JP3891789B2 - Granulator dryer - Google Patents

Granulator dryer Download PDF

Info

Publication number
JP3891789B2
JP3891789B2 JP2001106556A JP2001106556A JP3891789B2 JP 3891789 B2 JP3891789 B2 JP 3891789B2 JP 2001106556 A JP2001106556 A JP 2001106556A JP 2001106556 A JP2001106556 A JP 2001106556A JP 3891789 B2 JP3891789 B2 JP 3891789B2
Authority
JP
Japan
Prior art keywords
flow path
channel
cylinder
continuous screw
innermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001106556A
Other languages
Japanese (ja)
Other versions
JP2002310559A (en
Inventor
恒久 田中
健人 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001106556A priority Critical patent/JP3891789B2/en
Publication of JP2002310559A publication Critical patent/JP2002310559A/en
Application granted granted Critical
Publication of JP3891789B2 publication Critical patent/JP3891789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は造粒乾燥機に関し、一般原材料あるいは下水汚泥、産業廃水汚泥等の汚泥を乾燥する技術に係るものである。
【0002】
【従来の技術】
従来、一般的な乾燥機としては種々のものがあり、下水汚泥、産業廃水汚泥等の汚泥の乾燥機としては、蒸気による間接的な熱伝達によって汚泥を乾燥させるディスク型乾燥機、リボン型真空乾燥機、遠心薄膜式乾燥機などの蒸気間接加熱方式のものや、熱風による直接的な熱伝達によって汚泥を乾燥させるセントリフラッシュ、キルン乾燥機などの熱風直接加熱方式のものがある。
【0003】
例えばキルン乾燥機は、傾斜配置した回転ドラムの一端側からドラム内に熱風と汚泥の脱水ケーキを供給し、ドラムの傾斜勾配と回転運動によって汚泥をドラムの他端側へ移送しながらドラム内に通気する熱風によって汚泥を乾燥させており、ドラム内部に配置した掻き揚げ羽根と解砕羽根によって脱水ケーキを攪拌、解砕して熱風との接触を図っている。
【0004】
【発明が解決しようとする課題】
しかし、キルン乾燥機のような回転乾燥機においては、掻き揚げ板による攪拌だけでは汚泥(脱水ケーキ)とキャリアガス(熱風)との接触効率を十分に高めることはできないので、汚泥の機内における滞留時間を長くするためにドラムの直径および軸方向の長さを大きくする必要があり、ドラム容積の増加によって乾燥機全体が大型化する。また、内部に熱風を通気するドラム外側面の高温化を防止するためにドラムにキャスター等の断熱材を配置する必要があり、重量が大きくなる。
【0005】
本発明は上記した課題を解決するものであり、容積の増大を伴なうことなく乾燥対象の造粒物とキャリアガスとの接触効率をたかめることができ、かつ断熱材が不要となる造粒乾燥機を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る本発明の造粒乾燥機は、複数の管状胴を同心状に配置して本体胴を形成し、本体胴の一端に乾燥対象の造粒物および熱源のキャリアガスの導入口を接続するとともに、他端に乾燥造粒物およびキャリアガスの排出口を接続し、本体胴内に各管状胴で仕切って流路を多層状に形成し、各層流路を各管状胴の一端側もしくは他端側に形成する連通口において交互に接続して各層流路を一系統の流路に形成し、各管状胴内面に連続スクリューを配置して各層流路を螺旋状に形成するとともに、各管状胴内面に配置する連続スクリューを各層流路の上流側へ造粒物を移送する螺旋状に形成し、最内側の管状胴の内部に形成する最内層流路を連続スクリューで形成する螺旋状の流路と連続スクリューで囲まれた直線状の流路とで形成し、最内層流路に前記導入口を接続し、最外層流路に前記排出口を接続してなり、造粒物がキャリアガスによる流路の下流側への移動と連続スクリューによる上流側への移動とを反復的に繰り返しながら下流側へ流動しつつ、流動乾燥と気流乾燥を繰り返すものである。
【0007】
上記した構成により、本体胴を軸心回りに回転駆動する状態において、導入口から本体胴の最内層流路に造粒物およびキャリアガスを供給する。キャリアガスは管状胴の内周面近傍を流れる一部が連続スクリューに当たって乱流となり、あるいは連続スクリューに沿って旋回流となって管状胴の下部に滞留する造粒物を舞い上がらせ、固気混相の流動層を形成しながら造粒物を流動乾燥させる。
【0008】
直線状の流路を流れるキャリアガスは舞い上がった造粒物を下流側へ搬送しながら気流乾燥させる。キャリアガスで搬送する造粒物はしだいに落下して管状胴へ着地し、連続スクリューによって流路の上流側へ戻される。
【0009】
このように、造粒物はキャリアガスによる流路の下流側への移動と連続スクリューによる上流側への移動とを反復的に繰り返しながら最内層流路を本体胴他端の下流側へ流動し、流動乾燥と気流乾燥を繰り返しながら機内に長く滞留するので造粒物の乾燥効率が高まる。
【0010】
本体胴の他端側に達した造粒物はキャリアガスとともに連通口を通って隣接する外側の流路へ流入する。この流路において連続スクリューによる上流側への搬送作用とキャリアガスによる下流側への搬送作用を受ける造粒物は、上下の管状胴および連続スクリューで仕切られた螺旋状をなす流路をキャリアガスとの固気混相の流動層を形成しながら下流側へ移動し、流動層乾燥と気流乾燥の双方の作用を具現するので、キャリアガスと造粒物の接触効率および乾燥効率が非常に高くなる。
【0011】
以後、造粒物およびキャリアガスは順次に外側の流路へ流入し、各層流路を下層流路の流れと相反する方向に流動しながら流動層乾燥と気流乾燥によって乾燥され、最外層流路から排出口を通って本体胴外へ流れ出る。
【0012】
よって、連続スクリューによる上流側への搬送作用によって造粒物の機内滞留時間を長くし、かつ流動層乾燥と気流乾燥の双方の作用によって高い接触効率および乾燥効率を実現することで本体胴の容積を減じて乾燥機を小型化できる。また、本体胴内では造粒物に連続スクリューによる上流側への搬送作用を及ぼす状態で、キャリアガスによる搬送作用によってのみ造粒物を下流側へ搬送するので、未乾燥の重量が大きくて流動性の低い汚泥は十分な乾燥によって重量が軽減されるまで機外へ排出されないので、乾燥造粒物の重量および粒径はほぼ等しくなる。
【0013】
本体胴は多層状の流路を有することでその構造自体に断熱性を有し、最内層流路から順次に外側の流路を流れて最外層流路から機外へ流れ出るキャリアガスは造粒物を加熱することで熱を奪われて漸次に温度が低下するので、最外側の管状胴における温度は低くなり、従来のようにキャスターなどの断熱材を施工する必要がなくなり、装置の軽量化を図れる。
【0014】
請求項2に係る本発明の造粒乾燥機は、最内側の管状胴の内面に軸心方向に沿った直線状の掻き揚げ板を複数箇所に配置したものである。
上記した構成により、掻き揚げ板が管状胴の下部に滞留する造粒物を上方へ持ち上げて攪拌することでキャリアガスによる流動層の形成を促進し、接触効率および乾燥効率の向上を図れる。
【0015】
請求項3に係る本発明の造粒乾燥機は、最内側の管状胴の内部に内筒を挿入して最内層流路を連続スクリューで形成する螺旋状の流路のみで形成したものである。
【0016】
上記した構成により、本体胴内の全流路が螺旋状の流路となり、造粒物はキャリアガスとの固気混相の流動層を形成し、流動層乾燥と気流乾燥の双方の作用を具現ながら下流側へ移動する。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。本発明に係る造粒乾燥機は一般原材料の乾燥機としても利用可能であるが、本実施の形態では下水汚泥、産業廃水汚泥等の汚泥を乾燥する場合について説明する。
【0018】
図1において、脱水ケーキ(含水率35%〜85%)1はケーキ投入ポンプ2によって混合機3に供給し、混合機3において後述する乾燥造粒汚泥の返送物と混合して造粒汚泥(含水率35%〜50%)4に造粒して後に乾燥機5に投入する。
【0019】
この乾燥機5の作用および構造は後に詳述する。乾燥機5には造粒汚泥4とともにキャリアガス(加熱媒体)として循環ガス6を供給する。循環ガス6は熱風炉7で発生する排ガス8を加熱媒体として熱交換器9で加熱する。熱交換器9から排出する排ガスは排ガス系10を経て煙突11から大気へ放出する。乾燥機5において乾燥した乾燥造粒汚泥12を含む循環ガス6はサイクロン13に供給して固気分離し、循環ガス6は除湿器14を経て循環ファン15によって熱交換器9に戻し、一部のガスを抜出ファン16によって熱風炉7へ供給する。
【0020】
サイクロン13で捕集した乾燥造粒汚泥12は分級機17に供給して分級し、適正粒径である中径の乾燥造粒汚泥12は搬送コンベア18によりバンカ19に搬送し、バンカ19から搬送トラック20に積み出す。
【0021】
不適正な粒径である大径の乾燥造粒汚泥12は破砕機21において適当粒径に破砕して後にホッパ22に供給し、小径の乾燥造粒汚泥12は直接にホッパ22へ供給し、ホッパ22から戻りコンベア23により混合機3へ返送物として供給する。
【0022】
図2に示すように、乾燥機5は本体胴31が内層管状胴32と中層管状胴33と外層管状胴34とを同心状に配置してなり、本体胴31の一端に乾燥対象の造粒汚泥4および熱源の循環ガス(キャリアガス)6の導入口35を接続するとともに、他端に乾燥造粒汚泥12および循環ガス6の排出口36を接続しており、導入口35および排出口36をシール材等を介して固定配管(図示省略)に接続し、本体31の一端に設けた歯車31aに噛合する駆動装置(図示省略)を備えている。
【0023】
本体胴31は内部に各管状胴32、33、34で仕切って内層流路37、中層流路38、外層流路39を多層状に形成しており、内層流路37と中層流路38は内層管状胴32の他端側に形成した連通口40で接続し、中層流路38と外層流路39は中層管状胴33の一端側に形成した連通口41で接続し、各層流路を一系統の流路に形成している。
【0024】
各管状胴32、33、34の内面には連続スクリュー42、43、44を配置して各層流路37、38、39を螺旋状に形成しており、各連続スクリュー42、43、44は各層流路37、38、39の上流側へ造粒汚泥4を移送する螺旋状に形成している。つまり、図4に示すように、内層流路37に配置する連続スクリュー42と外層流路39に配置する連続スクリュー44とを同じ方向に旋回する螺旋形状に形成し、中層流路38に配置する連続スクリュー43を反対方向に旋回する螺旋形状に形成している。
【0025】
内層管状胴32の内層流路37は連続スクリュー42で形成する螺旋状の流路37aと連続スクリュー42で囲まれた直線状の流路37bとからなり、内層管状胴32の内面に軸心方向に沿った直線状の掻き揚げ板32aを複数箇所に配置し、内層流路37に導入口35を接続し、外層流路39に排出口36を接続している。
【0026】
以下に乾燥機5の作用を説明する。本体胴31を軸心回りに回転駆動する状態において、導入口35から本体胴31の内層流路37に造粒汚泥4および循環ガス6を供給する。循環ガス6は内層管状胴32の内周面近傍を流れる一部が連続スクリュー42に当たって乱流となり、あるいは連続スクリュー42に沿って螺旋状の流路37aを旋回流となって流れ、内層管状胴32の下部に滞留する造粒汚泥4を舞い上がらせて固気混相の流動層を形成しながら造粒汚泥4を流動乾燥させる。また、掻き揚げ板32aが内層管状胴32の下部に滞留する造粒汚泥4を上方へ持ち上げて攪拌することで循環ガス6による流動層の形成を促進し、接触効率および乾燥効率の向上を図れる。
【0027】
直線状の流路37bを流れる循環ガス6は舞い上がった造粒汚泥4を下流側へ搬送しながら気流乾燥させる。循環ガス6で搬送する造粒汚泥4はしだいに落下して内層管状胴32へ着地し、連続スクリュー42によって内層流路37の上流側へ戻される。
【0028】
このように、造粒汚泥4は循環ガス6による内層流路37の下流側への移動と連続スクリュー42による上流側への移動とを反復的に繰り返しながら内層流路37を本体胴31の他端の下流側へ流動し、流動乾燥と気流乾燥を繰り返しながら機内に長く滞留するので造粒汚泥4の乾燥効率が高まる。
【0029】
本体胴31の他端側に達した造粒汚泥4は循環ガス6とともに連通口40を通って隣接する中層流路38へ流入する。この中層流路38において連続スクリュー43による上流側への搬送作用と循環ガス6による下流側への搬送作用を受ける造粒汚泥4は、上下の内層管状胴32と中層管状胴33および連続スクリュー43で仕切られた螺旋状をなす流路を循環ガス6との固気混相の流動層を形成しながら下流側へ移動し、流動層乾燥と気流乾燥の双方の作用を具現するので、循環ガス6と造粒汚泥の接触効率および乾燥効率が非常に高くなる。
【0030】
次ぎに、造粒汚泥4および循環ガスは連通口41を通って外層流路39へ流入し、外層流路39を中層流路38の流れと相反する方向に流動しながら流動層乾燥と気流乾燥によって乾燥され、外層流路39から排出口36を通って本体胴31の外部へ流れ出る。
【0031】
よって、連続スクリュー42、43、44による上流側への搬送作用によって造粒汚泥4の機内滞留時間を長くし、かつ流動層乾燥と気流乾燥の双方の作用によって高い接触効率および乾燥効率を実現することで本体胴31の容積を減じて乾燥機5を小型化できる。
【0032】
また、本体胴31の内部では造粒汚泥4に連続スクリュー42、43、44による上流側への搬送作用を及ぼす状態で、循環ガス6による搬送作用によってのみ造粒汚泥4を下流側へ搬送するので、未乾燥の重量が大きくて流動性の低い汚泥は十分な乾燥によって重量が軽減されるまで機外へ排出されないので、乾燥造粒汚泥12の重量および粒径はほぼ等しくなる。
【0033】
本体胴31は多層状の流路37、38、39を有することでその構造自体に断熱性を有し、内層流路37から中層流路38を流れて外層流路39から機外へ流れ出る循環ガス6は造粒汚泥4を加熱することで熱を奪われて漸次に温度が低下するので、外層管状胴34における温度は低くなり、従来のようにキャスターなどの断熱材を施工する必要がなくなり、装置の軽量化を図れる。
【0034】
図3に示すように、内層管状胴32は内部に内筒45を挿入することで内層流路37を連続スクリュー42で形成する螺旋状の流路37aのみで形成することも可能である。
【0035】
この場合には、本体胴31の全流路が螺旋状の流路となり、造粒汚泥4は循環ガス6との固気混相の流動層を形成し、流動層乾燥と気流乾燥の双方の作用を具現ながら下流側へ移動する。
【0036】
【発明の効果】
以上のように本発明によれば、連続スクリューによる上流側への搬送作用とキャリアガスによる下流側への搬送作用とで造粒物を固気混相の流動層を形成しながら下流側へ移動させることで、流動層乾燥と気流乾燥の双方の作用を具現することができ、キャリアガスと造粒物の接触効率および乾燥効率が非常に高くなり、本体胴の容積を減じて乾燥機を小型化できる。また、キャリアガスによる搬送作用によってのみ造粒物を下流側へ搬送することで、未乾燥の重量が大きくて流動性の低い造粒物は十分な乾燥によって重量が軽減されるまで機外へ排出されないので、乾燥造粒物の重量および粒径をほぼ等しくできる。本体胴が多層状の流路をなすことでその構造自体に断熱性を有するのでキャスターなどの断熱材を施工する必要がなくなり、装置の軽量化を図れる。掻き揚げ板で造粒物を攪拌することで流動層の形成を促進して接触効率および乾燥効率の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における乾燥設備を示す模式図である。
【図2】同実施の形態における乾燥機の断面図である。
【図3】本発明の他の実施の形態における乾燥機の断面図である。
【図4】本発明の乾燥機における連続スクリューの形状を示す模式図である。
【符号の説明】
4 造粒汚泥
5 乾燥機
6 循環ガス
12 乾燥造粒汚泥
31 本体胴
32 内層管状胴
32a 掻き揚げ板
33 中層管状胴
34 外層管状胴
35 導入口
36 排出口
37 内層流路
37a 螺旋状の流路
37b 直線状の流路
38 中層流路
39 外層流路
40、41 連通口
42、43、44 連続スクリュー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granulation dryer, and relates to a technique for drying sludges such as general raw materials, sewage sludge, industrial wastewater sludge and the like.
[0002]
[Prior art]
Conventionally, there are various types of general dryers, such as sewage sludge, industrial wastewater sludge and other sludge dryers, disk type dryers that dry sludge by indirect heat transfer by steam, ribbon type vacuum There are indirect steam heating methods such as dryers and centrifugal thin film dryers, and hot air direct heating methods such as sentry flashes and kiln dryers that dry sludge by direct heat transfer with hot air.
[0003]
For example, a kiln dryer supplies hot air and sludge dehydrated cake into the drum from one end of the inclined rotating drum, and moves the sludge into the drum while transferring the sludge to the other end of the drum by the inclined gradient and rotational movement of the drum. The sludge is dried by the hot air that is ventilated, and the dewatered cake is stirred and crushed by the scraping blades and the pulverizing blades arranged inside the drum to make contact with the hot air.
[0004]
[Problems to be solved by the invention]
However, in a rotary dryer such as a kiln dryer, the contact efficiency between the sludge (dehydrated cake) and the carrier gas (hot air) cannot be sufficiently increased only by stirring with a scraping plate. In order to lengthen the time, it is necessary to increase the diameter and axial length of the drum, and the entire dryer becomes larger due to the increase in drum volume. Further, it is necessary to dispose a heat insulating material such as a caster on the drum in order to prevent the outer surface of the drum through which hot air is ventilated from being heated, resulting in an increase in weight.
[0005]
The present invention solves the above-mentioned problems, and can increase the contact efficiency between the granulated product to be dried and the carrier gas without increasing the volume, and does not require a heat insulating material. The purpose is to provide a dryer.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the granulating dryer according to the first aspect of the present invention includes a plurality of tubular cylinders arranged concentrically to form a main body cylinder, and a granulated product to be dried at one end of the main body cylinder. And a carrier gas inlet of the heat source, and a dry granule and a carrier gas outlet connected to the other end, and a flow path is formed in multiple layers by dividing each tubular cylinder in the body cylinder. The flow paths are alternately connected at communication ports formed on one end side or the other end side of each tubular cylinder to form each layer flow path in a single system flow path, and a continuous screw is arranged on the inner surface of each tubular cylinder to provide each laminar flow. The innermost layer is formed inside the innermost tubular cylinder by forming the path spirally and forming a continuous screw arranged on the inner surface of each tubular cylinder in a spiral shape for transferring the granulated material to the upstream side of each layer flow path. Surrounded by a spiral channel and a continuous screw that form the channel with a continuous screw Formed in a linear flow path, connecting the inlet port to the innermost layer channel, constituted by connecting the outlet to the outermost flow path, granules of the downstream side of the flow path by the carrier gas While repeatedly moving and moving upstream by a continuous screw, fluidized drying and airflow drying are repeated while flowing downstream .
[0007]
With the above-described configuration, the granulated material and the carrier gas are supplied from the introduction port to the innermost layer flow path of the main body cylinder in a state where the main body cylinder is rotationally driven around the axis. Part of the carrier gas that flows in the vicinity of the inner peripheral surface of the tubular cylinder hits the continuous screw to become a turbulent flow, or a swirling flow along the continuous screw to cause the granulated material that stays in the lower part of the tubular cylinder to rise, causing a solid-gas mixed phase. The granulated product is fluidized and dried while forming a fluidized bed.
[0008]
The carrier gas flowing through the straight flow path is air-dried while conveying the granulated material soared downstream. The granulated material transported by the carrier gas gradually falls and lands on the tubular body, and is returned to the upstream side of the flow path by the continuous screw.
[0009]
In this way, the granulated material flows through the innermost flow path to the downstream side of the other end of the main body while repeatedly moving the flow path downstream by the carrier gas and moving upstream by the continuous screw. In addition, since it stays in the machine for a long time while repeating fluidized drying and airflow drying, the drying efficiency of the granulated product is increased.
[0010]
The granulated material that has reached the other end of the main body cylinder flows into the adjacent outer flow path through the communication port together with the carrier gas. In this flow path, the granulated material that receives the upstream transport action by the continuous screw and the downstream transport action by the carrier gas passes through the spiral flow path partitioned by the upper and lower tubular cylinders and the continuous screw. It moves to the downstream side while forming a fluidized bed of solid-gas mixed phase and realizes both actions of fluidized bed drying and airflow drying, so the contact efficiency and drying efficiency of carrier gas and granulated product become very high .
[0011]
Thereafter, the granulated material and the carrier gas sequentially flow into the outer channel, and are dried by fluidized bed drying and airflow drying while flowing in the direction opposite to the flow of the lower layer channel, and the outermost layer channel. Flows out of the body through the discharge port.
[0012]
Therefore, by increasing the retention time of the granulated material in the machine by the upstream conveying action by the continuous screw and realizing high contact efficiency and drying efficiency by both the fluidized bed drying and the airflow drying, To reduce the size of the dryer. Also, in the main body cylinder, the granulated product is transported to the downstream side only by the transport action by the carrier gas in a state in which the granulated product is transported to the upstream side by the continuous screw. Since sludge having low properties is not discharged outside the machine until the weight is reduced by sufficient drying, the weight and particle size of the dried granulated product are almost equal.
[0013]
Since the main body has a multi-layered flow path, the structure itself has heat insulation, and the carrier gas that flows from the innermost flow path to the outer flow path and flows out of the outermost flow path is granulated. Since the heat is deprived by heating the object and the temperature gradually decreases, the temperature in the outermost tubular body becomes lower, eliminating the need to install heat insulating materials such as casters as in the past, and reducing the weight of the device Can be planned.
[0014]
The granulation dryer of the present invention according to claim 2 is one in which linear fried plates along the axial direction are arranged at a plurality of locations on the inner surface of the innermost tubular cylinder.
With the configuration described above, the granulated material in which the scraping plate stays in the lower part of the tubular body is lifted and stirred to promote the formation of a fluidized bed by the carrier gas, and the contact efficiency and the drying efficiency can be improved.
[0015]
The granulation dryer of the present invention according to claim 3 is formed by only a spiral flow path in which an inner cylinder is inserted into an innermost tubular cylinder and an innermost flow path is formed by a continuous screw. .
[0016]
With the configuration described above, the entire flow path in the main body becomes a spiral flow path, and the granulated material forms a fluidized layer of solid-gas mixed phase with the carrier gas, realizing both fluidized bed drying and airflow drying. While moving downstream.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although the granulation dryer according to the present invention can be used as a dryer for general raw materials, the present embodiment will describe a case where sludge such as sewage sludge and industrial wastewater sludge is dried.
[0018]
In FIG. 1, a dehydrated cake (water content 35% to 85%) 1 is supplied to a mixer 3 by a cake charging pump 2 and mixed with a return product of a dry granulated sludge described later in a mixer 3 to form a granulated sludge ( Granulated to a moisture content of 35% to 50%) 4 and then put into the dryer 5.
[0019]
The operation and structure of the dryer 5 will be described in detail later. A circulation gas 6 is supplied to the dryer 5 as a carrier gas (heating medium) together with the granulated sludge 4. The circulating gas 6 is heated by the heat exchanger 9 using the exhaust gas 8 generated in the hot stove 7 as a heating medium. The exhaust gas discharged from the heat exchanger 9 is discharged from the chimney 11 to the atmosphere through the exhaust gas system 10. The circulating gas 6 containing the dried granulated sludge 12 dried in the dryer 5 is supplied to the cyclone 13 and separated into solid and gas, and the circulating gas 6 is returned to the heat exchanger 9 by the circulating fan 15 via the dehumidifier 14, The gas is supplied to the hot stove 7 by the extraction fan 16.
[0020]
The dried granulated sludge 12 collected by the cyclone 13 is supplied to the classifier 17 and classified, and the medium-sized dried granulated sludge 12 having an appropriate particle size is conveyed to the bunker 19 by the conveyor 18 and conveyed from the bunker 19. The truck 20 is loaded.
[0021]
The large-sized dry granulated sludge 12 having an inappropriate particle size is crushed to an appropriate particle size by a crusher 21 and then supplied to the hopper 22. The small-sized dry granulated sludge 12 is directly supplied to the hopper 22, The product is supplied from the hopper 22 to the mixer 3 by the return conveyor 23 as a returned product.
[0022]
As shown in FIG. 2, in the dryer 5, the main body cylinder 31 has an inner-layer tubular cylinder 32, an intermediate-layer tubular cylinder 33, and an outer-layer tubular cylinder 34 arranged concentrically. The sludge 4 and the introduction port 35 for the circulation gas (carrier gas) 6 of the heat source are connected, and the other end is connected to the discharge port 36 for the dry granulated sludge 12 and the circulation gas 6. Is connected to a fixed pipe (not shown) through a sealant or the like, and a drive device (not shown) is provided that meshes with a gear 31a provided at one end of the main body 31.
[0023]
The main body cylinder 31 is internally partitioned by tubular cylinders 32, 33, and 34 to form an inner layer flow path 37, an intermediate layer flow path 38, and an outer layer flow path 39 in a multilayer shape. The intermediate layer channel 38 and the outer layer channel 39 are connected by a communication port 41 formed on one end side of the middle layer tubular body 33, and the respective layer channels are connected to each other. It is formed in the flow path of the system.
[0024]
Continuous screws 42, 43, 44 are arranged on the inner surfaces of the tubular cylinders 32, 33, 34 to form the respective layer flow paths 37, 38, 39 in a spiral shape. It is formed in a spiral shape for transferring the granulated sludge 4 to the upstream side of the flow paths 37, 38, 39. That is, as shown in FIG. 4, the continuous screw 42 arranged in the inner layer flow path 37 and the continuous screw 44 arranged in the outer layer flow path 39 are formed in a spiral shape turning in the same direction, and arranged in the middle layer flow path 38. The continuous screw 43 is formed in a spiral shape that turns in the opposite direction.
[0025]
The inner layer flow path 37 of the inner layer tubular cylinder 32 includes a spiral flow path 37 a formed by the continuous screw 42 and a linear flow path 37 b surrounded by the continuous screw 42. Are arranged at a plurality of locations, the introduction port 35 is connected to the inner layer flow path 37, and the discharge port 36 is connected to the outer layer flow path 39.
[0026]
The operation of the dryer 5 will be described below. In a state where the main body cylinder 31 is rotationally driven around the axis, the granulated sludge 4 and the circulating gas 6 are supplied from the inlet 35 to the inner layer flow path 37 of the main body cylinder 31. A part of the circulating gas 6 flowing in the vicinity of the inner peripheral surface of the inner layer tubular cylinder 32 hits the continuous screw 42 to become a turbulent flow, or flows along the spiral channel 37a along the continuous screw 42 as a swirling flow. The granulated sludge 4 staying in the lower part of 32 is soared and the granulated sludge 4 is fluidized and dried while forming a fluidized layer of solid-gas mixed phase. In addition, the scraping plate 32a lifts and agitates the granulated sludge 4 staying in the lower part of the inner tubular cylinder 32 to promote formation of a fluidized bed by the circulating gas 6, thereby improving contact efficiency and drying efficiency. .
[0027]
The circulating gas 6 flowing through the linear flow path 37b is air-dried while conveying the granulated sludge 4 soared to the downstream side. The granulated sludge 4 transported by the circulating gas 6 gradually falls to land on the inner layer tubular body 32 and is returned to the upstream side of the inner layer channel 37 by the continuous screw 42.
[0028]
In this way, the granulated sludge 4 repeatedly moves the inner layer flow path 37 to the main body cylinder 31 while repeatedly repeating the movement of the inner layer flow path 37 to the downstream side by the circulating gas 6 and the movement to the upstream side by the continuous screw 42. Since it flows to the downstream side of the end and stays in the machine for a long time while repeating fluidized drying and airflow drying, the drying efficiency of the granulated sludge 4 is increased.
[0029]
The granulated sludge 4 that has reached the other end of the main body cylinder 31 flows into the adjacent middle layer flow path 38 through the communication port 40 together with the circulating gas 6. The granulated sludge 4 that receives the upstream conveying action by the continuous screw 43 and the downstream conveying action by the circulating gas 6 in the middle layer flow path 38 is divided into the upper and lower inner tubular cylinders 32, the middle tubular cylinder 33, and the continuous screw 43. Since the flow path formed in a spiral shape is moved to the downstream side while forming a fluidized bed of a solid-gas mixed phase with the circulating gas 6 and realizes both fluidized bed drying and airflow drying, the circulating gas 6 And the contact efficiency and drying efficiency of granulated sludge become very high.
[0030]
Next, the granulated sludge 4 and the circulating gas flow into the outer layer flow path 39 through the communication port 41, and fluidized bed drying and air flow drying while flowing in the outer layer flow path 39 in a direction opposite to the flow of the middle layer flow path 38. , And flows out from the outer layer passage 39 to the outside of the main body drum 31 through the discharge port 36.
[0031]
Therefore, the residence time of the granulated sludge 4 is increased by the upstream conveying action of the continuous screws 42, 43, and 44, and high contact efficiency and drying efficiency are realized by the actions of both fluidized bed drying and airflow drying. Thus, the volume of the main body drum 31 can be reduced and the dryer 5 can be downsized.
[0032]
Further, the granulated sludge 4 is transported to the downstream side only by the transport action of the circulating gas 6 in the state in which the granule sludge 4 is transported to the upstream side by the continuous screws 42, 43, 44 inside the main body 31. Therefore, the sludge having a large undried weight and low fluidity is not discharged outside the machine until the weight is reduced by sufficient drying, so that the dry granulated sludge 12 has substantially the same weight and particle size.
[0033]
The main body cylinder 31 has multi-layered flow paths 37, 38, 39, so that the structure itself has heat insulation, and the circulation flows from the inner layer flow path 37 to the middle layer flow path 38 and from the outer layer flow path 39 to the outside. Since the gas 6 is deprived of heat by heating the granulated sludge 4 and the temperature gradually decreases, the temperature in the outer layer tubular body 34 becomes lower, and there is no need to install a heat insulating material such as a caster as in the prior art. The weight of the device can be reduced.
[0034]
As shown in FIG. 3, the inner layer tubular body 32 can be formed only by a spiral channel 37 a in which the inner layer channel 37 is formed by a continuous screw 42 by inserting an inner cylinder 45 therein.
[0035]
In this case, the entire flow path of the main body cylinder 31 is a spiral flow path, and the granulated sludge 4 forms a fluidized bed of a solid-gas mixed phase with the circulating gas 6, and functions of both fluidized bed drying and airflow drying. Move downstream while embodying.
[0036]
【The invention's effect】
As described above, according to the present invention, the granulated product is moved to the downstream side by forming a solid-gas mixed phase fluidized bed by the upstream conveying action by the continuous screw and the downstream conveying action by the carrier gas. Therefore, it is possible to embody the effects of both fluidized bed drying and airflow drying, and the contact efficiency and drying efficiency of the carrier gas and the granulated material become very high, and the volume of the main body is reduced and the dryer is downsized. it can. In addition, the granulated product is transported to the downstream side only by the transport action by the carrier gas, so that the granulated product having a large undried weight and low fluidity is discharged out of the machine until the weight is reduced by sufficient drying. Since this is not done, the weight and particle size of the dried granulation can be made approximately equal. Since the structure itself has a heat insulating property by forming a multi-layer flow path in the main body, it is not necessary to install a heat insulating material such as a caster, and the weight of the apparatus can be reduced. Agitation of the granulated product with a scraping plate promotes formation of a fluidized bed and improves contact efficiency and drying efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a drying facility in an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a dryer in the same embodiment.
FIG. 3 is a cross-sectional view of a dryer according to another embodiment of the present invention.
FIG. 4 is a schematic view showing the shape of a continuous screw in the dryer of the present invention.
[Explanation of symbols]
4 Granulated sludge 5 Dryer 6 Circulating gas 12 Dry granulated sludge 31 Main body cylinder 32 Inner layer tubular cylinder 32a Scrape plate 33 Middle layer tubular cylinder 34 Outer layer tubular cylinder 35 Inlet port 36 Outlet port 37 Inner layer channel 37a Spiral channel 37b Straight channel 38 Middle layer channel 39 Outer layer channel 40, 41 Communication port 42, 43, 44 Continuous screw

Claims (3)

複数の管状胴を同心状に配置して本体胴を形成し、本体胴の一端に乾燥対象の造粒物および熱源のキャリアガスの導入口を接続するとともに、他端に乾燥造粒物およびキャリアガスの排出口を接続し、本体胴内に各管状胴で仕切って流路を多層状に形成し、各層流路を各管状胴の一端側もしくは他端側に形成する連通口において交互に接続して各層流路を一系統の流路に形成し、各管状胴内面に連続スクリューを配置して各層流路を螺旋状に形成するとともに、各管状胴内面に配置する連続スクリューを各層流路の上流側へ造粒物を移送する螺旋状に形成し、最内側の管状胴の内部に形成する最内層流路を連続スクリューで形成する螺旋状の流路と連続スクリューで囲まれた直線状の流路とで形成し、最内層流路に前記導入口を接続し、最外層流路に前記排出口を接続してなり、造粒物がキャリアガスによる流路の下流側への移動と連続スクリューによる上流側への移動とを反復的に繰り返しながら下流側へ流動しつつ、流動乾燥と気流乾燥を繰り返すことを特徴とする造粒乾燥機。A plurality of tubular cylinders are arranged concentrically to form a main body cylinder, and a granulated product to be dried and a carrier gas inlet of a heat source are connected to one end of the main body cylinder, and a dried granulated product and carrier are connected to the other end. Gas exhaust ports are connected, and each tubular cylinder is divided into main body cylinders to form flow paths in multiple layers, and each layer flow path is connected alternately at communication ports that are formed on one end side or the other end side of each tubular cylinder. Then, each layer channel is formed as a single channel, and a continuous screw is arranged on the inner surface of each tubular cylinder to form each layer channel in a spiral shape. It is formed in a spiral shape that transports the granulated material to the upstream side of the innermost, and the innermost layer flow channel formed inside the innermost tubular cylinder is formed by a continuous screw and a linear shape surrounded by the continuous screw The inlet is connected to the innermost layer channel, and the outermost channel is connected to the outermost channel. Constituted by connecting the outlet to the flow path, while flowing granulated material is to the downstream side while repeating the movement to the upstream side due to the movement and the continuous screw to the downstream side of the flow path by the carrier gas repeatedly, A granulation dryer characterized by repeating fluidized drying and airflow drying . 最内側の管状胴の内面に軸心方向に沿った直線状の掻き揚げ板を複数箇所に配置したことを特徴とする請求項1に記載の造粒乾燥機。  2. The granulator / dryer according to claim 1, wherein linear scraping plates along the axial direction are arranged at a plurality of locations on the inner surface of the innermost tubular cylinder. 最内側の管状胴の内部に内筒を挿入して最内層流路を連続スクリューで形成する螺旋状の流路のみで形成したことを特徴とする請求項1又は2に記載の造粒乾燥機。  The granulation dryer according to claim 1 or 2, wherein an inner cylinder is inserted into the innermost tubular cylinder and the innermost layer channel is formed only by a spiral channel formed by a continuous screw. .
JP2001106556A 2001-04-05 2001-04-05 Granulator dryer Expired - Fee Related JP3891789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106556A JP3891789B2 (en) 2001-04-05 2001-04-05 Granulator dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106556A JP3891789B2 (en) 2001-04-05 2001-04-05 Granulator dryer

Publications (2)

Publication Number Publication Date
JP2002310559A JP2002310559A (en) 2002-10-23
JP3891789B2 true JP3891789B2 (en) 2007-03-14

Family

ID=18959031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106556A Expired - Fee Related JP3891789B2 (en) 2001-04-05 2001-04-05 Granulator dryer

Country Status (1)

Country Link
JP (1) JP3891789B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108742B4 (en) * 2015-06-02 2019-04-25 Ecolohe Ag Process and apparatus for processing organic solid fuels, in particular woodchips
JP6591875B2 (en) * 2015-11-24 2019-10-16 三菱マテリアルテクノ株式会社 Hydrous sludge drying system
JP6645813B2 (en) * 2015-11-24 2020-02-14 三菱マテリアルテクノ株式会社 Dry sludge drying system

Also Published As

Publication number Publication date
JP2002310559A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
US7574816B2 (en) Counter flow cooling drier with integrated heat recovery
US20080184589A1 (en) High efficiency drier with heating and drying zones
US20080184587A1 (en) High efficiency drier with multi stage heating and drying zones
US6880263B2 (en) Fluid/solid interaction apparatus
AU664019B2 (en) Drying apparatus/method
CN102628642B (en) Indirect heating type dryer
CN101210679B (en) Gyration type sludge desiccation material-feeding device for sludge burning furnace
JP3891789B2 (en) Granulator dryer
KR101598505B1 (en) Drying apparatus
US3175302A (en) Gravity-type heat exchanger for treating particulate solid material
KR101932677B1 (en) A continuous dryer for sludge
CN115745356A (en) Sludge drying system and equipment utilizing waste heat of thermal power plant
CN106766810A (en) A kind of drying machine
JP3145857U (en) High speed drying system
JPS58115049A (en) Method and device for drying cold wet gypsum
EP1409938A1 (en) Fluid/solid interaction apparatus
SU1185039A1 (en) Recirculated dryer
CN217560303U (en) Air energy double-chain plate drying equipment capable of continuously feeding and discharging materials
KR102001847B1 (en) Drying device for waste disposal
JP2005238016A (en) Multistage drying apparatus
WO2008013974A2 (en) Heating media regenerators for high efficiency driers
AU2002311092B2 (en) Fluid/solid interaction apparatus
JPS6138795B2 (en)
KR20020088298A (en) A sludge dryer
JPS6234989Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees