JP3891727B2 - End mill - Google Patents

End mill Download PDF

Info

Publication number
JP3891727B2
JP3891727B2 JP14927799A JP14927799A JP3891727B2 JP 3891727 B2 JP3891727 B2 JP 3891727B2 JP 14927799 A JP14927799 A JP 14927799A JP 14927799 A JP14927799 A JP 14927799A JP 3891727 B2 JP3891727 B2 JP 3891727B2
Authority
JP
Japan
Prior art keywords
cutting edge
outer peripheral
axis
peripheral cutting
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14927799A
Other languages
Japanese (ja)
Other versions
JP2000334615A (en
Inventor
一公 岡田
英明 今泉
益生 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP14927799A priority Critical patent/JP3891727B2/en
Publication of JP2000334615A publication Critical patent/JP2000334615A/en
Application granted granted Critical
Publication of JP3891727B2 publication Critical patent/JP3891727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft

Description

【0001】
【発明の属する技術分野】
本発明はエンドミルに係り、特に、軸方向へ段階的に移動させながら軸心と直角方向へ切削加工を行ってポケット穴や立ち壁などを切削加工するステップ加工に好適に用いられるエンドミルに関するものである。
【0002】
【従来の技術】
比較的深いポケット穴や高さが高い立ち壁などを切削加工する際に、刃長の長いロング刃のエンドミルを用いると、剛性が低下したり切削抵抗が大きくなったりするため、加工精度が低下したり加工条件が制限されたりする問題がある。このため、刃長の短いエンドミルを用いて、軸方向へ段階的に移動させながら軸心と直角方向へ切削加工を行い、何段もつなぎ合わせて目的の高さを切削加工するステップ加工が提案されている。
【0003】
図2は、このようなステップ加工に用いられるエンドミルの一例で、このエンドミル100は、シャンク102および切れ刃部104を軸方向に連続して一体に備えているとともに、切れ刃部104には、シャンク102よりも径寸法が大きいとともに軸心Oまわりに捩じれた複数の外周切れ刃106が設けられている。また、切れ刃部104の先端には、外周切れ刃106に連続して底刃108が設けられている。図2の軸心Oよりも右側半分は、軸心Oに対して直角な方向から見た正面図で、左側半分は切れ刃部104の外周切れ刃106を軸心Oと平行に示した断面図であり、その左側半分の外周形状は切れ刃部104の回転軌跡形状104R、すなわち切削形状と同じである。
【0004】
図3は、図2のエンドミル100を用いてワーク110の立ち壁112をステップ加工する場合の一例を説明する図で、(a) の第1工程では略垂直なエンドミル100を軸心まわりに回転させつつ軸心と直角方向、具体的には立ち壁112と平行で且つ略水平な方向へ平行移動させて第1ステップ加工面114aを切削加工し、(b) の第2工程では、エンドミル100を軸方向の先端側へ所定寸法だけずらして同じく軸心まわりに回転させつつ軸心と直角方向、具体的には立ち壁112と平行で且つ略水平な方向へ平行移動させて第2ステップ加工面114bを切削加工する。このようなステップ加工を繰り返すことにより、目的とする高さ寸法の垂直面を切削加工できる。なお、図3とは逆に下から上方へエンドミル100を段階的に移動させつつステップ加工を行うことも勿論可能である。
【0005】
【発明が解決しようとする課題】
しかしながら、切削加工時には工具の撓み変形で切れ刃部104の後端104a側がワーク110側へ食い込むため、第1ステップ加工面114aと第2ステップ加工面114bとの境界116に段差が生じる。加工条件などにより段差は小さくなるが、数μm程度(例えば1〜2μm)の段差が生じることは避けられず、手で触っただけでは分からなくても、視覚的に境界116部分に筋ができてしまうのである。特開平6−8029号公報には、切れ刃部104の後端104aに、外周切れ刃106に連続して所定角度で傾斜した後方切削刃を設けたエンドミルが記載されているが、傾斜角度が10°程度でもコーナ(外周切れ刃と接続する角部)が角張っていると、視覚的に筋が付いてしまう。また、この後方切削刃は、単にテーパ面まで溝を形成してすくい面および切れ刃を設けただけであり、逃げ面が設けられていないため、加工面粗さが悪く、この点でも他の加工面部分と反射特性が相違して視覚的な筋が生じ易い。
【0006】
本発明は以上の事情を背景として為されたもので、その目的とするところは、エンドミルを軸方向へ段階的に移動させながらステップ加工を行う場合に加工面の境界に視覚的な筋が発生することを防止することにある。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、第1発明は、円柱形状の軸部と、その軸部の一端に連続して設けられるとともにその軸部よりも大きい一定の外径寸法の外周切れ刃を備えている切れ刃部と、を同心に一体に有し、軸方向へ段階的に移動させながら軸心と直角方向へ切削加工を行うステップ加工に用いられるエンドミルにおいて、(a) 前記外周切れ刃の前記軸部側の端部には、軸心まわりの回転軌跡のその軸心を含む断面形状において、その外周切れ刃の回転軌跡であるその軸心と平行な直線からその軸心側へ向かう円弧を形成するとともに、その直線と繋がる接続点におけるその円弧の接線がその直線と一致するようにその直線に滑らかに接続される後端切れ刃が、その外周切れ刃に連続して設けられているとともに、(b) その後端切れ刃には、刃先から周方向へ向かうに従って軸方向の先端側へ逃げる逃げ面が設けられていることを特徴とする。
【0008】
第2発明は、第1発明のエンドミルにおいて、前記外周切れ刃は軸心まわりに捩じれたねじれ刃で、その外周切れ刃の刃数をN、その外周切れ刃の外径寸法が等しい実質切削長さ(軸方向の長さ)をB、その外周切れ刃の外径をD、その外周切れ刃のねじれ角をβとした時、次式(1) で表されるnが自然数であることを特徴とする。
n=B・N・tan β/(π・D) ・・・(1)
【0009】
【発明の効果】
このようなエンドミルにおいては、切れ刃部の後端の後端切れ刃が、軸心まわりの回転軌跡の軸心を含む断面形状において外周切れ刃の回転軌跡である軸心と平行な直線からその軸心側へ向かう円弧を形成するとともに、その直線と繋がる接続点におけるその円弧の接線がその直線と一致するようにその直線に滑らかに接続されるように設けられているため、ステップ加工を行った場合に加工面の境界部分に生じる段差の面形状が上記円弧に対応する湾曲面になり、面の向きの急な変化が緩和される。また、後端切れ刃には軸方向の逃げ面が設けられているため加工面粗さが向上し、外周切れ刃によって加工される他の加工面部分との反射特性の相違が小さくなる。このように、段差部分の面の向きの急な変化が緩和され、且つその段差部分の面粗さが向上することにより、段差部分に生じる視覚的な筋の発生が抑制される。
【0010】
また、(1) 式のnが自然数になるように外周切れ刃の各部の諸元N、B、D、βが定められる第2発明では、実質切削長さBの範囲内において軸方向に存在する外周切れ刃の刃数が軸心まわりのどの位置でも自然数nになるため、軸心まわりの回転に拘らず切削に関与する外周切れ刃の刃数が一定(=n)になり、切削抵抗(負荷)の変動が抑制されて軸部(回転ホルダから切れ刃部までの長さ)が長い場合でも高い加工精度が得られるようになる。すなわち、上記ステップ加工を行う場合、工作機械のホルダから切れ刃部までの長さ(軸部)が長くなるため、切削抵抗の変動で切れ刃部が振れてビビリ振動が生じ易いが、切削抵抗の変動が抑制されることから切れ刃部の振れが軽減されるのである。
【0011】
なお、自然数は1以上の整数であるが、例えば実際の切削加工は後端切れ刃の一部を含んで行われるし、ステップ加工では軸方向にオーバーラップして切削加工が行われるため、厳密にnが自然数となるように設定する必要はない。
【0012】
【発明の実施の形態】
ここで、本発明のエンドミルは、軸方向へ段階的に移動させながらステップ加工を行う場合に、加工面の境界に視覚的な筋が発生し難いといった所望の効果が得られるが、後端切れ刃が設けられていることから、例えばエンドミルを軸方向の後端側(シャンク側)へ連続的に移動させつつ所定の内周面に沿って移動させてポケット穴をヘリカル加工することもできるなど、通常のエンドミルの使用形態を含めて種々の態様で使用できる。
【0013】
円柱形状の軸部は、主にシャンクを想定したものであるが、シャンクと切れ刃部との間に首部が設けられる場合は、外周切れ刃は少なくとも首部よりも大径であれば良い。
【0014】
後端切れ刃の回転軌跡の軸心を含む断面形状の円弧は、例えば一定の曲率中心を中心とする一定の曲率半径の円弧であっても良いが、楕円の円弧のように連続的に変化しているものでも良い。円弧の曲率半径は、視覚的な筋の発生を防止する上で0.01mm以上が良く、0.02mm以上が望ましい。また、軸部と外周切れ刃との直径寸法の差Δdに対して、例えば一定の曲率中心を中心として一定の曲率半径Δd/2で円弧が形成されるようにすれば、切れ刃部の後端に1/4円弧が形成される。Δd/2以上の曲率半径で円弧が形成されるようにしても良い。なお、外周切れ刃と底刃とのコーナにも、必要に応じて所定の曲率半径のRを設けることができることは勿論である。
【0015】
後端切れ刃の逃げ面は、軸方向の先端側へ逃げているだけでなく、径方向にも所定の逃げを設けることが望ましい。また、前記(1) 式において、刃数Nおよび自然数nは何れも2以上が望ましい。
【0016】
次に、本発明の実施例を図面を参照しつつ詳細に説明する。
図1の(a) は、本発明の一実施例であるエンドミル10を軸心Oと直角方向から見た図で、シャンク12の一部を切り欠いた正面図であり、(b) は先端側から見た底面図で、(c) は軸心Oの左側半分が切れ刃部14の回転軌跡形状(左外周形状は軸心Oを含む断面形状と同じ)14Rを示す図で、右側半分が外周切れ刃16を軸心Oと平行に図示した断面形状を示す図である。シャンク12は円柱形状で、その一端に連続して切れ刃部14がシャンク12と同心に一体に設けられている。切れ刃部14には、シャンク12よりも径寸法が大きい一定の外径寸法で軸心Oまわりに捩じれた複数(本実施例では4枚)の外周切れ刃16が設けられているとともに、切れ刃部14の先端には、それ等の外周切れ刃16に連続して底刃18が設けられている。また、切れ刃部14の後端、すなわちシャンク12側の端部には、外周切れ刃16に連続して後端切れ刃20が設けられている。外周切れ刃16および後端切れ刃20は、共通のねじれ溝22に沿って設けられており、底刃18は、ねじれ溝22の先端に設けられたギャッシュ24に沿って設けられている。なお、シャンク12は軸部に相当する。
【0017】
ここで、上記外周切れ刃16の刃数をN、外周切れ刃16の外径寸法が等しい実質切削長さ(軸方向長さ)をB、外周切れ刃16の外径をD、外周切れ刃16のねじれ角をβとした時、それ等の諸元は前記(1) 式で表されるnが自然数となるように設定されている。本実施例では、n=2になるように、N=4、B≒20mm、D≒14mm、β≒48°に設定されている。
【0018】
一方、前記後端切れ刃20は、図1(c) の左側半分に示す切れ刃部14の回転軌跡形状(断面形状)14Rにおいて、曲率中心が一定で曲率半径が1mmの円弧20Rが形成されるように設けられており、且つ、その円弧20Rの曲率中心は、外周切れ刃16の回転軌跡である軸心Oと平行な直線に対して、その直線との接続点における円弧20Rの接線がその直線と一致するように滑らかに接続され、軸心O側へ向かって湾曲するように設定されている。本実施例ではシャンク12と切れ刃部14との直径寸法の差Δdが2mmで、断面形状における段差Δd/2=1mmであり、後端切れ刃20の回転軌跡断面形状における円弧20Rの曲率半径と同じであることから、回転軌跡形状14Rの後端に半径1mmの1/4円弧が形成される。
【0019】
後端切れ刃20にはまた、刃先から周方向へ向かうに従って軸方向の先端側へ逃げる逃げ面28が設けられている。この逃げ面28は、軸方向の先端側へ逃げているだけでなく、径方向にも所定の逃げが設けられている。
【0020】
また、外周切れ刃16と底刃18とのコーナ26には、図1(c) の左側半分に示す切れ刃部14の回転軌跡形状(断面形状)14Rにおいて、曲率中心が一定で曲率半径が1mmの円弧26Rが形成されるように、R面取りが施されている。曲率中心は、R面取りの円弧26Rが外周切れ刃16の回転軌跡である軸心Oと平行な直線に対して接線で繋がるように設定されている。なお、回転軌跡形状14R(円弧20R、26Rを含む)は、切れ刃部14の切削形状を表している。
【0021】
このような本実施例のエンドミル10においては、切れ刃部14の後端の後端切れ刃20が、軸心Oまわりの回転軌跡の軸心Oを含む断面形状(14R)において外周切れ刃16の回転軌跡である直線からその軸心O側へ向かう円弧20Rを形成するとともに、その直線と繋がる接続点における円弧20Rの接線がその直線と一致するようにその直線に滑らかに接続されるように設けられているため、例えば図3に示すようなステップ加工を行った場合に加工面114aと114bとの境界部分116に生じる段差の面形状が上記円弧20Rに対応する湾曲面になり、面の向きの急な変化が緩和される。また、後端切れ刃20には逃げ面28が設けられているため加工面粗さが向上し、外周切れ刃16によって加工される他の加工面部分との反射特性の相違が小さくなる。このように、段差部分(境界部分)116の面の向きの急な変化が緩和され、且つその段差部分116の面粗さが向上することにより、段差部分116に生じる視覚的な筋の発生が抑制され、優れた加工面品質が得られるようになる。
【0022】
また、前記(1) 式のn=2となるように外周切れ刃16の各部の諸元N、B、D、βが定められているため、実質切削長さBの範囲内において軸方向に存在する外周切れ刃16の刃数が軸心Oまわりのどの位置でもnすなわち「2」であるため、軸心Oまわりの回転に拘らず切削に関与する外周切れ刃16の刃数が一定(n=2)になり、切削抵抗(負荷)の変動が抑制されてシャンク12(厳密にはホルダから切れ刃部までの長さ)が長い場合でも高い加工精度(面粗さなど)が得られるようになる。すなわち、上記ステップ加工を行う場合、工作機械のホルダから切れ刃部14までの長さが長くなるため、切削抵抗の変動で切れ刃部14が振れてビビリ振動が生じ易いが、切削抵抗の変動が抑制されることから切れ刃部14の振れやビビリ振動が軽減されるのである。
【0023】
なお、図3とは逆に、エンドミル10を軸方向のシャンク12側へ段階的に移動させながらステップ加工を行う場合も同様の効果が得られる。また、図3は立ち壁112を加工する場合であるが、ポケット穴の内周面加工などにもステップ加工を適用できる。
【0024】
また、後端切れ刃20が設けられていることから、例えばエンドミル10を軸方向の後端側(シャンク12側)へ連続的に移動させつつ所定の内周面に沿って移動させてポケット穴をヘリカル加工することもできるなど、通常のエンドミルの使用形態を含めて種々の態様で使用できる。
【0025】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるエンドミルを説明する図である。
【図2】従来のエンドミルの一例を示す一部を切り欠いた図である。
【図3】従来のエンドミルを用いて立ち壁をステップ加工する場合の一例を説明する図である。
【符号の説明】
10:エンドミル 12:シャンク(軸部) 14:切れ刃部 16:外周切れ刃 20:後端切れ刃 28:逃げ面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an end mill, and more particularly, to an end mill that is suitably used for step processing in which pocket holes and standing walls are cut by cutting in a direction perpendicular to the axis while moving stepwise in the axial direction. is there.
[0002]
[Prior art]
When cutting a relatively deep pocket hole or standing wall with a high height, using a long blade end mill with a long blade length decreases the rigidity and increases the cutting resistance. There is a problem that processing conditions are limited. For this reason, using an end mill with a short blade length, a step process is proposed in which cutting is performed in a direction perpendicular to the axis while moving stepwise in the axial direction, and the desired height is cut by joining several steps. Has been.
[0003]
FIG. 2 shows an example of an end mill used for such step processing. The end mill 100 includes a shank 102 and a cutting edge portion 104 that are continuously integrated in the axial direction, and the cutting edge portion 104 includes: A plurality of outer peripheral cutting edges 106 that are larger in diameter than the shank 102 and twisted around the axis O are provided. Further, a bottom blade 108 is provided at the tip of the cutting edge portion 104 continuously to the outer peripheral cutting edge 106. The right half of the axis O in FIG. 2 is a front view seen from the direction perpendicular to the axis O, and the left half is a cross section of the outer peripheral cutting edge 106 of the cutting edge portion 104 parallel to the axis O. It is a figure and the outer periphery shape of the left half is the same as the rotation locus | trajectory shape 104R of the cutting-blade part 104, ie, the cutting shape.
[0004]
FIG. 3 is a diagram for explaining an example of the case where the standing wall 112 of the workpiece 110 is stepped using the end mill 100 of FIG. 2. In the first step (a), the substantially vertical end mill 100 is rotated around the axis. In the second step (b), the end mill 100 is cut by moving the first step processed surface 114a in a direction perpendicular to the axis, specifically, parallel to the standing wall 112 and in a substantially horizontal direction. The second step machining is performed by shifting the axis to the tip end side in the axial direction by a predetermined dimension and moving it around the axis in the direction perpendicular to the axis, specifically, parallel to the standing wall 112 and in a substantially horizontal direction. The surface 114b is cut. By repeating such step processing, a vertical surface having a target height can be cut. In addition, it is of course possible to perform step machining while moving the end mill 100 stepwise from the bottom to the top, contrary to FIG.
[0005]
[Problems to be solved by the invention]
However, since the rear end 104a side of the cutting edge portion 104 bites into the workpiece 110 due to bending deformation of the tool during cutting, a step is generated at the boundary 116 between the first step processing surface 114a and the second step processing surface 114b. Although the level difference becomes small depending on the processing conditions, it is inevitable that a level difference of about several μm (for example, 1 to 2 μm) will occur. It will end up. Japanese Patent Laid-Open No. 6-8029 describes an end mill in which a rear cutting blade that is inclined at a predetermined angle continuously to the outer peripheral cutting edge 106 is provided at the rear end 104a of the cutting edge portion 104. If the corner (corner portion connected to the outer peripheral cutting edge) is angular even at about 10 °, a streak is visually added. In addition, this rear cutting blade is merely provided with a rake face and a cutting edge by forming a groove up to a taper surface, and is not provided with a flank surface. Visual streaks are likely to occur due to the difference between the processed surface portion and the reflection characteristics.
[0006]
The present invention has been made against the background of the above circumstances. The purpose of the present invention is to generate visual streaks at the boundary of the machining surface when performing step machining while moving the end mill stepwise in the axial direction. It is to prevent that.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the first invention includes a cylindrical shaft portion and an outer peripheral cutting edge that is continuously provided at one end of the shaft portion and has a constant outer diameter larger than the shaft portion. In an end mill used for step processing that has a cutting edge portion that is concentrically integrated with each other and performs cutting in a direction perpendicular to the axis while moving stepwise in the axial direction , (a) At the end on the shaft side, in a cross-sectional shape including the axis of the rotation trajectory around the axis, an arc from the straight line parallel to the axis that is the rotation trajectory of the outer peripheral cutting edge toward the axis A rear edge cutting edge that is smoothly connected to the straight line so that the tangent of the arc at the connection point connected to the straight line coincides with the straight line is formed continuously with the outer peripheral cutting edge, (b) After that Wherein the flank escaping in the axial direction of the distal end side toward the cutting edge in the circumferential direction is provided.
[0008]
According to a second aspect of the present invention, in the end mill of the first aspect, the outer peripheral cutting edge is a torsional blade twisted around an axis, the number of the outer peripheral cutting edges is N, and the outer cutting edge is substantially equal in outer diameter. When the length (axial length) is B, the outer diameter of the outer peripheral cutting edge is D, and the torsion angle of the outer peripheral cutting edge is β, n represented by the following equation (1) is a natural number. Features.
n = B · N · tan β / (π · D) (1)
[0009]
【The invention's effect】
In such an end mill, rear cutting edge of the rear end of the cutting edge portion, the sectional shape including the axis of rotation locus around the axis, from its axial center line parallel a rotational locus of the peripheral cutting edge A circular arc heading toward the axial center is formed, and it is provided so that the tangent of the arc at the connection point connected to the straight line is smoothly connected to the straight line so that it matches the straight line. In this case, the surface shape of the step generated at the boundary portion of the processed surface becomes a curved surface corresponding to the arc, and a sudden change in the direction of the surface is alleviated. Further, since the rear end cutting edge is provided with an axial flank, the machining surface roughness is improved, and the difference in reflection characteristics from other machining surface portions machined by the outer circumferential cutting edge is reduced. In this way, a sudden change in the direction of the surface of the stepped portion is alleviated and the surface roughness of the stepped portion is improved, thereby suppressing the occurrence of visual streaks occurring in the stepped portion.
[0010]
Further, in the second invention in which the specifications N, B, D, and β of each part of the outer peripheral cutting edge are determined so that n in the expression (1) is a natural number , the axial cutting direction exists within the range of the substantial cutting length B. Since the number of outer peripheral cutting edges is a natural number n at any position around the axis, the number of outer peripheral cutting edges involved in cutting is constant (= n) regardless of the rotation around the axis, and the cutting resistance Even when the fluctuation of (load) is suppressed and the shaft portion (length from the rotary holder to the cutting edge portion) is long, high machining accuracy can be obtained. That is, when performing the above step processing, since the length (shaft portion) from the holder of the machine tool to the cutting edge becomes long, the cutting edge is likely to shake due to fluctuations in cutting resistance, but chatter vibration is likely to occur. This suppresses fluctuations in the cutting edge, thereby reducing the fluctuation of the cutting edge portion.
[0011]
Although the natural number is an integer of 1 or more , for example, actual cutting is performed including a part of the rear end cutting edge, and in step processing, cutting is performed by overlapping in the axial direction. n it is necessary is not the name that is set to be a natural number.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Here, when the end mill of the present invention performs step machining while moving it stepwise in the axial direction, the desired effect that visual streaks hardly occur at the boundary of the machining surface is obtained. Therefore, for example, the end mill can be moved along a predetermined inner peripheral surface while continuously moving the rear end side (shank side) in the axial direction, and the pocket hole can be helically processed. It can be used in various modes including the usage form of a normal end mill.
[0013]
The cylindrical shaft portion mainly assumes a shank. However, when a neck portion is provided between the shank and the cutting edge portion, the outer peripheral cutting edge may be at least larger in diameter than the neck portion.
[0014]
The circular arc of the cross-sectional shape including the axis of the rotation trajectory of the trailing edge cutting edge may be, for example, an arc having a constant radius of curvature centered on a constant curvature center, but continuously changes like an elliptical arc. It may be what you have. The radius of curvature of the arc is preferably 0.01 mm or more and preferably 0.02 mm or more in order to prevent the occurrence of visual streaks. Further, with respect to the difference Δd in the diameter dimension between the shaft portion and the outer peripheral cutting edge, for example, if an arc is formed with a constant curvature radius Δd / 2 around the constant curvature center, A quarter arc is formed at the end. An arc may be formed with a curvature radius of Δd / 2 or more. Of course, the corner of the outer peripheral cutting edge and the bottom cutting edge can be provided with a radius R of a predetermined curvature as required.
[0015]
It is desirable that the flank face of the rear end cutting edge not only escapes to the tip side in the axial direction but also provides a predetermined relief in the radial direction. In the above equation (1), the number of blades N and the natural number n are both preferably 2 or more.
[0016]
Next, embodiments of the present invention will be described in detail with reference to the drawings.
1A is a view of an end mill 10 according to an embodiment of the present invention as viewed from a direction perpendicular to the axis O, and is a front view in which a part of the shank 12 is cut away. FIG. (C) is a bottom view as seen from the side, and the left half of the axis O shows the rotational trajectory shape 14R of the cutting edge portion 14 (the left outer peripheral shape is the same as the cross-sectional shape including the axis O), and the right half FIG. 3 is a diagram showing a cross-sectional shape illustrating the outer peripheral cutting edge 16 in parallel with the axis O. The shank 12 has a cylindrical shape, and a cutting edge portion 14 is provided concentrically with the shank 12 continuously at one end thereof. The cutting edge portion 14 is provided with a plurality of (four in this embodiment) outer peripheral cutting edges 16 that are twisted around the axis O with a constant outer diameter larger than that of the shank 12. A bottom blade 18 is provided at the tip of the blade portion 14 continuously to the outer peripheral cutting blade 16. Further, a rear end cutting edge 20 is provided continuously to the outer peripheral cutting edge 16 at the rear end of the cutting edge portion 14, that is, the end portion on the shank 12 side. The outer peripheral cutting edge 16 and the rear end cutting edge 20 are provided along a common twist groove 22, and the bottom blade 18 is provided along a gash 24 provided at the tip of the twist groove 22. The shank 12 corresponds to a shaft portion.
[0017]
Here, the number of outer peripheral cutting edges 16 is N, the substantial cutting length (axial length) of the outer peripheral cutting edges 16 is equal to B, the outer diameter of the outer peripheral cutting edges 16 is D, and the outer peripheral cutting edges are the same. When the twist angle of 16 is β, these specifications are set so that n represented by the above equation (1) is a natural number. In this embodiment, N = 4, B≈20 mm, D≈14 mm, and β≈48 ° are set so that n = 2.
[0018]
On the other hand, the rear end cutting edge 20 has an arc 20R having a constant curvature center and a curvature radius of 1 mm in the rotation locus shape (cross-sectional shape) 14R of the cutting edge portion 14 shown in the left half of FIG. 1 (c). And the center of curvature of the arc 20R is relative to a straight line parallel to the axis O which is the rotation trajectory of the outer peripheral cutting edge 16, and the tangent of the arc 20R at the connection point with the straight line is It is set so as to be smoothly connected so as to coincide with the straight line and bend toward the axis O side. In this embodiment, the difference Δd in the diameter between the shank 12 and the cutting edge 14 is 2 mm, the step Δd / 2 in the cross-sectional shape is 1 mm, and the radius of curvature of the arc 20R in the cross-sectional shape of the rotation trajectory of the trailing edge cutting edge 20 Since they are the same, a quarter arc having a radius of 1 mm is formed at the rear end of the rotation locus shape 14R.
[0019]
The rear end cutting edge 20 is also provided with a flank 28 that escapes toward the tip end in the axial direction from the cutting edge toward the circumferential direction. The flank 28 not only escapes toward the tip end in the axial direction, but also has a predetermined flank in the radial direction.
[0020]
Further, the corner 26 of the outer peripheral cutting edge 16 and the bottom cutting edge 18 has a constant curvature center and a radius of curvature in the rotation locus shape (cross-sectional shape) 14R of the cutting edge portion 14 shown in the left half of FIG. R chamfering is performed so that a 1 mm arc 26R is formed. The center of curvature is set so that the R chamfered arc 26R is tangent to a straight line parallel to the axis O, which is the rotation locus of the outer peripheral cutting edge 16. The rotation locus shape 14R (including the arcs 20R and 26R) represents the cutting shape of the cutting edge portion 14.
[0021]
In such an end mill 10 of the present embodiment, the outer peripheral cutting edge 16 has a cross-sectional shape (14R) in which the rear end cutting edge 20 of the rear end of the cutting edge portion 14 includes the axis O of the rotation locus around the axis O. An arc 20R is formed from the straight line that is the rotation trajectory to the axis O side, and is smoothly connected to the straight line so that the tangent of the arc 20R at the connection point connected to the straight line coincides with the straight line. For example, when step machining as shown in FIG. 3 is performed, the surface shape of the step generated at the boundary portion 116 between the machining surfaces 114a and 114b becomes a curved surface corresponding to the arc 20R, Sudden changes in direction are mitigated. Further, since the rear end cutting edge 20 is provided with the flank 28, the machining surface roughness is improved, and the difference in reflection characteristics from other machining surface portions machined by the outer circumferential cutting edge 16 is reduced. In this way, a sudden change in the direction of the surface of the stepped portion (boundary portion) 116 is alleviated, and the surface roughness of the stepped portion 116 is improved, thereby generating visual streaks generated in the stepped portion 116. Suppressed and excellent surface quality can be obtained.
[0022]
In addition, since the specifications N, B, D, and β of each part of the outer peripheral cutting edge 16 are determined so that n = 2 in the equation (1), the axial direction within the range of the substantial cutting length B is achieved. Since the number of the outer peripheral cutting edges 16 existing is n, that is, “2” at any position around the axis O, the number of the outer peripheral cutting edges 16 involved in the cutting is constant regardless of the rotation around the axis O ( n = 2), variation in cutting resistance (load) is suppressed, and even when the shank 12 (strictly, the length from the holder to the cutting edge) is long, high machining accuracy (surface roughness, etc.) can be obtained. It becomes like this. That is, when performing the above step processing, since the length from the holder of the machine tool to the cutting edge portion 14 becomes long, the cutting edge portion 14 is likely to shake due to fluctuations in cutting resistance, but chatter vibration is likely to occur. As a result, vibration of the cutting edge portion 14 and chatter vibration are reduced.
[0023]
In contrast to FIG. 3, the same effect can be obtained when step machining is performed while the end mill 10 is moved stepwise toward the shank 12 in the axial direction. Further, FIG. 3 shows a case where the standing wall 112 is processed, but step processing can also be applied to processing of the inner peripheral surface of the pocket hole.
[0024]
Further, since the rear end cutting edge 20 is provided, for example, the end mill 10 is moved along a predetermined inner peripheral surface while continuously moving the end mill 10 toward the rear end side (shank 12 side) in the axial direction, thereby forming the pocket hole. It can be used in various forms including normal usage forms of end mills, such as helical machining.
[0025]
As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention implements in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. Can do.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an end mill according to an embodiment of the present invention.
FIG. 2 is a partially cutaway view showing an example of a conventional end mill.
FIG. 3 is a diagram for explaining an example when a standing wall is stepped using a conventional end mill.
[Explanation of symbols]
10: End mill 12: Shank (shaft part) 14: Cutting edge part 16: Outer peripheral cutting edge 20: Rear edge cutting edge 28: Flank

Claims (2)

円柱形状の軸部と、該軸部の一端に連続して設けられるとともに該軸部よりも大きい一定の外径寸法の外周切れ刃を備えている切れ刃部と、を同心に一体に有し、軸方向へ段階的に移動させながら軸心と直角方向へ切削加工を行うステップ加工に用いられるエンドミルにおいて、
前記外周切れ刃の前記軸部側の端部には、軸心まわりの回転軌跡の該軸心を含む断面形状において、該外周切れ刃の回転軌跡である該軸心と平行な直線から該軸心側へ向かう円弧を形成するとともに、該直線と繋がる接続点における該円弧の接線が該直線と一致するように該直線に滑らかに接続される後端切れ刃が、該外周切れ刃に連続して設けられているとともに、
該後端切れ刃には、刃先から周方向へ向かうに従って軸方向の先端側へ逃げる逃げ面が設けられている
ことを特徴とするエンドミル。
A cylindrical shaft portion and a cutting edge portion provided continuously with one end of the shaft portion and having an outer peripheral cutting edge having a constant outer diameter larger than the shaft portion are integrally provided concentrically. In an end mill used for step processing, in which cutting is performed in a direction perpendicular to the axis while moving stepwise in the axial direction ,
At the end of the outer peripheral cutting edge on the shaft side, in a cross-sectional shape including the axis of the rotation trajectory around the axis, the axis extends from a straight line parallel to the axis that is the rotation trajectory of the outer peripheral cutting edge. A rear end cutting edge that forms an arc toward the center side and is smoothly connected to the straight line so that a tangent of the arc at a connection point connected to the straight line coincides with the straight line is continuously connected to the outer peripheral cutting edge As well as
The end mill is characterized in that the rear end cutting edge is provided with a flank that escapes toward the tip end in the axial direction as it goes in the circumferential direction from the cutting edge.
前記外周切れ刃は軸心まわりに捩じれたねじれ刃で、該外周切れ刃の刃数をN、該外周切れ刃の外径寸法が等しい実質切削長さをB、該外周切れ刃の外径をD、該外周切れ刃のねじれ角をβとした時、次式で表されるnが自然数である
n=B・N・tan β/(π・D)
ことを特徴とする請求項1に記載のエンドミル。
The outer peripheral cutting edge is a torsional blade twisted around an axis, wherein the number of outer peripheral cutting edges is N, the substantial cutting length is equal to the outer diameter of the outer peripheral cutting edge, and the outer diameter of the outer peripheral cutting edge is D, where the twist angle of the outer peripheral cutting edge is β, n represented by the following equation is a natural number n = B · N · tan β / (π · D)
The end mill according to claim 1.
JP14927799A 1999-05-28 1999-05-28 End mill Expired - Lifetime JP3891727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14927799A JP3891727B2 (en) 1999-05-28 1999-05-28 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14927799A JP3891727B2 (en) 1999-05-28 1999-05-28 End mill

Publications (2)

Publication Number Publication Date
JP2000334615A JP2000334615A (en) 2000-12-05
JP3891727B2 true JP3891727B2 (en) 2007-03-14

Family

ID=15471705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14927799A Expired - Lifetime JP3891727B2 (en) 1999-05-28 1999-05-28 End mill

Country Status (1)

Country Link
JP (1) JP3891727B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431538B1 (en) * 2007-04-12 2008-10-07 Kennametal Inc. End mill for orbital drilling of fiber reinforced plastic materials
DE102012009328B3 (en) * 2012-03-21 2013-08-14 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Fräsbohrwerkzeug
WO2019151169A1 (en) 2018-02-02 2019-08-08 三菱日立ツール株式会社 End mill and machining method
CN110497005B (en) * 2019-08-29 2020-07-10 哈尔滨理工大学 Efficient hole drilling tool and inclined-angle hole drilling method for carbon fiber composite material

Also Published As

Publication number Publication date
JP2000334615A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US6846135B2 (en) Radius end mill having radius edge enhanced in resistance to chipping and fracture
US6923602B2 (en) Drill having construction for reducing thrust load in drilling operation, and method of manufacturing the drill
JP3874774B2 (en) Cast hole drill
JP5731102B2 (en) Radius end mill
WO2010038279A1 (en) Drill
JP2013176842A (en) Rotary cutting tool
JP2008279547A (en) Groove working method and formed rotary cutting tool
JP6221660B2 (en) Roughing end mill
US6715966B2 (en) Rotary cutting tool having corrugated cutting edge portion whose pitch and/or depth are/is increased with increase in diameter of body of the cutting tool
WO2010055561A1 (en) Throw-away cutting rotary tool
WO2016158602A1 (en) Roughing end mill
JP4125909B2 (en) Square end mill
JP3891727B2 (en) End mill
WO2019151169A1 (en) End mill and machining method
WO2023243004A1 (en) Drill
JP3058856B2 (en) Rotary cutting tool for grooving
JP2017164836A (en) drill
JP2003094226A (en) End mill having taper portion
JP2019177474A (en) Roughing end mill
JP7417112B2 (en) end mill
JP2003039220A (en) Boring tool
JP6013641B1 (en) Reamer
JP4206778B2 (en) Center drill
JP7303464B2 (en) end mill
WO2021245840A1 (en) Drill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term