑り板10の表面は水平であり、平坦かつ後述する支柱8下面の摩擦部材9を所定の摩擦力にて滑らかに滑らせるため、表面を研磨して滑らかな滑り面を形成する。
【0053】
このような構成により、摩擦部材9は、通常、摩擦力以下である暴風や中小地震による変電機器本体1に作用する水平荷重に対しては、滑動せずに固定装置として働く。また、大地震により変電機器に所定の摩擦力以上の水平地震荷重が作用すると、滑らかに滑動し、摩擦力以上の地震力を伝達させないような免震作用が働き、変電機器の大地震による損傷を未然に防ぐことができる。
【0054】
支柱8は、各滑り板10上面のほぼ中央部に1体ずつ、滑動可能に設置される。支柱8は、後述するように、大きく分けて上部支柱11と下部支柱12(図2〜5参照)の二つに分割され、これらはねじ結合されており、ねじのねじ込みにより支柱8全体の高さを調整できるように構成されている。このような高さ調整機能により、支持架台2を支持している全ての支柱8の高さを適切に調整することで、各支柱8に作用する支持荷重をほぼ均一にできる。その結果、荷重分布のばらつきがなくなるため、一部の支柱に過大な支持荷重が作用し破損することを防ぐことができ、また、変電機器全体の重心の偏心を抑制することができるので、大地震の際の滑動時における変電機器1の回転挙動などの異常挙動を防ぐことができる。
【0055】
また、支柱8下部の下面には摩擦部材9が固定されており、滑り板10と接して滑動する。摩擦部材9の材料は、滑り板10の材質より柔らかい材料が用いられている。樹脂系材料の場合は、フッ素樹脂(例えばポリテトラフルオロエチレン)材、油分やカーボンを含む樹脂材、その他樹脂を基材とする固体潤滑材などが用いられ、金属系材料として黄銅、アルミニウムなどが用いられる。摩擦部材9の滑り摩擦係数は、摩擦部材9の材質、滑り板10の材質とその表面荒さから決定されるので、これらを適切に組み合わせることにより、免震設計に必要な摩擦係数を設定することが可能である。すなわち、設置場所の想定地震力に応じて適切な免震装置7の摩擦力を設定することにより、最良の免震効果を得ることができる。
【0056】
一方、滑り板10の広さは、設置場所の想定地震力から予想される摩擦部材9の滑り変位を考慮して決定することができる。例えば、摩擦部材9の最大径がDf、予想される大地震の最大滑り変位がδSとすると、滑り板10は、円形状板であれば、少なくとも直径が Df+2・δS の広さとなり、正方形状の板であれば、少なくとも、一辺がDf+2・δSの広さとする。このような広さの滑り板10を設置すれば、大地震時でも免震装置7は、滑り板10からはみ出さずにこの滑り板10の範囲内を滑動し、所定の免震効果を発揮することができる。
【0057】
図2に拡大して示すように、支持架台2を支持する免震装置7の支柱8は、下からの荷重伝達順に、摩擦部材9、下部支柱12、上部支柱11、弾性パッド14から構成されている。摩擦部材9は滑り板10に接し、弾性パッド14は支持架台2に接し、それぞれ接している部材との間で支持荷重、地震荷重あるいは摩擦力を受け渡ししている。
【0058】
後述するように(図3〜5参照)、上部支柱11には、対向する下部支柱12の面に向かって雌ねじ部19が形成されている。また、下部支柱12には、雌ねじ部19に対応する雄ねじ部13が形成され、両者は一定の深さまでねじ込まれるとともに、上部支柱11あるいは下部支柱12との間には隙間が生じるように設定されている。
【0059】
上部支柱11は、その上面の中心付近から上向きに上部支柱11より細い棒状の上部連結部材15が取り付けられている。この上部連結部材15は、支持架台2を貫通するとともに、その上部領域が連結雄ねじ部16に形成されており、この連結ねじ部16には、支持架台2面に座金部材18が設置され、上方向から脱落防止ナット部材17がねじ込まれている。脱落防止ナット部材17と座金部材18との間は、若干の隙間ができるよう設定されている。
【0060】
このような構成により、上部支柱11と下部支柱12とを互いにねじ回すことにより、支柱高さ調整用雄ねじ部13の隙間間隔が調整され、最終的には支柱高さを変更することができる。その結果、配置された複数の支柱8に作用する支持荷重のばらつきを抑制することが可能となる。また、上部連結部材15とこれに設置された脱落防止ナット部材17により、変電機器本体1、支持架台2、免震装置7などを組立、設置する際、例えば、支持架台2に免震装置7を仮止め設置したままのクレーンつり下げによる支持架台設置の際に、支柱8の脱落による破損を防ぐことができる。
【0061】
図3〜5に示すように、この実施の形態では、支柱高さ調整雄ねじ部13が下部支柱12の上部に形成されている。滑り板10上に接する摩擦部材9は、摩擦部材挿入窪み20にはめ込まれ、接着剤などを用いて貼りつけ、固定される。摩擦部材挿入窪み20は、下部支柱12の下面の中央部に設けられ、深さが摩擦部材9の厚さより小さく、その上底が摩擦部材9の平坦さと同程度の平坦さになっている。下部支柱12の上部には支柱高さ調整雄ねじ部13が形成され、また、下部支柱12の下部の外周面には、その断面方向において対向する面を2箇所切り欠いた下部支柱切り欠き部22が形成されている。
【0062】
上部支柱11は、その上部には支持架台と連結するための棒状の上部連結部材15が形成されるとともに、上部連結部材15の上部領域には連結雄ねじ部16が形成されている。また、上部支柱11の下部には、下面の中央に上部支柱11の支柱高さ調整雄ねじ部13に対応する支柱高さ調整雌ねじ部19が形成され、また、その下部の外周面にはその断面方向において対向する面を2箇所切り欠いた上部支柱切り欠き部23が形成されている。
【0063】
上部支柱11の下部の上面には、中央に上部連結部材15が貫通する貫通穴50(図4参照)を持つ弾性パッド14が設置される。弾性パッド14は、外径が少なくとも上部支柱11の下部外径以上であり、また、下面で接し合う上部支柱11の下部の上面、および、上面で接し合う支持架台2との接触摩擦係数が、摩擦部材9と滑り板10との接触摩擦係数より大きい材質を持つ。このような弾性パッド14は、表面が十分平坦で比較的滑らかで、かつ、比較的硬度の小さいゴム材を使用する。例えば、天然ゴムや化学合成ゴムとしては、クロロプレンゴム、ウレタンゴム、シリコンゴムなどのゴム材が適している。
【0064】
このような構成により、上部支柱11と下部支柱12の切り欠き部22、23にそれぞれスパナあるいは専用治具(図示せず)を差し込み、これらを互いにねじ回すことにより、支柱高さ調整用雄ねじ部13の支柱高さ調整用雌ねじ部19に対する挿入深さを変え、上部支柱11と下部支柱12との隙間間隔が調整され、最終的には支柱高さを変更することができる。
【0065】
各免震装置7における滑り板10と摩擦部材9との間の摩擦係数は同じなので、支持荷重が同じであれば、この接触部に生じる摩擦力は同じになり、この摩擦力に対応する回転力も等しいものとなる。したがって、上部支柱11と下部支柱12ねじ回す際、スパナあるいは専用治具に作用する回転力すなわちトルクを同じにすれば、各免震装置7の支持荷重を等しくすることが可能である。トルク計あるいはトルクを検出できる装置を装着したレンチ、スパナあるいは専用トルク治具を用いれば、トルク調整が容易にできる。このようなレンチ、スパナあるいは専用トルク治具を用いて、積載物の荷重を支持している各免震装置7のトルクをほぼ等しく調整することにより、各免震装置7に作用する支持荷重をほぼ同一にすることができる。
【0066】
このようにして、配置された全免震装置7の支持荷重のばらつきを大幅に低減することができるので、最終的に、一部の免震装置7に設計強度を越える支持荷重が作用することがなくなり、この免震装置7の破損や破壊の恐れがなくなるとともに、全体の構造系重心と免震作用力中心とのずれ(偏心)が非常に小さく抑えられ、大地震時には、構造系全体の水平面内の回転挙動がなくなるので、構造系全体の異常挙動の発生する恐れがなくなり、免震装置7の免震機能が有効に作用し、免震対象の積載した大型変電機器を地震から有効に保護することができるようになる。
【0067】
また、下部支柱12に上向きに支柱高さ調整用雄ねじ部13を形成することにより、この免震装置を屋外で使用する場合、雨や水がなどがかかっても、ねじ内に水が侵入したり、支柱高さ調整用雌ねじ部19内に水が溜まりにくくできるので、ねじ部を腐食させにくくすることができる。
【0068】
また、滑り板10上に接する摩擦部材9は、摩擦部材挿入窪み20内にはめ込まれ、接着剤にて上面が貼りつけられているので、万が一、接着剤が劣化し剥がれが生じたとしても、大地震などにより摩擦部材9が滑り板10上を滑り、摩擦部材9に摩擦力による水平方向の引き剥がし力が生じても、摩擦部材9は、摩擦部材挿入窪み20に埋まっている部分の外周面が摩擦部材挿入窪み20に引っかかるため、摩擦部材挿入窪み20から外れることはない。したがって、このような構造により、摩擦部材9は、確実に免震装置7の下面に固定され、最終的には、その摩擦機能、すなわち、免震機能を発揮することができる。
【0069】
さらに、上部支柱11の下部の上面と支持架台2の間に設置されている弾性パッド14は、各部材の接触摩擦係数が摩擦部材9と滑り板10との接触摩擦係数より大きい材質が用いられる。このため、大地震などにより摩擦部材9が滑り板10上を滑り、発生した摩擦力が下部支柱12、上部支柱11を介して弾性パッド14に伝わった場合、摩擦材9と等しい荷重を支持している弾性パッド14と、上部支柱11の下部の上面および支持架台2との間の接触摩擦力は、この伝達された摩擦力より大きいので、弾性パッド14と接触しているこれら部材とは滑ることなく、固着した状態で、上部支柱11に伝わった摩擦力を支持架台2に伝達することができる。
【0070】
この弾性パッド14との接触部で水平方向にすべりが容易に生じると、支持架台の上部支柱貫通孔21と上部連結柱15とが激しく衝突し合うため、その衝突力で上部連結柱15が破断し、支持架台2と免震装置7とが分解する恐れがある。この実施の形態の構成により、上記のような問題が解決できる。すなわち、弾性パッド14が水平方向にも弾性を有しているので、比較的小さな地震力では、支持架台の上部支柱貫通孔21と上部連結柱15とは衝突を防ぐことができ、また、比較的大きな地震では、弾性パッド14の水平方向弾性による衝突力緩和を図ることができるので、最終的には、上部連結柱15が破損することを防ぐことができる。
【0071】
また、この弾性パッド14は比較的硬度の小さい柔らかな弾性体であり、弾性パッド14に作用する支持荷重により、上下方向にも適度に圧縮変形するので、支持架台2や上部支柱11下部上面の接触部の若干のゆがみや平面度の片寄りがあっても、支持架台2や上部支柱11を互いに密着させてなじませ、その支持荷重を互いの接触面にほぼ均一に分散させることができる。
【0072】
このため、支持時のがたつきや荷重片寄りによる支柱破損の可能性が少なくさせることができるとともに、最終的には、下部支柱下面の摩擦部材9と滑り板10とを密着させ、これらに作用する支持荷重による面圧をほぼ均一にすることができるようになる。そして、摩擦部材9の目標とする摩擦力を精度よく発生させることが可能になるため、免震機能の信頼性を大幅に向上させることができる。
【0073】
[第2の実施の形態]
この実施の形態は、基本的には第1の実施の形態と共通するが、図6〜8に示すように、支柱高さ調整雄ねじ部13aを上部支柱11の下部に形成する点が異なる。
【0074】
滑り板10上に接する摩擦部材9は、下部支柱12の下面の中央部に設けられた摩擦部材挿入窪み20にはめ込まれ、接着剤などを用いて貼りつけ、固定される。摩擦部材挿入窪み20は、深さが摩擦部材9の厚さより小さく、その上底が摩擦部材9の平坦さと同程度の平坦さを有する。
【0075】
下部支柱12は、その上部には支柱高さ調整雌ねじ部19aが形成され、また、その外周面にはその断面方向において対向する面を2箇所切り欠いた下部支柱切り欠き部22が形成されている。
【0076】
上部支柱11は、その上部には支持架台と連結するための棒状の上部連結部材15が形成されるとともに、上部連結部材15の上部領域には連結雄ねじ部16が形成されている。また、上部支柱11の下部には、下面の中央に上部支柱11の支柱高さ調整雌ねじ部19aに対応する支柱高さ調整雄ねじ部13aが形成され、また、その下部の外周面にはその断面方向において対向する面を2箇所切り欠いた上部支柱切り欠き部23が形成されている。
【0077】
上部支柱11の下部の上面には、中央に上部連結部材15が貫通する貫通穴を持つ弾性パッド14が設置される。弾性パッド14は、外径が少なくとも上部支柱11の下部外径以上であり、また、下面で接し合う上部支柱11の下部の上面、および、上面で接し合う支持架台2との接触摩擦係数が摩擦部材9と滑り板10との接触摩擦係数より大きい材質を持つ。
【0078】
このような構成により、第1の実施の形態と免震機能に関して同様の効果を得ることができる。すなわち、まず、上部支柱11と下部支柱12の切り欠き部22、23にそれぞれスパナあるいは専用治具を差し込み、これらをを互いにねじ回すことにより、支柱高さ調整用雄ねじ部13aの支柱高さ調整用雌ねじ部19aに対する挿入深さを変え、上部支柱11と下部支柱12との隙間間隔が調整され、最終的には支柱高さを変更することができる。
【0079】
また、上部支柱11下面に下向きに支柱高さ調整用雄ねじ部13aを形成し、下部支柱12上部に支柱高さ調整用雌ねじ部19aを形成することにより、支持架台と免震装置の組立現場において、先に支持架台2に組み込まれた上部支柱11に下から下部支柱12を組入れる場合、下部支柱12の上面にある支柱高さ調整用雌ねじ部19aの穴を設置者が上方向から比較的容易に見ることができるので、支柱高さ調整用雌ねじ部19aを支柱高さ調整用雄ねじ部13aに容易に組み込むことができる。このような構成の免震装置7は、屋内で使用する場合に適している。
【0080】
[第3の実施の形態]
次に、図9〜12を参照して第3の実施の形態を説明する。図9および図10に示すように、本実施の形態では、まず、地面6に埋め込み、設置された基礎3の上に、支持架台2を支持する免震装置本体7が設置されている。この免震装置本体7は第1、第2の実施の形態における免震装置7に相当するものである。すなわち、第1、第2の実施の形態と同様に、上面が水平でかつ平坦で滑らかな滑り板10が複数配置、固定され、滑り板10上に、変電機器本体1を設置した支持架台2が滑り板11と接触する面に摩擦部材9が取り付けられた複数の支柱8により支持されている。
【0081】
さらに、本実施の形態では、減衰装置24を追加・設置している。設置支持架台2の外周部には、水平面内に貫通孔28を有する水平拘束部材26が複数配置されている。それぞれの水平拘束部材26に対応して、基礎3内あるいは基礎3周囲の地面6内に埋め込み、設置された弾塑性部材基礎27に弾塑性部材25が垂直に固定・設置され、この弾塑性部材25が対応する水平拘束部材26の貫通孔の中央領域を貫通している。ここでは、貫通孔28内径は、弾塑性部材25直径に対して、水平拘束部材26と適切な隙間を有するように製作されている。
【0082】
免震機能を果たす免震装置本体7の構成は、第1または第2の実施の形態の免震装置7と同様のものである。この免震装置本体7により、変電機器の設置場所の想定される地震に対して最良の免震効果を得ることができるので、変電機器をこのような地震から保護することができる。
【0083】
減衰装置24は、弾塑性部材25と水平拘束部材26より構成されている。弾塑性部材25は、円柱棒状に形成され、その下部を基礎3内あるいは基礎3の周囲の地面6内に埋め込まれた弾塑性部材基礎27に固定・設置される。弾塑性部材25の長さは、弾塑性部材基礎27面から水平拘束部材26上の貫通孔28までの長さより十分長く形成される。弾塑性部材25と貫通孔28との間にできる隙間は、免震装置本体7における設計最大すべり変位より小さくなるよう、貫通孔の内径が形成される。
【0084】
弾塑性部材25の弾塑性部材基礎27面から水平拘束部材26上の貫通孔28まで部分の長さと太さは、次のような考え方で設定、形成される。想定される地震より大きな限界的地震が発生して、免震装置本体7に大きな滑り変位が生じ、最初に設定された隙間が狭まり、水平拘束部材26が弾塑性部材25に接触し、これを変形させるようになった場合、免震装置本体7における設計上の最大滑り変位を越えないように振動エネルギーを吸収する弾塑性変形による減衰量を発生するように弾塑性部材25の長さと太さを決めることができる。
【0085】
限界的な地震における地震力は、想定される地震の地震力の1.5倍〜2倍程度を考慮すれば十分である。また、弾塑性部材25の材質は、軟鋼材、ステンレス鋼材、銅材などのような延性が高く、破断強度が大きい材料が適している。
【0086】
このような構成により、まず、免震装置本体7における摩擦部材9と滑り板10により、通常、摩擦力以下である暴風や中小地震による変電機器本体1に作用する水平荷重に対しては、滑動せずに固定装置として働く。次の段階として、比較的大きな地震により変電機器に所定の摩擦力以上の水平地震荷重が作用すると、滑らかに滑動し、摩擦力以上の地震力を伝達させないような免震作用が働き、大きな地震による損傷を未然に防ぐことができる。この時発生する滑り変位が、弾塑性部材25と水平拘束部材26との間の隙間δ以下であれば、免震装置本体7による摩擦作用のみの免震機能が働く。
【0087】
さらに次の段階として、設計で想定した地震よりさらに大きな地震が発生した場合、免震装置本体7による摩擦作用だけで、想定した設計最大すべり変位の範囲内にて、発生する滑り変位量を抑制できないため、免震装置本体7は滑り板10を越えてしまい、免震装置本体7だけでなく、変電機器本体や他の機器に大きな損傷を与える恐れがある。減衰装置24は、このような事態に対処するためバックアップ装置として機能する。
【0088】
すなわち、設計で想定した地震よりさらに大きな地震が発生し、免震装置本体7による摩擦作用だけでは想定した設計最大すべり変位を越える場合、ここでは、弾塑性部材25と水平拘束部材26との間の隙間を設計最大すべり変位より小さく設定してあるので、免震装置本体7が設計最大すべり変位を越える前に、支持架台2に設置されている水平拘束部材26が弾塑性部材25に接触し、弾塑性部材25が曲げられる。これが曲げられると、曲げに比例する復元力が発生し、この力が水平拘束部材26から支持架台2に伝達され、支持架台2に対して押し戻し力として作用し、滑り変位が抑制される。
【0089】
さらに、大きな地震力により、滑り変位が増加し、弾塑性部材25の曲げ変形が弾性領域を越えて塑性変形するようになると、弾塑性部材25内で塑性変形によるエネルギー消散(履歴減衰エネルギー消散)が行われ、対象の変電機器全体の振動エネルギーを減衰させ、振動振幅、すなわち、滑り変位を大幅に抑制することができる。最終的には、想定以上の破壊的な大きな地震が発生した場合でも、免震装置本体7の滑り変位を、想定した地震に対する設計最大すべり変位内の抑え、変電機器本体1や免震装置本体7を破損や破壊から保護することが可能となる。
【0090】
図11および図12に減衰装置24を拡大して示す。なお、図11で、免震装置本体7については、単に中心線のみを示している。減衰装置24は、弾塑性部材25と水平拘束部材26より構成されている。弾塑性部材25は、円柱棒状に形成され、上部の弾塑性部材上部27と下部の弾塑性部材下部30に分けられ、弾塑性部材下部30には、弾塑性部材おねじ部31が形成され、また、弾塑性部材上部27の外径Dと弾塑性部材下部30の外径Dとの関係は、D>Dのように形成される。
【0091】
基礎3内あるいは基礎3周囲の地面6内に埋め込まれた弾塑性部材基礎27には、固定部材32が埋め込まれ、その中央に垂直に弾塑性部材おねじ部31に対応する固定部材雌ねじ部33が形成されている。弾塑性部材25は、弾塑性部材下部30が、固定部材32にねじ込まれ、固定され、さらに、固定ナット34にて、固定部材32の上面上で締め付けられ、固定状態が補強されている。
【0092】
水平拘束部材26は、支持架台2の側面に設置され、水平方向に張り出した板部には、内周面に緩衝部材35が取り付けられた貫通孔28が形成されている。貫通孔28と貫通孔28の中央部を貫通する弾塑性部材25との間に形成される隙間36は、隙間36をδ、貫通孔内径をDとすると、δ=(D−D)/2 の関係がある。このように隙間は、免震装置本体7における設計最大すべり変位より小さくなるよう、貫通孔28の内径Dが形成される。
【0093】
弾塑性部材上部29の長さと太さに関しては、弾塑性部材基礎27面から水平拘束部材26上の貫通孔28まで部分の長さLT、弾塑性部材の実質的な変形部分Lと太さDは、前述の考え方で設定、形成されている。
【0094】
弾塑性部材上部29の全体の長さLは、弾塑性部材25が、水平拘束部材26から変形力を受けて水平方向に大きく変形しても、その先端が貫通孔28からはずれないよう、十分な余裕を持っている。水平拘束部材26の貫通孔28高さ位置は、この弾塑性部材25の実質的に変形する長さLに合わせて、形成および調整・設置される。太さDは想定する最大の地震力時の弾塑性部材上部29のエネルギー消散量に応じて決定される。また、弾塑性部材25の材質は、軟鋼材、ステンレス鋼材、銅材などのような延性が高く、破断強度が大きい材料が適している。
【0095】
このような構成により、まず、弾塑性部材おねじ部31が固定部材雌ねじ部33にねじ込まれ、固定部材32に固定されるとともに、固定部材雌ねじ部33のねじ込み調整により、減衰装置として機能する弾塑性部材上部29の全体の長さLを適切に設定することができるので、設計どおりの減衰能力を備えた弾塑性ダンパーとして機能させることができるようになる。また、固定ナット34にて、固定部材32上面上に現れている固定部材雌ねじ部33を固定部材32に締め付けることにより、固定部材32に対して固定状態を確実に補強するだけでなく、大地震時において弾塑性部材25が大きな変形をした場合に対しても、固定部材雌ねじ部33からの亀裂、破損を防ぐことができる。
【0096】
さらに、想定を越える大地震時において、免震装置本体7の滑り変位が隙間δを越えると、弾塑性部材25と水平拘束部材26がぶつかるようになり、急激な衝突が発生すると衝撃荷重により互いの部材が損傷を受ける恐れがあるが、水平拘束部材26の貫通孔28内周面に緩衝部材35を取り付けることにより、この互いの部材の衝撃を和らげ、それぞれの部材の損傷を防止することができる。
【0097】
[第4の実施の形態]
第4の実施の形態は、図13〜15に示すように、第3の実施の形態における減衰装置24の構成を拡張した例である。この実施の形態の減衰装置24は、弾塑性部材25と水平拘束部材26aより構成されている。弾塑性部材25は、円柱棒状に形成され、上部の弾塑性部材上部27と下部の弾塑性部材下部30に分けられ、弾塑性部材下部30には、弾塑性部材おねじ部31が形成され、また、弾塑性部材上部27の外径Dと弾塑性部材下部30の外径Dとの関係は、D>Dのように形成される。
【0098】
基礎3内あるいは基礎3の周囲の地面6内に埋め込まれた弾塑性部材基礎27には、固定部材32が埋め込まれ、その中央に垂直に弾塑性部材おねじ部31に対応する固定部材雌ねじ部33が形成されている。弾塑性部材25は、弾塑性部材下部30が、固定部材32にねじ込まれ、固定され、さらに、固定ナット34にて、固定部材32の上面上で締め付けられ、固定状態が補強されている。
【0099】
水平拘束部材26aは、支持架台固定部材37、水平固定部材38、水平拘束隙間調整部材39から構成されている。支持架台固定部材37は支持架台2の側面に垂直に設置され、支持架台固定部材37の側面には、水平固定部材38をボルト固定するためのねじ穴52(図13および図15に中心線のみを示す)が上下方向に段階的に多数設けられている。水平固定部材38は、支持架台固定部材37と連結するための垂直板と水平板から成っており、垂直板において支持架台固定部材37とボルト結合されている。支持架台固定部材37に上下方向に段階的に多数設けられたねじ穴52により、水平固定部材38の設置高さを段階的に調整できるようになっている。
【0100】
また、水平板部56には水平固定部材穴40が形成されている。水平拘束隙間調整部材39は、水平固定部材38上に固定、設置される。水平拘束隙間調整部材39には、内周面に緩衝部材35が取り付けられた貫通孔28aが形成されている。貫通孔28aと貫通孔28aの中央部を貫通する弾塑性部材25との間に形成される隙間36は、隙間36をδ、貫通孔内径をDとすると、δ=(D−D)/2 の関係がある。隙間は、免震装置本体7における設計最大すべり変位より小さくなるよう、貫通孔28aの内径Dが形成される。なお、水平固定部材38の水平固定部材穴40の内径は、貫通孔28aの内径Dより大きくなるよう形成されている。
【0101】
弾塑性部材上部29の長さと太さに関しては、弾塑性部材上部29と弾塑性部材下部30との境界部から水平拘束隙間調整部材39の貫通孔28aまで部分の長さLと太さDは、第3の実施の形態と同様の考え方で設定、形成されている。弾塑性部材上部29の全体の長さLは、弾塑性部材25が、水平拘束隙間調整部材39から変形力を受けて水平方向に大きく変形しても、その先端が貫通孔28aからはずれないよう、十分余裕を持った長さに形成されている。
【0102】
水平拘束隙間調整部材39の貫通孔28aの内径D、弾塑性部材25の実質的に変形する長さLおよび太さDは、想定する限界地震に対応する必要減衰量を得るように設計、製作される。水平拘束隙間調整部材39の貫通孔28aの内径Dは、隙間36の必要な距離δを弾塑性部材25の太さDに対して製作される。弾塑性部材25の長さLは、水平拘束部材26aの水平拘束隙間調整部材39の貫通孔28aにおける高さ位置と弾塑性部材25の弾塑性部材おねじ部31を調整することにより、精度良く設定することができる。
【0103】
太さDは、必要に応じて弾塑性部材上部29の直径を変え、製作することができる。水平拘束隙間調整部材39の貫通孔28aの内径D、弾塑性部材25の長さLと太さD、水平拘束部材26aの高さ位置の組合せにより、想定する限界地震に対応する必要減衰量を容易に精度良く設定することができる。
【0104】
このような構成により、減衰装置としての効果は第3の実施の形態と同様に得ることができるとともに、水平拘束隙間調整部材39の貫通孔28aの内径D、弾塑性部材25の長さLと太さD、水平拘束部材26aの高さ位置の組合せ裕度が非常高くなるので、想定する限界地震に対応する必要減衰量を容易に精度良く設定することができるばかりでなく、製作後や設置後に、想定地震力を変更したり、免震性能基準を変更する場合に、その減衰装置24の減衰機能を製作、設置した範囲で容易に変更することができるようになる。どのような地震に対しても免震性能を柔軟に調整、変更することが可能である。
【0105】
さらに、大幅に減衰装置24の能力を変えたい場合、長期間の設置による弾塑性部材25などの腐食などによる性能劣化を避けるための交換を行う場合、大地震時にこの減衰装置が作動し、弾塑性部材25が塑性領域までの大変形を繰り返し受けたために新しい弾塑性部材25に交換したい場合などにおいては、弾塑性部材25を固定部材32にねじ固定してあるだけなので、新規製作した弾塑性部材25に容易に取り替えることができる。このように、免震装置全体の能力を変更したり、保守のための交換や大地震後の交換など、減衰性能維持のために、弾塑性部材25をきわめて容易に取り替えることが可能である。
したがって、本免震装置は、高い免震性能を持つ装置であるだけでなく、柔軟性および拡張性に富んだ免震装置であるといえる。
【0106】
【発明の効果】
以上説明したように、本発明によれば、想定した大地震に対して、設置した複数の免震装置に作用する支持荷重を均一に分担させることができるので、機器と架台の重心位置と免震装置による滑り摩擦力により発生する免震作用力中心とをほぼ一致させることができる。この効果により、免震された機器は、大地震時に異常な挙動を示すことなく、機器を大地震による破損や破壊から保護することができる。
【図面の簡単な説明】
【図1】本発明に係る免震装置の第1の実施の形態を変電機器に適用した場合の全体立面図。
【図2】図1の免震装置付近の拡大立面図。
【図3】図2の免震装置付近の拡大立断面図。
【図4】図2および図3の免震装置の展開立面図。
【図5】(a)は図4のA−A線矢視水平断面図、(b)は図4のB−B線矢視水平断面図。
【図6】本発明に係る免震装置の第2の実施の形態を変電機器に適用した場合の、免震装置付近の図3に相当する立断面図。
【図7】図6の免震装置の展開立面図。
【図8】(a)は図7のA−A線矢視水平断面図、(b)は図7のB−B線矢視水平断面図。
【図9】本発明に係る免震装置の第3の実施の形態を変電機器に適用した場合の、図1に相当する全体立面図。
【図10】図9の変電機器の全体平面図。
【図11】図9の免震装置の減衰装置付近の拡大立断面図。
【図12】図9の免震装置の減衰装置付近の拡大平面図。
【図13】本発明に係る免震装置の第4の実施の形態を変電機器に適用した場合の、免震装置の減衰装置付近の図11に相当する立断面図。
【図14】図13の免震装置の減衰装置付近の平面図。
【図15】図13の免震装置の減衰装置の展開立断面図。
【図16】従来の変電機器の耐震構造を示す全体立面図。
【符号の説明】
1…変電機器本体、2…支持架台、3…基礎、4…ブッシング、5…電力線、6…地面、7…免震装置(免震装置本体)、8…支柱、9…摩擦部材、10…滑り板、11…上部支柱、12…下部支柱、13,13a…支柱高さ調整雄ねじ部、14…弾性パッド、15…上部連結柱、16…連結柱雄ねじ部、17…脱落防止ナット部材、18…座金部材、19,19a…主柱高さ調整雌ねじ部、20…摩擦部材挿入窪み、21…上部支柱貫通孔、22…下部支柱切り欠き部、23…上部支柱切り欠き部、24…減衰装置、25…弾塑性部材、26…水平拘束部材、27…弾塑性部材基礎、28…貫通孔、29…弾塑性部材上部、30…弾塑性部材下部、31…弾塑性部材雄ねじ部、32…固定部材、33…固定部材雌ねじ部、34…固定ナット、35…緩衝部材、36…隙間、37…支持架台固定部材、38…水平固定部材、39…水平拘束隙間調整部材、40…水平固定部材穴、41…小径弾塑性部材、42…大径弾塑性部材、43…埋込み金具、44…連結板、50…貫通穴、52…ねじ穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation device, and more particularly, to a seismic isolation device suitable for equipment such as a heavy transformer installed in a large-scale substation or a large industrial plant power supply room.
[0002]
[Prior art]
In general, substation equipment installed in substations and industrial plant power supply rooms is connected with fixed members such as bolts and bolts as a seismic structure to prevent slippage or overturning due to storms, earthquakes, etc. It has come to be.
[0003]
Hereinafter, a conventional example of a fixing method for a large-sized substation installed in a large-scale substation or a large plant power supply room will be described with reference to FIG. Among the devices installed in large-scale substations and large plant power supply rooms, there is a transformer, for example, as a large and heavy device. The transformer includes a transformer main body 1, a power line 5 for inputting and outputting power, and a bushing 4 that is an insulating material. In addition, the seismic structure in such substation equipment is connected to and fixed by the support base 2 on which the substation equipment body 1 is installed and a plurality of embedded metal fittings 43 that support the substation equipment main body 1, so that the seismic load that acts during an assumed earthquake It is comprised so that it may endure and be fixed. The embedded metal fitting 43 is made of a metal bar, and is embedded in the foundation floor of the foundation 3 installed in the ground 6.
[0004]
In the seismic structure of the substation main body 1 configured as described above, since a large earthquake acceleration occurs during an earthquake, the substation main body 1 has a moving force that tends to shift in the horizontal direction as a seismic load and a high center of gravity position. Causes falling force due to. At this time, a horizontal shearing force and a pulling force act on the embedded metal fitting 43 due to this seismic load. The embedded metal fitting 43, which is a fixing member, is designed and manufactured as a structure having a strength capable of withstanding the seismic load assumed in the seismic design. In this manner, the substation main body 1 is fixed to the foundation 3 against an assumed earthquake to prevent damage such as a fall due to the earthquake.
[0005]
[Problems to be solved by the invention]
The above-mentioned conventional earthquake-resistant structure of substation equipment has the following five problems.
First, when fixing a substation with a strong fixing member, if the seismic acceleration at the installation location in the building is amplified more than expected due to seismic motion, or if a relatively large earthquake occurs, the fixing member will be damaged. If the transformer is kept in a fixed state without it, the transformer will be directly subjected to a large seismic load. For this reason, parts that are vulnerable to earthquake resistance in substation equipment, for example, bushings made of so-called Seto (ceramics) materials, are very weak compared to metal members, so they break or break, resulting in loss of insulation function. May occur, damage the power line and the substation main body, and lose the function of the substation. That is, there is a problem that even if the fixing strength of the fixing member of the support portion is too high, the substation equipment is adversely affected.
[0006]
Second, if a large earthquake occurs and an earthquake load exceeding the design seismic force is applied to the substation equipment, or if the earthquake acceleration at the installation location in the building is greatly amplified by the earthquake motion, the support is fixed. The member breaks. In this case, in addition to receiving a large seismic load, the substation may lose its fixing function, causing a large slipping or falling phenomenon, and the bushing, power line may be broken or cut, or the substation main body may be seriously damaged Is big. In addition, due to the large slip phenomenon, contact with or collision with other equipment causes chain damage or damage that destroys other equipment, leading to loss of function of the entire substation system and receiving power supply. There is a risk of causing and amplifying cascading damages to the entire industrial plant, public facilities, hospitals and houses, and social and industrial systems as a whole.
[0007]
In addition, when such chain damage is amplified, there is a risk that it will have a serious adverse effect on post-earthquake recovery activities of society as a whole due to the long-term loss of function of social infrastructure called electricity. In the 1995 Hyogoken-Nanbu Earthquake, the 1999 Ajaeli Earthquake in Turkey, and the Chushu Earthquake in Taiwan, such power infrastructure damage became a social problem. In the near future, the government and the Japan Meteorological Agency have announced that Tokai earthquake, Tonankai earthquake, Nankai earthquake, etc. will occur with very high probability within several decades in Japan. In other words, the current seismic structure of substation equipment not only damages the main body of the substation equipment but also has a serious negative impact on peripheral equipment / systems, peripheral industrial plants and society in the event of a large earthquake exceeding the design seismic load. was there.
[0008]
Thirdly, many of the existing substations operating on the current power infrastructure are designed, manufactured, and installed according to past seismic design standards, so that they can sufficiently cope with the seismic loads of the expected ground motion reviewed in recent years. In addition, there is a possibility that the design strength of the support member and the fixing member is lowered due to deterioration or corrosion of the substation equipment that has been used outdoors for a long time. Such substation equipment is expected to cause a great deal of damage in the event of a major earthquake as currently expected. For such substation equipment, it is necessary to take measures for reinforcement and seismic isolation and seismic isolation, but remodeling and re-installing supporting and fixing members of large and heavy substation equipment is a countermeasure. There was a problem that the design method, the cost, the installation method, the installation work period, etc. were extremely difficult.
[0009]
Fourth, the newly installed substation equipment can be used for various seismic and seismic isolation measures, but it is a measure that can solve the first problem already mentioned in the conventional foundation fixing method using fixed members. A spring-supported seismic isolation system in which a certain transformer is supported by a horizontal soft spring such as laminated rubber also has the following problems. The spring-supported seismic isolation system, in which the transformer is supported by a soft spring in the horizontal direction such as laminated rubber, is the dominant frequency and seismic motion of the ground where the natural frequency composed of the transformer and laminated rubber is installed. By making it sufficiently lower than the dominant vibration component region, it is possible to avoid resonance with the ground and earthquake motion, and to greatly reduce the seismic acceleration response of the substation equipment, that is, the acting seismic load. However, instead of greatly reducing the acceleration response, the relative displacement of soft springs such as laminated rubber is greatly amplified.
[0010]
Relative displacements of at least several tens of centimeters may occur in earthquakes with a seismic intensity of 7 classes such as the Hyogo-ken Nanbu Earthquake and the Taiwan Earthquake. For this reason, since the power line connected between the substation device and other peripheral devices is greatly pulled, there is a high possibility that the power line is cut or the insulator supporting it is broken or broken. In addition, since the seismic isolation device itself is expensive and has a large structure, installation costs are high due to the need for significant changes to the existing support frame and foundation structure.
[0011]
Furthermore, since it is a soft spring support, the substation main body receives a large wind load or a relatively small earthquake load during strong winds, storms, weak earthquakes, or light earthquakes, and the spring is deformed according to the wind load or earthquake load. Although the amount of displacement is not as great as that of a large earthquake, it occurs relatively frequently, so that the power line connected between the transformer device and other peripheral devices is pulled, and the power line and the insulator continue to receive a load. In particular, since the insulator has low fatigue strength against repeated loads, the strength deteriorates and the possibility of breakage increases.
[0012]
As described above, the conventional seismic isolation method with soft spring support such as laminated rubber has a high installation cost and relative displacement occurs for all events from wind and small earthquakes to large earthquakes. There is a problem that the insulator and the insulator are frequently subjected to a tensile load, and the possibility of being damaged or broken becomes high.
[0013]
The fifth is the sliding bearing (sliding friction method), which is one of the measures that can solve the fourth problem in the spring-supported seismic isolation system in which the substation equipment is supported by a soft spring in the horizontal direction such as laminated rubber. The seismic isolation system using Japanese Patent Application No. 11-371003 also has the following problems.
[0014]
The seismic isolation device proposed in Japanese Patent Application No. 11-371003 “System Floor and its Configuration Method” adopts a horizontal sliding method, and does not slip to seismic loads or wind loads below a certain friction load. Instead, it functions as a fixing device. In addition, when a large earthquake occurs and an earthquake load exceeding the acting friction load is generated on the installation structure, slippage occurs, and the installation structure does not transmit a load greater than the friction load. It is possible to prevent damage.
[0015]
The seismic isolation device of this patent is a light desk on the floor in the building room and OA equipment that is relatively low-cost and has little impact at the time of damage, minimizing damage to various equipment at the time of earthquake, The purpose is to protect employees working on the OA floor, and since the support mass per seismic isolation device is at most several tens to hundred kg, each seismic isolation device can be simplified. It does not have a function to make the support load acting on each seismic isolation device uniform. In such a patented seismic isolation device, the support load on each seismic isolation device varies greatly depending on the arrangement and installation method of equipment, desks, document shelves, etc. installed on the floor, and the actual center of gravity and seismic isolation A large deviation from the seismic isolation system action center, that is, eccentricity occurs.
[0016]
When a relatively large earthquake occurs in such a state, first, there is a possibility that the seismic isolation device receiving a large supporting load and the fixing member that supports the seismic isolation device may be damaged. Next, when the seismic load exceeds the frictional force of the seismic isolation device, the seismic isolation device that receives a large support load and the fixing member that supports the seismic isolation device will act in proportion to the horizontal seismic load. These may break.
[0017]
In addition, the entire floor excites not only translational motion but also rotational motion in the floor horizontal plane due to the eccentricity of the center of gravity and seismic isolation center. There is a risk of falling and damaging the equipment and shelves. In addition, due to the excitation of rotational motion, a greater slip displacement occurs in the seismic isolation device on the outer periphery of the floor, so that the amount of slip exceeded the design, the seismic isolation device is damaged, or the outer periphery of the floor collides with the wall, Destroy and eventually destroy the entire floor.
[0018]
If such a seismic isolation device structure for the OA floor is applied directly to a large heavy equipment such as a large transformer, the weight of the transformer is several hundred tons, and the supporting mass per seismic isolator is several thousand kg. Since it is tens of thousands of kg, the following problems may occur.
[0019]
Because the support frame that supports large and heavy weight transformers is large, differences in the installation height of each part of this support frame vary depending on distortion during production and distortion when supporting heavy weight. There is a high possibility that large variations will occur in the support load of the seismic isolation devices installed on the support frame. There is a high possibility of variations from those that float from the foundation and do not share the load to those that share several times the design load.
[0020]
In the same structure as the seismic isolation device for the OA floor, there is no function to uniformly adjust the support load of each seismic isolation device, so the support load of each seismic isolation device varies greatly, and the substation equipment having the seismic isolation structure As a result, a deviation (eccentricity) occurs between the center of gravity of the entire structural system and the center of the seismic isolation force. In this case, since there is a large difference between the center of gravity and the center of seismic isolation force, in the case of a large earthquake, a moment (rotational force) acts on the center of seismic isolation force due to the center of gravity of the structural system. The abnormal behavior due to the rotational displacement similar to the above is amplified, and there is a risk of causing serious damage to the substation equipment.
[0021]
Furthermore, in the event of an earthquake, a seismic isolation device that receives a large support load and a fixing member that supports the seismic isolation device are damaged in addition to a large support load because a horizontal seismic load proportional to the support load acts. there is a possibility. The effects of such eccentricity and dispersion of the supporting load overlap, and ultimately, there is a risk that not only the transformation device body is destroyed, but also the transformation device system including the peripheral transformation device is seriously damaged or affected.
[0022]
In order to solve such problems, if the number of seismic isolation support points is three, in principle, a uniform load will act on each seismic isolation device, but in large structures such as large transformers, the support load Therefore, it is necessary to support more than three seismic isolation devices. In such a case, a large variation in the support load as described above is unavoidable in each seismic isolation device responsible for load support. Therefore, when supporting large and heavy substations with a large number of seismic isolation devices, it is necessary to avoid increasing the support load per seismic isolation device. The function to adjust the support load in each seismic device is indispensable.
[0023]
As described above, earthquake resistance measures for substation equipment can be installed at low cost, and the design assumed seismic force and wind load are fixed with a solid fixing function, and the substation equipment is protected from storms and relatively small earthquakes. For large earthquakes that are greater than the design seismic load, the seismic load acting on the substation equipment should be reduced as much as possible so as not to cause major damage, and the peripheral equipment should not be damaged. There is a growing demand for optimal seismic structures and seismic and seismic isolation measures that maintain and protect the overall functionality of the equipment system.
[0024]
In addition, in order to apply the function of the seismic isolation device as proposed in “System Floor and Configuration Method” of Japanese Patent Application No. 11-371003 to a large and heavy transformer, the seismic isolation device itself. The structural load and friction members should have sufficient strength, the support load of the seismic isolation device can be adjusted and equalized so that the eccentricity of the center of action does not occur due to the installation of the seismic isolation device, and abnormal behavior It is necessary to add a new function such as behavior suppression in the event of occurrence.
[0025]
The present invention has been made to solve the above-described problems of the prior art, and can be easily applied from existing transformers to newly installed transformers, and can be manufactured and installed with a simple structure at low cost. The purpose is to obtain a seismic isolation device that can provide the optimal seismic isolation function.
[0026]
[Means for Solving the Problems]
The present invention achieves the above object, and claims. 1 In the invention, a plurality of frames are attached to the mount ,water The gravity load of the gantry is applied to the flat and flat upward sliding surface so as to be slidable in the horizontal direction. Sliding surface An upper member disposed at a fixed position with respect to the gantry when the seismic isolation device is installed, and the relative position in the vertical direction between the upper member and the upper member can be adjusted. Sliding surface A lower member in contact with In addition, the gantry has a horizontal and flat downward pad-facing surface, and has an elastic pad that is sandwiched between the pad-facing surface and the upper member to transmit the gravity load of the gantry to the upper member. The friction coefficient of the elastic pad at the contact portion between the pad facing surface and the upper member is larger than the friction coefficient at the contact portion between the sliding member and the lower member. Characterized by
[0027]
Claim 2 In the invention, a plurality of frames are attached to the mount ,water The gravity load of the gantry is applied to the flat and flat upward sliding surface so as to be slidable in the horizontal direction. Sliding surface An upper member disposed at a fixed position with respect to the gantry when the seismic isolation device is installed, and the relative position in the vertical direction between the upper member and the upper member can be adjusted. Sliding surface A lower member in contact with, A damping device that suppresses relative movement in the horizontal direction between the gantry and the sliding surface, the damping device being attached to the gantry and having a through hole penetrating in a vertical direction; And a flexible elastic-plastic member that is fixed relative to the sliding material and extends in the vertical direction and penetrates the through-hole, and the horizontal restraining member has a horizontal fixing member that is larger than the through-hole. A hole is provided, and a horizontal restraint gap adjusting member is attached so as to cover a part of the horizontal fixing member hole, and the through hole is provided in the horizontal restraint gap adjusting member. It is characterized by.
[0028]
Claims 3 The invention of claim 2 In the invention, the elastoplastic member passes through the through hole with a gap, and the gap is designed to have a maximum horizontal relative displacement at a position where the elastoplastic member passes through the through hole. Smaller than that.
[0029]
Claim 4 According to the present invention, there is provided a seismic isolation device for a substation equipment that is installed between a base floor surface and a support frame on which the substation equipment is installed, and that reduces seismic motion transmitted from the base floor surface. Sliding surface formed on the part and a plurality of sliding surfaces arranged on the sliding surface Friction member And these Friction member A plurality of support columns that are attached to the bottom surface and can be adjusted in height in the vertical direction, and a support frame in which the upper portions of these support columns are restrained at least in the horizontal direction. The support column is composed of a lower support column with a friction member attached to the lower surface, a support frame on the upper surface, and an upper support column that is restrained at least in the horizontal direction. By connecting, it has the function of supporting the load to the column and adjusting the vertical interval between the lower column and the upper column, and the upper column is fixed upward on a part of the upper surface of the upper column A hole through which the bar-shaped member is partially penetrated is provided in a through hole provided for penetrating the bar-shaped member of the upper support column through at least a part of the support plate at the lower part of the support frame from below the support frame. A support member having flexibility in the vertical direction, and having a material whose contact friction coefficient with respect to the upper surface of the upper column and the lower surface of the support frame is larger than the friction coefficient between the sliding surface and the friction member. Depending on the quality, it penetrates through an elastic pad that also serves as a force transmission member in the horizontal direction between the upper support column and the support cradle. A nut member with a screw was screwed in and installed on the support base It is characterized by.
[0030]
Claim 5 According to the present invention, there is provided a seismic isolation device for a substation equipment that is installed between a base floor surface and a support frame on which the substation equipment is installed, and that reduces seismic motion transmitted from the base floor surface. Sliding surface formed on the part and a plurality of sliding surfaces arranged on the sliding surface Friction member And these Friction member Are attached to the bottom surface and can be adjusted in height in the vertical direction, a support frame in which the upper part of these columns is constrained at least in the horizontal direction, and a plurality of support frames arranged on the support frame and acting in the horizontal plane direction Equipped with In addition, the damping device includes a plurality of horizontal restraint members arranged on the support base and having through holes in the vertical direction in the horizontal plane, and the lower part of the elastoplastic member is within the foundation floor surface with respect to each horizontal restraint member. The upper part of the elastic-plastic member passes through the through hole of the horizontal restraining member, and at least at the position of the through-hole, the inner peripheral surface of the through-hole and the outer periphery of the elastic-plastic member It was composed of an elasto-plastic member placed with a gap between it and the surface. It is characterized by.
[0046]
Claims 6 The invention of claim 5 In the invention, the horizontal restraining member is fixed to and installed on the support frame, and is horizontally installed on the fixing member so that the maximum outer diameter of the elastic-plastic member is partly in the horizontal plane. It is characterized by comprising a horizontal fixing member provided with a through hole in which a gap between the through hole minimum inner diameter is smaller than a design maximum slip displacement in the seismic isolation device.
[0047]
Claims 7 The invention of claim 5 In the invention, the horizontal restraining member is fixed and installed on the support frame, and is installed in a horizontal direction on the fixing member, and its installation height can be arbitrarily installed on the fixing member, and A horizontal fixing member provided with a through hole in which a gap between the maximum outer diameter of the elastic-plastic member and the minimum inner diameter of the through hole becomes smaller than a design maximum slip displacement in the seismic isolation device in a part of the horizontal plane And a horizontal fixing member that is installed on the upper surface or the lower surface of the horizontal fixing member and has a through hole having a minimum inner diameter smaller than the minimum inner diameter of the through hole of the horizontal fixing member, and the horizontal installation position can be arbitrarily adjusted on the horizontal fixing member It is characterized by comprising a fixing auxiliary member.
[0048]
Claims 8 The invention of claim Any of 5-7 In the invention, the elastoplastic member has a structure formed by a cylindrical rod of a metal member, a structure formed by a male screw having an outer diameter equal to or larger than an outer diameter of the upper part, and an upper part not having a male screw structure formed by the horizontal part. A structure formed so as to have a length exceeding the through hole position height of the horizontal fixing member of the restraint member, and at least two locations where the outer peripheral surfaces thereof face each other in the cross-sectional direction at at least one arbitrary position on the upper portion; It is characterized by being composed of a notched structure.
[0049]
Claims 9 The invention of claim Any of 5 to 8 In the invention, the fixing embedded member is embedded in the foundation floor so that the height position of the upper surface thereof is at least equal to or higher than the foundation floor surface, and a part of the upper surface thereof is fixed. And a structure in which a female screw corresponding to the male screw at the lower part of the elastic-plastic member and having a screw length longer than the length of the male screw part of the elastic-plastic member is formed.
[0050]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a seismic isolation device according to the present invention will be described with reference to the drawings. Here, a seismic isolation device for a substation equipment will be described as an example, but it goes without saying that it can be applied to other equipment. Moreover, in the following description, the same code | symbol is attached | subjected to the part which is common or similar in a prior art or each embodiment, and duplication description is abbreviate | omitted suitably.
[0051]
[First Embodiment]
First, a first embodiment will be described with reference to FIGS. In FIG. 1, the foundation 3 is installed embedded in the ground 6. On the foundation 3, a plurality of flat and smooth sliding plates 10 having a flat upper surface are arranged and fixed. On the sliding plate 10, a support frame 2 in which the transformer device main body 1 is installed is supported by a plurality of support columns 8 each having a friction member 9 attached to a surface in contact with the sliding plate 11. A power line 5 is connected to a peripheral device via a bushing 4 on the upper part of the substation main body 1.
[0052]
The seismic isolation device 7 that performs a seismic isolation function includes a sliding plate 10 and support columns 8 and 12. The sliding plate 10 is a substantially circular or substantially square plate and is fixed on the foundation 3 by bonding or bolts. As the material of the sliding plate 10, a stainless steel plate, a steel plate plated with hard such as chromium, a steel plate coated with a fluororesin material, and the like are suitable. The surface of the sliding plate 10 is horizontal, and the surface is polished to form a smooth sliding surface in order to smoothly slide the friction member 9 on the lower surface of the column 8 described later with a predetermined frictional force.
[0053]
With such a configuration, the friction member 9 normally functions as a fixing device without sliding against a horizontal load acting on the substation main body 1 due to a storm or a small and medium earthquake that is less than a friction force. In addition, if a horizontal earthquake load exceeding the specified friction force acts on the substation equipment due to a large earthquake, the seismic isolation action works so as not to transmit the seismic force above the friction force smoothly, causing damage to the substation equipment due to a large earthquake. Can be prevented in advance.
[0054]
One support column 8 is slidably installed at approximately the center of the upper surface of each sliding plate 10. As will be described later, the support column 8 is roughly divided into two parts, an upper support column 11 and a lower support column 12 (see FIGS. 2 to 5), which are screw-coupled. It is configured so that the height can be adjusted. By such a height adjustment function, the support load acting on each column 8 can be made substantially uniform by appropriately adjusting the heights of all the columns 8 that support the support frame 2. As a result, there is no variation in the load distribution, so that it is possible to prevent an excessive support load from acting on some of the columns and damage them, and to suppress the eccentricity of the center of gravity of the entire substation equipment. Abnormal behavior such as the rotational behavior of the substation 1 during sliding during an earthquake can be prevented.
[0055]
Further, a friction member 9 is fixed to the lower surface of the lower portion of the column 8 and slides in contact with the sliding plate 10. The material of the friction member 9 is softer than the material of the sliding plate 10. In the case of resin-based materials, fluororesin (for example, Polytetrafluoroethylene ) Materials, resin materials containing oil and carbon, other solid lubricants based on resins, and brass, aluminum, etc. are used as metal-based materials. The sliding friction coefficient of the friction member 9 is determined from the material of the friction member 9, the material of the sliding plate 10, and the surface roughness thereof. By appropriately combining these, the friction coefficient necessary for the seismic isolation design is set. Is possible. That is, the best seismic isolation effect can be obtained by setting an appropriate frictional force of the seismic isolation device 7 according to the assumed seismic force at the installation location.
[0056]
On the other hand, the width of the sliding plate 10 can be determined in consideration of the sliding displacement of the friction member 9 predicted from the assumed seismic force at the installation location. For example, the maximum diameter of the friction member 9 is D f The expected maximum slip displacement of a large earthquake is δ S If the sliding plate 10 is a circular plate, at least the diameter is D. f + 2 · δ S If it is a square plate, at least one side is D f + 2 · δ S The width of If the sliding plate 10 having such a width is installed, the seismic isolation device 7 slides within the range of the sliding plate 10 without protruding from the sliding plate 10 even during a large earthquake, and exhibits a predetermined seismic isolation effect. can do.
[0057]
As shown in an enlarged view in FIG. 2, the support column 8 of the seismic isolation device 7 that supports the support base 2 includes a friction member 9, a lower support column 12, an upper support column 11, and an elastic pad 14 in the order of load transmission from below. ing. The friction member 9 is in contact with the sliding plate 10, and the elastic pad 14 is in contact with the support base 2, and a support load, an earthquake load, or a frictional force is transferred to and from the members in contact with each other.
[0058]
As will be described later (see FIGS. 3 to 5), the upper column 11 is formed with a female screw portion 19 toward the surface of the lower column 12 facing the upper column 11. Further, the lower support column 12 is formed with a male thread portion 13 corresponding to the female thread portion 19, and both are screwed to a certain depth, and are set so that a gap is formed between the upper support column 11 and the lower support column 12. ing.
[0059]
The upper support column 11 is attached with a bar-shaped upper connecting member 15 which is thinner than the upper support column 11 upward from the vicinity of the center of the upper surface thereof. The upper connecting member 15 penetrates through the support frame 2, and an upper region thereof is formed in the connection male screw part 16, and a washer member 18 is installed on the surface of the support frame 2 in the connection screw part 16. A drop prevention nut member 17 is screwed in from the direction. It is set so that a slight gap is formed between the drop-off prevention nut member 17 and the washer member 18.
[0060]
With such a configuration, the upper strut 11 and the lower strut 12 are screwed together to adjust the gap interval between the strut height adjusting male screw portions 13, and finally the strut height can be changed. As a result, it is possible to suppress variation in the support load that acts on the plurality of disposed support columns 8. Further, when assembling and installing the substation main body 1, the support frame 2, the seismic isolation device 7 and the like by the upper connecting member 15 and the drop-off prevention nut member 17 installed thereon, for example, the seismic isolation device 7 is mounted on the support frame 2. When the support frame is installed by hanging the crane with the temporarily fixed, the damage due to the falling off of the support column 8 can be prevented.
[0061]
As shown in FIGS. 3 to 5, in this embodiment, a strut height adjusting male screw portion 13 is formed on the upper portion of the lower strut 12. The friction member 9 in contact with the sliding plate 10 is fitted into the friction member insertion recess 20 and is stuck and fixed using an adhesive or the like. The friction member insertion recess 20 is provided at the center of the lower surface of the lower support column 12, has a depth smaller than the thickness of the friction member 9, and has an upper base that is as flat as the friction member 9. A column height adjusting male screw portion 13 is formed in the upper portion of the lower column 12, and a lower column notch 22 in which two opposing surfaces in the cross-sectional direction are notched on the outer peripheral surface of the lower column 12. Is formed.
[0062]
The upper column 11 is formed with a bar-like upper coupling member 15 for coupling to the support frame at the upper portion thereof, and a coupling male screw portion 16 is formed in the upper region of the upper coupling member 15. In addition, a column height adjusting female screw portion 19 corresponding to the column height adjusting male screw portion 13 of the upper column 11 is formed at the bottom of the upper column 11 at the center of the lower surface. Upper support notch portions 23 are formed by notching two opposing surfaces in the direction.
[0063]
An elastic pad 14 having a through hole 50 (see FIG. 4) through which the upper connecting member 15 penetrates is installed at the upper surface of the lower portion of the upper column 11. The elastic pad 14 has an outer diameter that is at least equal to or greater than the lower outer diameter of the upper support column 11, and the contact friction coefficient between the lower upper surface of the upper support column 11 that contacts the lower surface and the support frame 2 that contacts the upper surface. It has a material larger than the contact friction coefficient between the friction member 9 and the sliding plate 10. The elastic pad 14 is made of a rubber material having a sufficiently flat surface, relatively smooth, and relatively low hardness. For example, rubber materials such as chloroprene rubber, urethane rubber, and silicon rubber are suitable as natural rubber and chemical synthetic rubber.
[0064]
With such a configuration, a spanner or a dedicated jig (not shown) is inserted into the cutout portions 22 and 23 of the upper column 11 and the lower column 12, respectively, and these are screwed together to form a male thread portion for adjusting the column height. The insertion depth with respect to the support post height adjusting female screw portion 19 is changed to adjust the gap distance between the upper support post 11 and the lower support post 12, and finally the support post height can be changed.
[0065]
Since the friction coefficient between the sliding plate 10 and the friction member 9 in each seismic isolation device 7 is the same, if the support load is the same, the frictional force generated at the contact portion will be the same, and the rotation corresponding to this frictional force. The power will be equal. Therefore, when the upper support 11 and the lower support 12 are screwed, if the rotational force acting on the spanner or the dedicated jig, that is, the torque, is made the same, the support load of each seismic isolation device 7 can be made equal. Torque can be easily adjusted by using a wrench, spanner or dedicated torque jig equipped with a torque meter or a device capable of detecting torque. Using such a wrench, spanner or dedicated torque jig, the torque of each seismic isolation device 7 supporting the load of the load is adjusted to be approximately equal, so that the supporting load acting on each seismic isolation device 7 can be reduced. Can be almost identical.
[0066]
In this way, since the variation in the support load of all the seismic isolation devices 7 arranged can be greatly reduced, finally, the support load exceeding the design strength acts on some seismic isolation devices 7. This eliminates the risk of damage or destruction of the seismic isolation device 7 and also minimizes the deviation (eccentricity) between the center of gravity of the entire structural system and the center of the seismic isolation action. Since there is no rotational behavior in the horizontal plane, there is no risk of the occurrence of abnormal behavior of the entire structural system, the seismic isolation function of the seismic isolation device 7 works effectively, and the large-sized substations that are subject to seismic isolation are effective from the earthquake. Can be protected.
[0067]
In addition, by forming the column height adjustment male screw portion 13 upward on the lower column 12, when this seismic isolation device is used outdoors, water can enter the screw even if it is exposed to rain or water. In addition, since water can hardly be accumulated in the internal thread portion 19 for adjusting the column height, the thread portion can be hardly corroded.
[0068]
Further, since the friction member 9 in contact with the sliding plate 10 is fitted in the friction member insertion recess 20 and the upper surface is attached with an adhesive, even if the adhesive deteriorates and peels off, Even if the friction member 9 slides on the sliding plate 10 due to a large earthquake and the like, and the horizontal peeling force due to the friction force is generated on the friction member 9, the friction member 9 is the outer periphery of the portion embedded in the friction member insertion recess 20. Since the surface is caught in the friction member insertion recess 20, it does not come off from the friction member insertion recess 20. Therefore, with such a structure, the friction member 9 is securely fixed to the lower surface of the seismic isolation device 7 and finally can exhibit its friction function, that is, the seismic isolation function.
[0069]
Further, the elastic pad 14 installed between the upper surface of the lower portion of the upper column 11 and the support frame 2 is made of a material whose contact friction coefficient of each member is larger than that of the friction member 9 and the sliding plate 10. . For this reason, when the friction member 9 slides on the sliding plate 10 due to a large earthquake or the like and the generated frictional force is transmitted to the elastic pad 14 via the lower column 12 and the upper column 11, a load equal to the friction material 9 is supported. The contact friction force between the elastic pad 14 and the upper surface of the lower portion of the upper column 11 and the support frame 2 is larger than the transmitted friction force, so that the members in contact with the elastic pad 14 slide. The frictional force transmitted to the upper column 11 can be transmitted to the support base 2 in a fixed state without any problem.
[0070]
If slip easily occurs in the horizontal direction at the contact portion with the elastic pad 14, the upper support column through hole 21 of the support frame and the upper connection column 15 collide violently, and the upper connection column 15 is broken by the collision force. Then, there is a possibility that the support frame 2 and the seismic isolation device 7 are disassembled. With the configuration of this embodiment, the above problems can be solved. That is, since the elastic pad 14 has elasticity in the horizontal direction, the upper support pillar through hole 21 and the upper connection pillar 15 of the support frame can be prevented from colliding with a relatively small seismic force. In a large earthquake, the impact force can be mitigated by the horizontal elasticity of the elastic pad 14, so that the upper connecting column 15 can be finally prevented from being damaged.
[0071]
The elastic pad 14 is a soft elastic body having a relatively small hardness, and is appropriately compressed and deformed in the vertical direction by a support load acting on the elastic pad 14. Even if there is a slight distortion of the contact portion or a deviation in flatness, the support frame 2 and the upper support column 11 can be brought into close contact with each other and the support load can be distributed almost uniformly on the contact surfaces.
[0072]
Therefore, it is possible to reduce the possibility of column breakage due to rattling or load deviation at the time of support, and finally, the friction member 9 on the lower surface of the lower column and the sliding plate 10 are brought into close contact with each other. The surface pressure due to the acting support load can be made substantially uniform. And since it becomes possible to generate | occur | produce the target frictional force of the friction member 9 accurately, the reliability of a seismic isolation function can be improved significantly.
[0073]
[Second Embodiment]
This embodiment is basically the same as the first embodiment, but differs in that a column height adjusting male screw portion 13a is formed below the upper column 11 as shown in FIGS.
[0074]
The friction member 9 in contact with the sliding plate 10 is fitted into a friction member insertion recess 20 provided at the center of the lower surface of the lower column 12, and is attached and fixed using an adhesive or the like. The friction member insertion recess 20 has a depth smaller than the thickness of the friction member 9, and has an upper base that is as flat as the friction member 9.
[0075]
The lower strut 12 has a strut height adjusting female thread portion 19a formed on the upper portion thereof, and a lower strut cutout portion 22 formed by notching two opposing faces in the cross-sectional direction on the outer peripheral surface thereof. Yes.
[0076]
The upper column 11 is formed with a bar-like upper coupling member 15 for coupling to the support frame at the upper portion thereof, and a coupling male screw portion 16 is formed in the upper region of the upper coupling member 15. Further, a lower column of the upper column 11 is formed with a column height adjusting male screw portion 13a corresponding to the column height adjusting female screw portion 19a of the upper column 11 at the center of the lower surface. Upper support notch portions 23 are formed by notching two opposing surfaces in the direction.
[0077]
An elastic pad 14 having a through hole through which the upper connecting member 15 passes is provided at the center on the upper surface of the lower portion of the upper column 11. The elastic pad 14 has an outer diameter that is at least equal to or lower than the lower outer diameter of the upper column 11, and a friction coefficient of contact between the upper surface of the lower portion of the upper column 11 that contacts the lower surface and the support frame 2 that contacts the upper surface. It has a material larger than the coefficient of contact friction between the member 9 and the sliding plate 10.
[0078]
With such a configuration, the same effect as the first embodiment can be obtained with respect to the seismic isolation function. That is, first, a spanner or a dedicated jig is inserted into the notches 22 and 23 of the upper column 11 and the lower column 12, and these are screwed together to adjust the column height of the column screw height adjusting male screw portion 13a. By changing the insertion depth with respect to the female female thread portion 19a, the gap distance between the upper column 11 and the lower column 12 is adjusted, and finally the column height can be changed.
[0079]
Further, by forming a male height 13a for adjusting the column height downward on the lower surface of the upper column 11 and forming a female screw portion 19a for adjusting the column height on the lower column 12, the assembly of the support frame and the seismic isolation device can be performed. When installing the lower support column 12 from below into the upper support column 11 previously incorporated in the support frame 2, the installer can relatively easily open the hole of the internal thread portion 19 a for adjusting the height of the support column on the upper surface of the lower support column 12 from above. Thus, the support height adjusting female thread portion 19a can be easily incorporated into the support height adjusting external thread portion 13a. The seismic isolation device 7 having such a configuration is suitable for indoor use.
[0080]
[Third Embodiment]
Next, a third embodiment will be described with reference to FIGS. As shown in FIGS. 9 and 10, in the present embodiment, first, a seismic isolation device main body 7 that supports the support base 2 is installed on the foundation 3 that is embedded in the ground 6 and installed. The seismic isolation device main body 7 corresponds to the seismic isolation device 7 in the first and second embodiments. That is, similarly to the first and second embodiments, a plurality of sliding plates 10 having a flat top surface and a flat and smooth surface are arranged and fixed, and the support frame 2 in which the transformer device main body 1 is installed on the sliding plate 10. Is supported by a plurality of support columns 8 each having a friction member 9 attached to a surface in contact with the sliding plate 11.
[0081]
Further, in the present embodiment, an attenuation device 24 is added / installed. A plurality of horizontal restraining members 26 having through holes 28 in the horizontal plane are arranged on the outer periphery of the installation support base 2. Corresponding to each horizontal restraining member 26, an elastic-plastic member 25 is vertically fixed and installed on an elastic-plastic member base 27 embedded and installed in the ground 3 around the foundation 3 or around the foundation 3, and this elastic-plastic member. 25 penetrates the central region of the through hole of the corresponding horizontal restraint member 26. Here, the inner diameter of the through hole 28 is manufactured so as to have an appropriate gap with the horizontal restraining member 26 with respect to the diameter of the elastic-plastic member 25.
[0082]
The structure of the seismic isolation device main body 7 that performs the seismic isolation function is the same as that of the seismic isolation device 7 of the first or second embodiment. Since this seismic isolation device main body 7 can obtain the best seismic isolation effect against an earthquake that is assumed at the place where the substation equipment is installed, the substation equipment can be protected from such an earthquake.
[0083]
The damping device 24 includes an elastic-plastic member 25 and a horizontal restraining member 26. The elastic-plastic member 25 is formed in the shape of a cylindrical bar, and the lower part thereof is fixed and installed on an elastic-plastic member foundation 27 embedded in the foundation 3 or the ground 6 around the foundation 3. The length of the elastic-plastic member 25 is sufficiently longer than the length from the surface of the elastic-plastic member base 27 to the through hole 28 on the horizontal restraining member 26. The inner diameter of the through hole is formed so that the gap formed between the elastic-plastic member 25 and the through hole 28 is smaller than the designed maximum slip displacement in the seismic isolation device body 7.
[0084]
The length and thickness of the portion from the elastic-plastic member base 27 surface of the elastic-plastic member 25 to the through hole 28 on the horizontal restraining member 26 are set and formed in the following manner. A critical earthquake greater than the assumed earthquake occurs, causing a large slip displacement in the seismic isolation device body 7, narrowing the initially set gap, and causing the horizontal restraint member 26 to contact the elastoplastic member 25. When it is deformed, the length and thickness of the elastic-plastic member 25 so as to generate a damping amount due to elastic-plastic deformation that absorbs vibration energy so as not to exceed the designed maximum sliding displacement in the seismic isolation device body 7. Can be decided.
[0085]
It is sufficient that the seismic force in a critical earthquake is about 1.5 to 2 times the seismic force of the assumed earthquake. As the material of the elastic-plastic member 25, a material having a high ductility and a high breaking strength, such as a mild steel material, a stainless steel material, and a copper material, is suitable.
[0086]
With such a configuration, first, the friction member 9 and the sliding plate 10 in the seismic isolation device main body 7 are normally slid against a horizontal load acting on the transformer main body 1 due to a storm or a small and medium earthquake that is less than the friction force. Without working as a fixing device. As a next step, if a horizontal earthquake load greater than the specified friction force is applied to the substation due to a relatively large earthquake, the seismic isolation action works so that it does not transmit an earthquake force greater than the friction force. Damage due to can be prevented in advance. If the sliding displacement generated at this time is equal to or less than the gap δ between the elastic-plastic member 25 and the horizontal restraining member 26, the seismic isolation function only of the frictional action by the seismic isolation device body 7 works.
[0087]
Furthermore, as a next step, when an earthquake that is larger than the one assumed in the design occurs, the amount of slip displacement that occurs is controlled within the range of the designed maximum slip displacement only by the frictional action of the seismic isolation device body 7. Therefore, the seismic isolation device main body 7 exceeds the sliding plate 10, and there is a risk that not only the seismic isolation device main body 7 but also the transformer device main body and other devices are seriously damaged. The attenuation device 24 functions as a backup device in order to cope with such a situation.
[0088]
That is, when an earthquake larger than the earthquake assumed in the design occurs and the designed maximum slip displacement is exceeded only by the frictional action of the seismic isolation device main body 7, here, between the elastic-plastic member 25 and the horizontal restraint member 26. Is set to be smaller than the design maximum slip displacement, so that the horizontal restraining member 26 installed on the support frame 2 contacts the elastic-plastic member 25 before the seismic isolation device main body 7 exceeds the design maximum slip displacement. The elastic-plastic member 25 is bent. When this is bent, a restoring force proportional to the bending is generated, and this force is transmitted from the horizontal restraining member 26 to the support frame 2 and acts as a pushing back force on the support frame 2 to suppress the sliding displacement.
[0089]
Further, when the sliding displacement increases due to a large seismic force, and the bending deformation of the elastic-plastic member 25 exceeds the elastic region, the energy dissipation due to the plastic deformation in the elastic-plastic member 25 (history decay energy dissipation). Thus, the vibration energy of the entire target transformer device is attenuated, and the vibration amplitude, that is, the slip displacement can be significantly suppressed. Eventually, even when a destructive large earthquake occurs more than expected, the slip displacement of the seismic isolation device main body 7 is suppressed within the design maximum slip displacement with respect to the assumed earthquake. 7 can be protected from damage and destruction.
[0090]
11 and 12 show the attenuation device 24 in an enlarged manner. In addition, in FIG. 11, about the seismic isolation apparatus main body 7, only the centerline is shown. The damping device 24 includes an elastic-plastic member 25 and a horizontal restraining member 26. The elastoplastic member 25 is formed in a cylindrical bar shape, and is divided into an upper elastoplastic member upper portion 27 and a lower elastoplastic member lower portion 30, and an elastoplastic member external thread portion 31 is formed in the elastoplastic member lower portion 30. In addition, the outer diameter D of the elastic-plastic member upper portion 27 U And the outer diameter D of the elastic-plastic member lower part 30 L The relationship with D L > D U It is formed as follows.
[0091]
A fixing member 32 is embedded in an elastic-plastic member foundation 27 embedded in the foundation 3 or in the ground 6 around the foundation 3, and a fixing member female screw portion 33 corresponding to the elastic-plastic member external thread portion 31 is perpendicular to the center thereof. Is formed. The elastic-plastic member 25 has an elastic-plastic member lower portion 30 screwed into and fixed to a fixing member 32, and is further tightened on the upper surface of the fixing member 32 by a fixing nut 34 to reinforce the fixing state.
[0092]
The horizontal restraining member 26 is installed on the side surface of the support frame 2, and a through hole 28 in which a buffer member 35 is attached to the inner peripheral surface is formed in the plate portion protruding in the horizontal direction. The gap 36 formed between the through hole 28 and the elastic-plastic member 25 penetrating the central portion of the through hole 28 is δ for the gap 36 and D for the inner diameter of the through hole. H Then δ = (D H -D U ) / 2. In this way, the inner diameter D of the through hole 28 is set so that the gap is smaller than the designed maximum slip displacement in the seismic isolation device main body 7. H Is formed.
[0093]
Regarding the length and thickness of the elastoplastic member upper portion 29, the length L of the portion from the surface of the elastoplastic member base 27 to the through hole 28 on the horizontal restraint member 26. T , Substantially deformed portion L of the elastic-plastic member P And thickness D U Is set and formed based on the above-mentioned concept.
[0094]
Overall length L of the elastic-plastic member upper part 29 T The elastic-plastic member 25 has a sufficient margin so that its tip does not come off from the through hole 28 even when the elastic-plastic member 25 receives a deformation force from the horizontal restraining member 26 and greatly deforms in the horizontal direction. The height position of the through hole 28 of the horizontal restraining member 26 is the length L of the elastic-plastic member 25 that is substantially deformed. P It is formed, adjusted and installed according to the situation. Thickness D U Is determined according to the amount of energy dissipated in the upper part 29 of the elastic-plastic member at the time of the assumed maximum seismic force. As the material of the elastic-plastic member 25, a material having a high ductility and a high breaking strength, such as a mild steel material, a stainless steel material, and a copper material, is suitable.
[0095]
With such a configuration, first, the elastic-plastic member external thread portion 31 is screwed into the fixing member internal thread portion 33 and is fixed to the fixing member 32, and the elastic member that functions as an attenuation device is adjusted by screwing the fixing member internal thread portion 33. Overall length L of plastic member upper part 29 T Therefore, it is possible to function as an elasto-plastic damper having a damping capacity as designed. In addition, the fixing member 34 is fastened to the fixing member 32 by fastening the fixing member female thread portion 33 appearing on the upper surface of the fixing member 32 with the fixing nut 34, so that not only the fixing state is reinforced but also a large earthquake. Even when the elasto-plastic member 25 is greatly deformed, cracks and breakage from the fixing member female thread portion 33 can be prevented.
[0096]
Furthermore, when the slip displacement of the seismic isolation device body 7 exceeds the gap δ in a large earthquake exceeding the assumption, the elastic-plastic member 25 and the horizontal restraining member 26 come into contact with each other. However, by attaching the buffer member 35 to the inner peripheral surface of the through hole 28 of the horizontal restraining member 26, it is possible to alleviate the impact of each other member and prevent damage to each member. it can.
[0097]
[Fourth Embodiment]
As shown in FIGS. 13 to 15, the fourth embodiment is an example in which the configuration of the attenuation device 24 in the third embodiment is expanded. The damping device 24 of this embodiment is composed of an elastic-plastic member 25 and a horizontal restraining member 26a. The elastoplastic member 25 is formed in a cylindrical bar shape, and is divided into an upper elastoplastic member upper portion 27 and a lower elastoplastic member lower portion 30, and an elastoplastic member external thread portion 31 is formed in the elastoplastic member lower portion 30. In addition, the outer diameter D of the elastic-plastic member upper portion 27 U And the outer diameter D of the elastic-plastic member lower part 30 L The relationship with D L > D U It is formed as follows.
[0098]
A fixing member 32 is embedded in an elastic-plastic member foundation 27 embedded in the foundation 3 or in the ground 6 around the foundation 3, and a fixing member female screw portion corresponding to the elastic-plastic member male screw portion 31 is perpendicular to the center thereof. 33 is formed. The elastic-plastic member 25 has an elastic-plastic member lower portion 30 screwed into and fixed to a fixing member 32, and is further tightened on the upper surface of the fixing member 32 by a fixing nut 34 to reinforce the fixing state.
[0099]
The horizontal restraint member 26 a includes a support gantry fixing member 37, a horizontal fixing member 38, and a horizontal restraint gap adjusting member 39. The support gantry fixing member 37 is installed perpendicularly to the side surface of the support gantry 2, and the side surface of the support gantry fixing member 37 has a screw hole 52 (only the center line in FIGS. 13 and 15 for fixing the horizontal fixing member 38 to the bolt). Are provided stepwise in the vertical direction. The horizontal fixing member 38 includes a vertical plate and a horizontal plate for connecting to the support gantry fixing member 37, and is bolted to the support gantry fixing member 37 on the vertical plate. The installation height of the horizontal fixing member 38 can be adjusted stepwise by a plurality of screw holes 52 provided in the support frame fixing member 37 in a stepwise manner in the vertical direction.
[0100]
Further, a horizontal fixing member hole 40 is formed in the horizontal plate portion 56. The horizontal restraint gap adjusting member 39 is fixed and installed on the horizontal fixing member 38. The horizontal restraint gap adjusting member 39 is formed with a through hole 28a having a buffer member 35 attached to the inner peripheral surface. The gap 36 formed between the through hole 28a and the elastic-plastic member 25 penetrating the central portion of the through hole 28a is δ for the gap 36 and D for the inner diameter of the through hole. H Then δ = (D H -D U ) / 2. The inner diameter D of the through hole 28a is set so that the gap is smaller than the designed maximum slip displacement in the seismic isolation device body 7. H Is formed. The inner diameter of the horizontal fixing member hole 40 of the horizontal fixing member 38 is equal to the inner diameter D of the through hole 28a. H It is formed to be larger.
[0101]
Regarding the length and thickness of the elastoplastic member upper portion 29, the length L of the portion from the boundary portion between the elastoplastic member upper portion 29 and the elastoplastic member lower portion 30 to the through hole 28 a of the horizontal restraint gap adjusting member 39. P And thickness D U Are set and formed in the same way as in the third embodiment. Overall length L of the elastic-plastic member upper part 29 T Is formed with a sufficient length so that the tip of the elasto-plastic member 25 does not come off from the through hole 28a even if it is deformed greatly in the horizontal direction by receiving a deformation force from the horizontal restraint gap adjusting member 39. ing.
[0102]
Inner diameter D of through hole 28a of horizontal restraint gap adjusting member 39 H The length L of the elastic-plastic member 25 that is substantially deformed P And thickness D U Is designed and manufactured to obtain the necessary attenuation corresponding to the assumed limit earthquake. Inner diameter D of through hole 28a of horizontal restraint gap adjusting member 39 H Indicates the required distance δ of the gap 36 by the thickness D of the elastic-plastic member 25. U Is produced against. Length L of elastic-plastic member 25 P Can be set with high precision by adjusting the height position of the through hole 28a of the horizontal restraint gap adjusting member 39 of the horizontal restraint member 26a and the elastic-plastic member male threaded portion 31 of the elastic-plastic member 25.
[0103]
Thickness D U Can be manufactured by changing the diameter of the elastic-plastic member upper part 29 as required. Inner diameter D of through hole 28a of horizontal restraint gap adjusting member 39 H The length L of the elastic-plastic member 25 P And thickness D U The required attenuation corresponding to the assumed limit earthquake can be easily set with high accuracy by the combination of the height positions of the horizontal restraining members 26a.
[0104]
With such a configuration, the effect as an attenuation device can be obtained in the same manner as in the third embodiment, and the inner diameter D of the through hole 28a of the horizontal restraint gap adjusting member 39 can be obtained. H The length L of the elastic-plastic member 25 P And thickness D U Since the combined tolerance of the height position of the horizontal restraining member 26a becomes very high, not only the necessary attenuation corresponding to the assumed limit earthquake can be set easily and accurately, but also after the production and installation When the seismic force is changed or the seismic isolation performance standard is changed, the attenuation function of the attenuation device 24 can be easily changed within the range in which it is manufactured and installed. It is possible to flexibly adjust and change the seismic isolation performance for any earthquake.
[0105]
Furthermore, when it is desired to significantly change the capacity of the damping device 24, or when replacement is performed in order to avoid performance deterioration due to corrosion of the elastic-plastic member 25 or the like due to long-term installation, the damping device is activated in the event of a large earthquake. In the case where it is desired to replace the elastic member 25 with a new elastic-plastic member 25 because the plastic member 25 has repeatedly undergone large deformation up to the plastic region, the elastic-plastic member 25 is simply screwed to the fixing member 32. The member 25 can be easily replaced. In this way, the elastic-plastic member 25 can be replaced very easily in order to maintain the damping performance, such as changing the capacity of the entire seismic isolation device, or replacing it for maintenance or after a large earthquake.
Therefore, it can be said that this seismic isolation device is not only a device having high seismic isolation performance, but also a seismic isolation device rich in flexibility and expandability.
[0106]
【The invention's effect】
As described above, according to the present invention, support loads acting on a plurality of installed seismic isolation devices can be shared uniformly with respect to an assumed large earthquake, so that the center of gravity position of the device and the gantry and the waiver The center of seismic isolation force generated by the sliding frictional force generated by the seismic device can be made substantially coincident. With this effect, the seismically isolated equipment can protect the equipment from damage or destruction due to a major earthquake without exhibiting abnormal behavior during a major earthquake.
[Brief description of the drawings]
FIG. 1 is an overall elevation view when a first embodiment of a seismic isolation device according to the present invention is applied to a substation equipment.
FIG. 2 is an enlarged elevation view near the seismic isolation device of FIG.
FIG. 3 is an enlarged vertical sectional view of the vicinity of the seismic isolation device of FIG. 2;
4 is an exploded elevation view of the seismic isolation device of FIGS. 2 and 3. FIG.
5A is a horizontal cross-sectional view taken along line AA in FIG. 4, and FIG. 5B is a horizontal cross-sectional view taken along line BB in FIG.
FIG. 6 is a vertical sectional view corresponding to FIG. 3 in the vicinity of the seismic isolation device when the second embodiment of the seismic isolation device according to the present invention is applied to a transformer.
7 is an exploded elevation view of the seismic isolation device of FIG.
8A is a horizontal sectional view taken along the line AA in FIG. 7, and FIG. 8B is a horizontal sectional view taken along the line BB in FIG.
FIG. 9 is an overall elevation view corresponding to FIG. 1 when the third embodiment of the seismic isolation device according to the present invention is applied to a transformer.
10 is an overall plan view of the transformer device of FIG. 9;
11 is an enlarged vertical sectional view of the vicinity of the damping device of the seismic isolation device of FIG. 9;
12 is an enlarged plan view of the vicinity of the damping device of the seismic isolation device of FIG. 9;
FIG. 13 is an elevational sectional view corresponding to FIG. 11 in the vicinity of the damping device of the seismic isolation device when the fourth embodiment of the seismic isolation device according to the present invention is applied to a transformer.
14 is a plan view of the vicinity of the damping device of the seismic isolation device of FIG. 13;
15 is a developed vertical sectional view of the damping device of the seismic isolation device of FIG. 13;
FIG. 16 is an overall elevation view showing a seismic structure of a conventional substation equipment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substation equipment body, 2 ... Support stand, 3 ... Foundation, 4 ... Bushing, 5 ... Power line, 6 ... Ground, 7 ... Seismic isolation device (base isolation device body), 8 ... Post, 9 ... Friction member, 10 ... Sliding plate, 11 ... upper support, 12 ... lower support, 13, 13a ... support height adjusting male screw part, 14 ... elastic pad, 15 ... upper connecting pillar, 16 ... connecting pillar male screw part, 17 ... drop-off prevention nut member, 18 ... Washer members, 19 and 19a ... Main pillar height adjusting female thread part, 20 ... Friction member insertion recess, 21 ... Upper strut through hole, 22 ... Lower strut notch, 23 ... Upper strut notch, 24 ... Damping device , 25 ... elastoplastic member, 26 ... horizontal restraint member, 27 ... elastoplastic member base, 28 ... through hole, 29 ... elastoplastic member upper part, 30 ... elastoplastic member lower part, 31 ... elastoplastic member male screw part, 32 ... fixed Member, 33 ... fixing member female screw part, 34 ... fixing nut 35 ... Buffer member, 36 ... Gap, 37 ... Supporting frame fixing member, 38 ... Horizontal fixing member, 39 ... Horizontal restraint gap adjusting member, 40 ... Horizontal fixing member hole, 41 ... Small-diameter elastic-plastic member, 42 ... Large-diameter elastic-plastic Member, 43 ... Embedded metal fitting, 44 ... Connecting plate, 50 ... Through hole, 52 ... Screw hole.

Claims (9)

架台に複数個が取り付けられて、水平で平坦な上向きの滑り面に対して水平方向に滑動可能に接して前記架台の重力荷重を前記滑り面に伝達する免震装置であって、
この免震装置の設置時に前記架台に対して決まった位置に配置される上部部材と、この上部部材との上下方向の相対位置を調節でき、前記滑り面と接する下部部材と、を有するとともに、前記架台は水平で平坦な下向きのパッド対向面を有し、このパッド対向面と前記上部部材との間に挟まれて前記架台の重力荷重を前記上部部材に伝達する弾性パッドを有し、この弾性パッドの前記パッド対向面および前記上部部材との接触部における摩擦係数が、前記滑り材と下部部材との接触部における摩擦係数よりも大きいことを特徴とする免震装置。
And a plurality are attached to the frame, a seismic isolation device for at horizontal and slidably contact with the horizontal direction with respect to the sliding surface of the flat upward transfer gravitational load of the frame on the sliding surface,
While having an upper member arranged at a fixed position with respect to the gantry at the time of installation of this seismic isolation device, a vertical member relative to the upper member can be adjusted, and a lower member in contact with the sliding surface , The gantry has a horizontal and flat downward pad facing surface, and has an elastic pad that is sandwiched between the pad facing surface and the upper member and transmits the gravity load of the gantry to the upper member. A seismic isolation device , wherein a coefficient of friction at a contact portion between the pad-facing surface of the elastic pad and the upper member is larger than a coefficient of friction at a contact portion between the sliding member and the lower member .
架台に複数個が取り付けられて、水平で平坦な上向きの滑り面に対して水平方向に滑動可能に接して前記架台の重力荷重を前記滑り面に伝達する免震装置であって、
この免震装置の設置時に前記架台に対して決まった位置に配置される上部部材と、この上部部材との上下方向の相対位置を調節でき、前記滑り面と接する下部部材と、前記架台と前記滑り面との間の水平方向の相対的動きを抑制する減衰装置を有し、前記減衰装置は、前記架台に取り付けられて上下方向に貫通する貫通孔を有する水平拘束部材と、前記滑り材に対して相対的に固定され、上下方向に延びて前記貫通孔を貫通する可撓性のある弾塑性部材とを有するとともに、前記水平拘束部材に前記貫通孔よりも大きな水平固定部材穴が設けられ、この水平固定部材穴の一部を覆うように水平拘束隙間調整部材が取り付けられ、この水平拘束隙間調整部材に前記貫通孔が設けられていることを特徴とする免震装置。
And a plurality are attached to the frame, a seismic isolation device for at horizontal and slidably contact with the horizontal direction with respect to the sliding surface of the flat upward transfer gravitational load of the frame on the sliding surface,
An upper member arranged at a fixed position with respect to the gantry at the time of installation of the seismic isolation device, a vertical position relative to the upper member can be adjusted, a lower member in contact with the sliding surface , the gantry, and the gantry A damping device that suppresses relative movement in the horizontal direction between the sliding surface and the damping device; a horizontal restraining member that has a through hole that is attached to the mount and penetrates in a vertical direction; and the sliding material And a flexible elastic-plastic member that is fixed relatively to each other and extends in the vertical direction and penetrates the through hole, and a horizontal fixing member hole larger than the through hole is provided in the horizontal restraining member. A seismic isolation device , wherein a horizontal restraint gap adjusting member is attached so as to cover a part of the horizontal fixing member hole, and the through hole is provided in the horizontal restraint gap adjusting member .
前記弾塑性部材は前記貫通孔を隙間を有して貫通しているとともに、 前記隙間は、前記弾塑性部材が前記貫通孔を貫通する位置において設計上の最大の水平方向相対変位よりも小さいことを特徴とする請求項に記載の免震装置。The elastoplastic member passes through the through hole with a gap, and the gap is smaller than the maximum horizontal relative displacement in design at a position where the elastoplastic member passes through the through hole. The seismic isolation device according to claim 2 . 基礎床面と変電機器を設置する支持架台との間に設置され、基礎床面から伝達される地震動を低減する変電機器の免震装置において、前記基礎床面上の少なくも一部に形成された滑り面と、その滑り面上に複数配置された滑動可能な摩擦部材と、これら摩擦部材が底面に取り付けられ上下方向に高さ調節が可能な複数の支柱と、これら支柱の上部が少なくとも水平方向に拘束された支持架台とを具備し、前記支柱は、下面に摩擦部材を取り付けた下部支柱と上面に支持架台と少なくとも水平方向に拘束される上部支柱で構成され、これら下部支柱と上部支柱とが上下方向にねじ連結され、ねじ連結により、支柱への荷重支持を行うとともに下部支柱と上部支柱との間の上下方向間隔調整を行う機能を有するとともに、前記上部支柱は、その上部支柱上面の一部に上方向に向けて固定・設置された棒状部材を支持架台下方より、少なくとも支持架台下部の支持板の一部に前記上部支柱の棒状部材を貫通させるために設けた貫通穴に、一部に棒状部材を貫通させる穴を持ち、上下方向に柔性を有した支持部材であり、上部支柱上面および支持架台下面に対する接触摩擦係数が前記滑り面と摩擦部材との間の摩擦係数より大きい材質を有し、この材質により上部支柱と支持架台との間の水平方向の力の伝達部材を兼ねる弾性パッドを介して、貫通させるとともに、貫通した上部支柱上面の棒状構造上部の雄ねじ部分に、この雄ねじに対応した雌ねじを有するナット部材をねじ込み、支持架台に設置されたことを特徴とする変電機器の免震装置。In the seismic isolation device for substation equipment, which is installed between the foundation floor and the support frame for installing the substation, and reduces the earthquake motion transmitted from the foundation floor, it is formed on at least a part of the foundation floor. and a sliding surface, and slidable friction member in which a plurality placed on its sliding surface, and these friction member of the plurality capable mounted height adjustment in the vertical direction on the bottom strut, an upper at least horizontal of struts A support frame that is constrained in a direction, and the support column is composed of a lower column with a friction member attached to the lower surface, a support frame on the upper surface, and an upper column that is constrained at least in the horizontal direction. Are connected in the vertical direction by screws, and have the function of supporting the load on the support by adjusting the vertical distance between the lower support and the upper support by the screw connection. A through-hole provided in order to allow the rod-shaped member of the upper column to pass through at least a part of the support plate at the bottom of the support frame from below the support frame for the bar-shaped member fixed and installed upward on a part of the upper surface of the column In addition, the support member has a hole that partially penetrates the rod-like member and has flexibility in the vertical direction, and the friction coefficient of contact between the upper surface of the upper column and the lower surface of the support frame is the friction coefficient between the sliding surface and the friction member. It has a larger material, and this material penetrates through an elastic pad that also serves as a force transmission member in the horizontal direction between the upper column and the support frame, and the male screw part on the upper part of the bar structure on the upper surface of the upper column that has penetrated A seismic isolation device for a substation equipment, wherein a nut member having a female screw corresponding to the male screw is screwed in and installed on a support frame . 基礎床面と変電機器を設置する支持架台との間に設置され、基礎床面から伝達される地震動を低減する変電機器の免震装置において、前記基礎床面上の少なくも一部に形成された滑り面と、その滑り面上に複数配置された滑動可能な摩擦部材と、これら摩擦部材が底面に取り付けられ上下方向に高さ調節が可能な複数の支柱と、これら支柱の上部が少なくとも水平方向に拘束された支持架台と、支持架台に複数配置され水平面内方向に作用する減衰装置とを具備するとともに、前記減衰装置は、支持架台に複数配置され水平方向面内に上下方向に対する貫通孔を有する水平拘束部材と、それぞれの水平拘 束部材に対して、弾塑性部材の下部が基礎床面内に埋め込まれた固定用埋め込み部材に設置・固定され、前記弾塑性部材の上部が水平拘束部材の貫通孔を貫通し、少なくとも前記貫通孔位置にて貫通孔内周面と前記弾塑性部材の外周面との間に隙間を有するように配置した弾塑性部材とで構成されたことを特徴とする変電機器の免震装置。In the seismic isolation device for substation equipment, which is installed between the foundation floor and the support frame for installing the substation, and reduces the earthquake motion transmitted from the foundation floor, it is formed on at least a part of the foundation floor. and a sliding surface, and slidable friction member in which a plurality placed on its sliding surface, and these friction member of the plurality capable mounted height adjustment in the vertical direction on the bottom strut, an upper at least horizontal of struts A support frame that is constrained in the direction and a plurality of damping devices that are arranged on the support frame and act in a horizontal plane direction. a horizontal restraining member having, for each of the horizontal captive member is disposed and fixed to the fixing embedding member lower portion embedded in the baseplate plane elastoplastic member, the upper part of the elasto-plastic member horizontal restraint Passes through a through hole of the timber, characterized in that it is composed of the elastic-plastic member disposed so as to have a gap between an outer peripheral surface of the elastic-plastic member and the through-hole inner peripheral surface at least the through-hole position Seismic isolation device for substation equipment. 前記水平拘束部材は、前記支持架台に固定・設置された固定部材と、固定部材上に水平方向に張り出し設置され、その水平面内の一部に前記弾塑性部材の最大外径と前記貫通孔最小内径との間の隙間が、前記免震装置における設計最大すべり変位より小さくなるような貫通孔を設けた水平固定部材とで、構成されたことを特徴とする請求項記載の変電機器の免震装置。The horizontal restraining member includes a fixing member fixed and installed on the support frame, a horizontal projecting installation on the fixing member, and a maximum outer diameter of the elastic-plastic member and a minimum of the through hole on a part of the horizontal plane. 6. The immunity of a substation device according to claim 5 , comprising a horizontal fixing member provided with a through-hole so that a gap between the inner diameter and a design maximum slip displacement of the seismic isolation device is smaller. Seismic device. 前記水平拘束部材は、前記支持架台に固定・設置された固定部材と、固定部材上に水平方向に張り出し設置され、その設置高さを固定部材上で任意に設置でき、かつ、その水平面内の一部に前記弾塑性部材の最大外径と前記貫通孔最小内径との間の隙間が、前記免震装置における設計最大すべり変位より小さくなるような貫通孔を設けた水平固定部材と、水平固定部材上面あるいは下面上に設置され、前記水平固定部材の貫通孔の最小内径より小さい最小内径を持つ貫通孔を持ち、その水平方向設置位置を水平固定部材上で任意に調整できる水平固定補助部材とで、構成されたことを特徴とする請求項記載の変電機器の免震装置。The horizontal restraining member is fixed to and installed on the support frame, and is installed in a horizontal direction on the fixing member, and the installation height can be arbitrarily set on the fixing member, A horizontal fixing member provided with a through-hole in which a gap between the maximum outer diameter of the elastic-plastic member and the minimum inner diameter of the through-hole is partially smaller than a design maximum slip displacement in the seismic isolation device; and horizontal fixing A horizontal fixing auxiliary member installed on the upper surface or the lower surface of the member, having a through hole having a minimum inner diameter smaller than the minimum inner diameter of the through hole of the horizontal fixing member, and capable of arbitrarily adjusting the horizontal installation position on the horizontal fixing member; The seismic isolation device for a substation device according to claim 5 , wherein the seismic isolation device is configured. 前記弾塑性部材は、金属部材の円柱棒で形成された構造と、その下部が上部の外径以上の外径を持つ雄ねじで形成された構造と、雄ねじ構造でない上部が前記水平拘束部材の水平固定部材の貫通孔位置高さを越える長さを持つように形成された構造と、上部の少なくとも任意の一箇所にてその外周面が断面方向において対向する面を少なくとも2箇所を切り欠いた構造とで、構成されたことを特徴とする請求項5乃至7のいずれかに記載の変電機器の免震装置。The elastic-plastic member includes a structure formed by a cylindrical rod of a metal member, a structure formed by a male screw having an outer diameter equal to or larger than the outer diameter of the upper portion, and an upper portion that is not a male screw structure formed horizontally by the horizontal restraint member. A structure formed so as to have a length that exceeds the height of the through hole of the fixing member, and a structure in which at least two arbitrary positions on the upper surface are opposed to each other in the cross-sectional direction. and, a seismic isolation device of substation equipment according to any one of claims 5 to 7, characterized in that it is configured. 前記固定用埋め込み部材は、基礎床内にその上面の高さ位置が少なくとも基礎床面以上となるように埋め込まれ、固定されるように形成された構造と、その上面の一部に下方向内部に向かって弾塑性部材下部の雄ねじに対応し、そのねじ長さが弾塑性部材の雄ねじ部の長さより長い雌ねじを形成した構造とで、構成されたことを特徴とする請求項5乃至8のいずれかに記載の変電機器の免震装置。The fixing embedding member is embedded in the foundation floor so that the height position of the upper surface thereof is at least equal to or higher than the foundation floor surface, and a structure formed so as to be fixed, and a part of the upper surface includes a downward inner portion. 9. The structure according to claim 5, wherein the female screw is formed with a female screw corresponding to the male screw at the lower part of the elastic-plastic member and having a screw length longer than that of the male screw part of the elastic-plastic member . A seismic isolation device for a substation device according to any one of the above.
JP2001383137A 2001-12-17 2001-12-17 Seismic isolation device Expired - Fee Related JP3892720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383137A JP3892720B2 (en) 2001-12-17 2001-12-17 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383137A JP3892720B2 (en) 2001-12-17 2001-12-17 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2003184949A JP2003184949A (en) 2003-07-03
JP3892720B2 true JP3892720B2 (en) 2007-03-14

Family

ID=27593277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383137A Expired - Fee Related JP3892720B2 (en) 2001-12-17 2001-12-17 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3892720B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752330B2 (en) 2013-06-20 2017-09-05 Senqcia Corporation Base isolation floor structure
CN106884560B (en) * 2017-04-07 2023-03-24 华侨大学 Replaceable sliding shock isolation device limiting mechanism for energy consumption component

Also Published As

Publication number Publication date
JP2003184949A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US9109357B2 (en) Modular isolation systems
US4200256A (en) Apparatus mounting arrangement for avoiding harm due to seismic shocks
US8402702B1 (en) Aseismic sliding isolation system using hydromagnetic bearings
JP2944217B2 (en) Vibration suppression coupling device for earthquake resistance of structures
US10619373B1 (en) Seismic damping systems and methods
Qi et al. Seismic evaluation of two‐elevation ceiling system by shake table tests
JP2009162376A (en) Seismic isolation ball-support device and spherical laminated rubber base isolation ball for lightweight structure
JP3892720B2 (en) Seismic isolation device
Blakeiey et al. Recommendations for the design and construction of base isolated structures
US7090207B2 (en) Single-end-mount seismic isolator
WO2017204371A1 (en) Vibration control apparatus for structure with low attenuation
KR102024136B1 (en) OMEGA shaped 3-D vibration absorbing fixture using elastoplastic springs for nuclear plant equipment
US10041267B1 (en) Seismic damping systems and methods
JPH10176432A (en) Three-dimensional vibration isolation device
Riley et al. Seismic retrofit using spring damper devices on high-voltage equipment stands
KR102353862B1 (en) Measurement and control panel having seismic isolation device for protecting electrical equipment from earthquake
Marsh The control of building motion by friction dampers
CN220868496U (en) Friction energy consumption device for wood structure beam column node
KR102646133B1 (en) Electric switchboard with modular earthquake-resistant structure
KR102376719B1 (en) A Seismic device for structural safety
JP2011184950A (en) Slide foundation structure
KR102646134B1 (en) Electric switchboard with modular earthquake-resistant structure
CN214044619U (en) Apply to many shakes district electric appliance cabinet with electric mounting panel that takes precautions against earthquakes
CN112567106B (en) Apparatus and method for vibration damping in high voltage devices
CN114122971A (en) Combined type damping device, shock insulation support and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R151 Written notification of patent or utility model registration

Ref document number: 3892720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees