JP3891451B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP3891451B2
JP3891451B2 JP10888096A JP10888096A JP3891451B2 JP 3891451 B2 JP3891451 B2 JP 3891451B2 JP 10888096 A JP10888096 A JP 10888096A JP 10888096 A JP10888096 A JP 10888096A JP 3891451 B2 JP3891451 B2 JP 3891451B2
Authority
JP
Japan
Prior art keywords
ignition
cylinder
fluctuation
rotational
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10888096A
Other languages
Japanese (ja)
Other versions
JPH09291872A (en
Inventor
功 菅野
Original Assignee
ヤマハマリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハマリン株式会社 filed Critical ヤマハマリン株式会社
Priority to JP10888096A priority Critical patent/JP3891451B2/en
Publication of JPH09291872A publication Critical patent/JPH09291872A/en
Application granted granted Critical
Publication of JP3891451B2 publication Critical patent/JP3891451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、機関の回転変動を抑える内燃機関の制御装置に関する。
【0002】
【従来の技術】
例えば、船舶や車両等に搭載される内燃機関では、回転変動が大きいと、船舶や車両等の振動が大きくなる。このため、例えばバランサ等を設けて内燃機関の回転変動を軽減するものがある。
【0003】
【発明が解決しようとする課題】
ところで、内燃機関の回転変動は、圧縮・爆発行程に伴い生じ、しかも一定の回転数において、回転変動の最大値と最小値は、圧縮・爆発行程によって決定され、かつ絶対クランク角は一定である。
【0004】
点火後の各気筒の回転変動の位置で、その瞬時の回転数を検出する。このときの燃焼が弱い、または失火していると、回転変動の最大値はその前の回転変動より低下し、燃焼が強いと回転変動の最大値は上昇する。
【0005】
このため、例えば内燃機関の搭載前の試験段階で、完全燃焼した時の回転変動を測定しておけば、この値を基準にして点火毎の回転変動から燃焼強さ等の燃焼状態が分かる。
【0006】
この発明は、かかる実情に鑑みてなされたもので、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で軽減することが可能な内燃機関の制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
前記課題を解決し、その目的を達成するために、請求項1記載の発明は、内燃機関の回転数を検出する回転数検出手段と、各気筒のクランク角を検出するクランク角検出手段と、各気筒の点火後の回転変動を検出する回転変動検出手段と、各気筒の点火後の回転変動を予め記憶する記憶手段と、前記回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御する制御手段とを備え、前記点火状態の制御は、各点火の回転変動に応じた失火制御であることを特徴としている。各気筒の点火後の回転変動を予め記憶しておき、回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御し、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で回転変動を軽減することが可能である。また、点火状態の制御が、各点火の回転変動に応じた失火制御であり、例えば、各点火の回転変動が大きい時に失火して、燃焼を弱くして回転変動を小さくする。
【0008】
請求項2記載の発明は、内燃機関の回転数を検出する回転数検出手段と、各気筒のクランク角を検出するクランク角検出手段と、各気筒の点火後の回転変動を検出する回転変動検出手段と、各気筒の点火後の回転変動を予め記憶する記憶手段と、前記回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御する制御手段とを備え、前記記憶手段に、各気筒の点火後の回転変動を予めパターン記憶し、前記制御手段は回転数とクランク角とから予め記憶された各点火の回転変動のパターンからの予測に基づき回転変動を小さくするように点火状態を制御し、前記点火状態の制御は、各点火の回転変動に応じた失火制御であることを特徴としている。各気筒の点火後の回転変動を予め記憶しておき、回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御し、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で回転変動を軽減することが可能である。また、回転数とクランク角とから予め記憶された各点火の回転変動のパターンからの予測に基づき、簡単かつ正確に回転変動を小さくするように点火状態を制御することができる。さらに、点火状態の制御が、各点火の回転変動に応じた失火制御であり、例えば、各点火の回転変動が大きい時に失火して、燃焼を弱くして回転変動を小さくする。
【0011】
【発明の実施の形態】
以下、この発明の内燃機関の制御装置の実施例を添付図に基づいて説明する。図1は内燃機関の制御装置の概略構成を示す図、図2は制御前の気筒別回転変動を示す図、図3は制御後の気筒別回転変動を示す図である。
【0012】
内燃機関1は、例えば6気筒4サイクル内燃機関であり、各気筒2のシリンダ3にピストン4が往復動可能に設けられている。ピストン4とクランク軸5とはコンロッド6で連結され、ピストン4の往復動でクランク軸5が回転する。燃焼室7に連通する吸気通路8及び排気通路9は、吸気弁10及び排気弁11により所定のタイミングで開閉される。吸気通路8には、スロットル弁12が配置され、吸気量が制御される。スロットル弁12によるスロットル開度は、スロットルセンサ13によりECU14に送られる。
【0013】
また、吸気通路8には、吸気温度センサ15及び吸気流量計16が設けられ、それぞれの情報がECU14に送られる。さらに、吸気通路8には、噴射弁17が設けられ、燃料タンク18から燃料が燃料ポンプ19の駆動により燃料フィルタ20を介して噴射弁17に送られ、噴射弁17の噴射はECU14によって制御される。燃焼室7に臨むように点火プラグ21が配置され、点火プラグ21の点火時期はECU14によって制御される。
【0014】
排気通路9には、O2センサ22が設けられ、シリンダブロック23には水温センサ24が設けられ、それぞれの情報がECU14に送られる。
【0015】
内燃機関1には、回転数検出手段30と、クランク角検出手段31と、回転変動検出手段32が備えられている。ECU14は、制御手段34及び記憶手段35を有している。
【0016】
回転数検出手段30は、クランク軸5の突起36に対向して配置されたパルサコイルで構成され、回転数情報を制御手段34に送る。また、クランク角検出手段31は、クランク軸5に設けられたホイール37の歯37aに対向して配置されたクランク角センサで構成され、各気筒2のクランク角情報を検出し、クランク角情報を制御手段34に送る。
【0017】
また、回転変動検出手段32は、内燃機関1の気筒2に設けられ、各気筒2の点火後の回転変動を検出し、この回転変動の情報を制御手段34に送り、この各気筒2の点火後の回転変動を記憶手段35に予め記憶する。
【0018】
例えば、6気筒4サイクル内燃機関では、図2に示すように回転変動し、回転数も変動する。図2でT1はクランク軸5が1回転する時間T1を示し、この時間T1の間に第1気筒#1〜第6気筒#6の制御前の気筒別の回転変動aと回転数変動bとを示し、この情報を記憶手段35に記憶する。
【0019】
内燃機関1の運転時に、回転数検出手段30から得られる回転数情報と、クランク角検出手段31から得られるクランク角情報とから、制御手段34は予め記憶された各気筒の回転変動のパターンからの予測に基づき、実際の回転変動を小さくするように点火状態を制御し、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で回転変動を軽減することが可能である。
【0020】
この制御手段34の点火状態の制御は、各点火の回転変動に応じた失火制御であり、例えば、各点火の回転変動が大きい時に失火して、燃焼を弱くして回転変動を小さくする。
【0021】
この制御後の気筒別回転変動は、図3に示すように、クランク軸5が1回転する時間T1の間に第1気筒#1〜第6気筒#6の制御後の気筒別の回転変動aと回転数変動bとの変動が小さくなる。
【0022】
次に、内燃機関の制御装置の作動を、図4乃至図6のフローチャートに基づいて説明する。
【0023】
図4はメインルーチンのフローチャートである。ステップa1で初期設定を行ない、内燃機関1の運転状態を判断し(ステップb1)、スイッチ情報の読み込み(ステップc1)、さらにセンサ情報の読み込み(ステップd1)を行なう。
【0024】
次に、失火時燃料制御(ステップe1)と、燃料ポンプ制御及びオイルポンプ制御(ステップf1)とを行ない、基本マップの演算を行なう(ステップg1)。基本マップの演算としては、点火時期、噴射時期、点火及び噴射の気筒別補正等が行なわれる。
【0025】
さらに、大気圧補正、トリム角補正、エンジン温度補正、無効噴射時間補正、点火遅れ補正等の補正係数演算(ステップh1)、O2センサ活性判定等の制御補正係数の演算(ステップi1)、ノック制御補正係数演算(ステップj1)を行ない、点火時期、噴射時間及び噴射時期演算(ステップk1)を行ない、ステップb1に移行する。
【0026】
このメインルーチンのフローチャートに、図5の点火割込み、図6の予測制御割込みが行なわれる。
【0027】
図5は点火割込みルーチンのフローチャートである。ステップa2で点火休筒情報読み込み、点火失火情報読み込み、ステップb2でエンジン停止モードの場合にはリターンし、エンジン停止モードでない場合には点火出力気筒番号読み込み(ステップc2)、点火出力ポートをハイ出力にし(ステップd2)、パルス幅タイマをセットし(ステップe2)、点火出力ポートをロー出力にし(ステップf2)、点火時間を設定する。そして、次の点火時期のパルス数をセットし(ステップg2)、時期の点火気筒の番号をセットして(ステップh2)、リターンする。
【0028】
図6は予測制御割込みルーチンのフローチャートである。ステップa3で信号入力気筒判定を行ない、ステップb3でエンジンが立ち上がりと割込み回数がゼロの場合には、割込み回数を1にしてリターンし(ステップc3)、エンジンが立ち上がりがなく、割込み回数がゼロでない場合には、瞬時回転数を測定し(ステップd3)、瞬時回転数の生データを記憶する(ステップe3)。
【0029】
1気筒前からの回転変動を計算し(ステップf3)、回転変動を記憶し(ステップg3)、回転変動の平均値を記憶する(ステップh3)。
【0030】
連続失火回数が設定回数以上で(ステップi3)、1回転前回転変動が設定以下で(ステップj3)、瞬時回転数が平均より設定値低い(ステップk3)場合には、点火時期を演算して点火時期の補正を行なう(ステップl3)。
【0031】
そして、点火休筒情報をセットし(ステップm3)、次の点火時期パルス数セットし(ステップn3)、割込み回数クリアして(ステップo3)リターンする。
【0032】
【発明の効果】
前記したように、請求項1記載の発明では、各気筒の点火後の回転変動を予め記憶しておき、回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御するから、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で回転変動を軽減することが可能である。また、点火状態の制御が、各点火の回転変動に応じた失火制御であり、例えば、各点火の回転変動が大きい時に失火して、燃焼を弱くして回転変動を小さくする。
【0033】
請求項2記載の発明では、各気筒の点火後の回転変動を予め記憶しておき、回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御するから、各気筒の燃焼状態に基づき、特別な回転変動を軽減する部品を付加することなく、簡単な構造で回転変動を軽減することが可能である。また、回転数とクランク角とから予め記憶された各点火の回転変動のパターンからの予測に基づき、簡単かつ正確に回転変動を小さくするように点火状態を制御することができる。さらに、点火状態の制御が、各点火の回転変動に応じた失火制御であり、例えば、各点火の回転変動が大きい時に失火して、燃焼を弱くして回転変動を小さくすることができる。
【図面の簡単な説明】
【図1】内燃機関の制御装置の概略構成を示す図である。
【図2】制御前の気筒別回転変動を示す図である。
【図3】制御後の気筒別回転変動を示す図である。
【図4】メインルーチンのフローチャートである。
【図5】点火割込みルーチンのフローチャートである。
【図6】予測制御割込みルーチンのフローチャートである。
【符号の説明】
1 内燃機関
2 気筒
30 回転数検出手段
31 クランク角検出手段
32 回転変動検出手段
34 制御手段
35 記憶手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an internal combustion engine that suppresses engine rotation fluctuations.
[0002]
[Prior art]
For example, in an internal combustion engine mounted on a ship, a vehicle, etc., if the rotational fluctuation is large, the vibration of the ship, the vehicle, etc. increases. For this reason, for example, a balancer or the like is provided to reduce rotational fluctuations of the internal combustion engine.
[0003]
[Problems to be solved by the invention]
By the way, the rotational fluctuation of the internal combustion engine occurs with the compression / explosion stroke, and the maximum value and the minimum value of the rotational fluctuation are determined by the compression / explosion stroke at a constant rotational speed, and the absolute crank angle is constant. .
[0004]
The instantaneous rotational speed is detected at the position of the rotational fluctuation of each cylinder after ignition. If the combustion at this time is weak or misfired, the maximum value of the rotational fluctuation will be lower than the previous rotational fluctuation, and if the combustion is strong, the maximum value of the rotational fluctuation will increase.
[0005]
For this reason, for example, if the rotational fluctuation at the time of complete combustion is measured in the test stage before the internal combustion engine is mounted, the combustion state such as the combustion intensity can be found from the rotational fluctuation for each ignition based on this value.
[0006]
The present invention has been made in view of such a situation, and based on the combustion state of each cylinder, it is possible to control an internal combustion engine that can be reduced with a simple structure without adding a special component that reduces rotational fluctuations. The object is to provide a device.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems and achieve the object, the invention according to claim 1 comprises a rotation speed detection means for detecting the rotation speed of the internal combustion engine, a crank angle detection means for detecting the crank angle of each cylinder, Rotational fluctuation detecting means for detecting rotational fluctuation after ignition of each cylinder, storage means for previously storing rotational fluctuation after ignition of each cylinder, and rotational fluctuation of each ignition stored in advance from the rotational speed and crank angle Control means for controlling the ignition state so as to reduce the rotational fluctuation based on the prediction from the above, and the ignition state control is misfire control according to the rotational fluctuation of each ignition . Rotational fluctuation after ignition of each cylinder is stored in advance, and the ignition state is controlled so as to reduce the rotational fluctuation based on the prediction from the rotational fluctuation of each ignition stored in advance from the rotational speed and the crank angle. Based on the combustion state of the cylinder, it is possible to reduce the rotational fluctuation with a simple structure without adding a special part for reducing the rotational fluctuation. Further, the control of the ignition state is misfire control according to the rotational fluctuation of each ignition, and for example, misfire occurs when the rotational fluctuation of each ignition is large, weakening the combustion and reducing the rotational fluctuation.
[0008]
According to a second aspect of the present invention, a rotation speed detection means for detecting the rotation speed of the internal combustion engine, a crank angle detection means for detecting the crank angle of each cylinder, and a rotation fluctuation detection for detecting a rotation fluctuation after ignition of each cylinder. Ignition means so as to reduce the rotational fluctuation based on the prediction from the rotational fluctuation of each ignition stored in advance from the rotation speed and the crank angle Control means for controlling the engine, and the storage means stores in advance a pattern of the rotational fluctuation after ignition of each cylinder, and the control means stores the rotational fluctuation pattern of each ignition stored in advance from the rotational speed and the crank angle. The ignition state is controlled to reduce the rotational fluctuation based on the prediction from the above, and the ignition state control is misfire control corresponding to the rotational fluctuation of each ignition . Rotational fluctuation after ignition of each cylinder is stored in advance, and the ignition state is controlled so as to reduce the rotational fluctuation based on the prediction from the rotational fluctuation of each ignition stored in advance from the rotational speed and the crank angle. Based on the combustion state of the cylinder, it is possible to reduce the rotational fluctuation with a simple structure without adding a special part for reducing the rotational fluctuation. Further, the ignition state can be controlled so as to reduce the rotational fluctuation easily and accurately based on the prediction from the rotational fluctuation pattern of each ignition stored in advance from the rotational speed and the crank angle. Furthermore, the control of the ignition state is misfire control according to the rotation fluctuation of each ignition. For example, when the rotation fluctuation of each ignition is large, misfire is caused to weaken the combustion and reduce the rotation fluctuation.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an internal combustion engine control apparatus according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a control device for an internal combustion engine, FIG. 2 is a diagram showing a rotation variation for each cylinder before control, and FIG. 3 is a diagram showing a rotation variation for each cylinder after control.
[0012]
The internal combustion engine 1 is, for example, a 6-cylinder 4-cycle internal combustion engine, and a piston 4 is provided in a cylinder 3 of each cylinder 2 so as to be able to reciprocate. The piston 4 and the crankshaft 5 are connected by a connecting rod 6, and the crankshaft 5 is rotated by the reciprocating motion of the piston 4. An intake passage 8 and an exhaust passage 9 communicating with the combustion chamber 7 are opened and closed by an intake valve 10 and an exhaust valve 11 at a predetermined timing. A throttle valve 12 is disposed in the intake passage 8 to control the intake air amount. The throttle opening by the throttle valve 12 is sent to the ECU 14 by the throttle sensor 13.
[0013]
In addition, an intake air temperature sensor 15 and an intake air flow meter 16 are provided in the intake passage 8, and each information is sent to the ECU 14. Further, an injection valve 17 is provided in the intake passage 8, and fuel is sent from the fuel tank 18 to the injection valve 17 through the fuel filter 20 by driving the fuel pump 19, and injection of the injection valve 17 is controlled by the ECU 14. The A spark plug 21 is disposed so as to face the combustion chamber 7, and the ignition timing of the spark plug 21 is controlled by the ECU 14.
[0014]
The exhaust passage 9 is provided with an O 2 sensor 22, and the cylinder block 23 is provided with a water temperature sensor 24, and each information is sent to the ECU 14.
[0015]
The internal combustion engine 1 includes a rotation speed detection means 30, a crank angle detection means 31, and a rotation fluctuation detection means 32. The ECU 14 includes a control unit 34 and a storage unit 35.
[0016]
The rotation speed detection means 30 is constituted by a pulsar coil disposed so as to face the protrusion 36 of the crankshaft 5, and sends rotation speed information to the control means 34. The crank angle detecting means 31 is composed of a crank angle sensor disposed facing the teeth 37a of the wheel 37 provided on the crankshaft 5, and detects the crank angle information of each cylinder 2 to obtain the crank angle information. This is sent to the control means 34.
[0017]
The rotation fluctuation detecting means 32 is provided in the cylinder 2 of the internal combustion engine 1, detects the rotation fluctuation after ignition of each cylinder 2, sends information on the rotation fluctuation to the control means 34, and ignites each cylinder 2. Subsequent rotation fluctuations are stored in the storage means 35 in advance.
[0018]
For example, in a 6-cylinder 4-cycle internal combustion engine, the rotation varies as shown in FIG. 2, and the rotation speed also varies. In FIG. 2, T1 indicates a time T1 in which the crankshaft 5 makes one rotation, and during this time T1, the rotation fluctuation a and the rotation speed fluctuation b for each cylinder before the control of the first cylinder # 1 to the sixth cylinder # 6 are obtained. This information is stored in the storage means 35.
[0019]
From the rotational speed information obtained from the rotational speed detection means 30 and the crank angle information obtained from the crank angle detection means 31 during the operation of the internal combustion engine 1, the control means 34 determines from the rotational fluctuation pattern of each cylinder stored in advance. Based on this prediction, the ignition state is controlled so as to reduce the actual rotational fluctuation, and the rotational fluctuation is reduced with a simple structure without adding a special part that reduces the rotational fluctuation based on the combustion state of each cylinder. Is possible.
[0020]
The control of the ignition state of the control means 34 is misfire control in accordance with the rotational fluctuation of each ignition. For example, the control means 34 misfires when the rotational fluctuation of each ignition is large, weakens combustion, and reduces the rotational fluctuation .
[0021]
As shown in FIG. 3, the cylinder-by-cylinder rotation fluctuation after this control is the cylinder-by-cylinder rotation fluctuation a after the control of the first cylinder # 1 to the sixth cylinder # 6 during the time T1 when the crankshaft 5 makes one rotation. And the rotation speed fluctuation b are reduced.
[0022]
Next, the operation of the control device for the internal combustion engine will be described based on the flowcharts of FIGS.
[0023]
FIG. 4 is a flowchart of the main routine. Initial setting is performed in step a1, the operating state of the internal combustion engine 1 is determined (step b1), switch information is read (step c1), and sensor information is read (step d1).
[0024]
Next, misfiring fuel control (step e1), fuel pump control and oil pump control (step f1) are performed, and a basic map is calculated (step g1). As calculation of the basic map, ignition timing, injection timing, ignition and injection correction for each cylinder, and the like are performed.
[0025]
Furthermore, calculation of correction coefficients such as atmospheric pressure correction, trim angle correction, engine temperature correction, invalid injection time correction, ignition delay correction, etc. (step h1), calculation of control correction coefficients such as O 2 sensor activation determination (step i1), knock Control correction coefficient calculation (step j1) is performed, ignition timing, injection time and injection timing calculation (step k1) is performed, and the process proceeds to step b1.
[0026]
In the flowchart of this main routine, the ignition interruption of FIG. 5 and the prediction control interruption of FIG. 6 are performed.
[0027]
FIG. 5 is a flowchart of the ignition interruption routine. In step a2, the ignition deactivation information is read and the ignition misfire information is read. In step b2, if the engine is in the engine stop mode, the process returns. If not, the ignition output cylinder number is read (step c2). (Step d2), the pulse width timer is set (step e2), the ignition output port is set to low output (step f2), and the ignition time is set. Then, the number of pulses at the next ignition timing is set (step g2), the number of the ignition cylinder at the timing is set (step h2), and the process returns.
[0028]
FIG. 6 is a flowchart of the predictive control interrupt routine. In step a3, the signal input cylinder is determined. In step b3, when the engine is started up and the number of interruptions is zero, the number of interruptions is set to 1 (step c3), the engine does not start up and the number of interruptions is not zero. In this case, the instantaneous rotational speed is measured (step d3), and the raw rotational speed raw data is stored (step e3).
[0029]
The rotational fluctuation from one cylinder before is calculated (step f3), the rotational fluctuation is stored (step g3), and the average value of the rotational fluctuation is stored (step h3).
[0030]
If the number of consecutive misfires is equal to or greater than the set number (step i3), the rotation fluctuation before one rotation is equal to or less than the set value (step j3), and the instantaneous rotation number is lower than the average (step k3), the ignition timing is calculated. The ignition timing is corrected (step l3).
[0031]
Then, the ignition stop cylinder information is set (step m3), the next ignition timing pulse number is set (step n3), the interrupt count is cleared (step o3), and the process returns.
[0032]
【The invention's effect】
As described above, in the first aspect of the present invention, the rotation fluctuation after ignition of each cylinder is stored in advance, and the rotation is performed based on the prediction from the rotation fluctuation of each ignition stored in advance from the rotation speed and the crank angle. Since the ignition state is controlled so as to reduce the fluctuation, it is possible to reduce the rotational fluctuation with a simple structure without adding a special part for reducing the rotational fluctuation based on the combustion state of each cylinder. Further, the control of the ignition state is misfire control according to the rotational fluctuation of each ignition, and for example, misfire occurs when the rotational fluctuation of each ignition is large, weakening the combustion and reducing the rotational fluctuation.
[0033]
According to the second aspect of the present invention, the rotation fluctuation after ignition of each cylinder is stored in advance, and the rotation fluctuation is reduced based on the prediction from the rotation fluctuation of each ignition stored in advance from the rotation speed and the crank angle. Since the ignition state is controlled, it is possible to reduce the rotational fluctuation with a simple structure without adding a special part for reducing the rotational fluctuation based on the combustion state of each cylinder. Further, the ignition state can be controlled so as to reduce the rotational fluctuation easily and accurately based on the prediction from the rotational fluctuation pattern of each ignition stored in advance from the rotational speed and the crank angle. Further, the control of the ignition state is misfire control according to the rotation fluctuation of each ignition. For example, the engine can be misfired when the rotation fluctuation of each ignition is large to weaken the combustion and reduce the rotation fluctuation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a control device for an internal combustion engine.
FIG. 2 is a diagram showing a rotation variation by cylinder before control.
FIG. 3 is a diagram showing a cylinder-by-cylinder rotation variation after control.
FIG. 4 is a flowchart of a main routine.
FIG. 5 is a flowchart of an ignition interrupt routine.
FIG. 6 is a flowchart of a predictive control interrupt routine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 30 Rotation speed detection means 31 Crank angle detection means 32 Rotational fluctuation detection means 34 Control means 35 Storage means

Claims (2)

内燃機関の回転数を検出する回転数検出手段と、
各気筒のクランク角を検出するクランク角検出手段と、
各気筒の点火後の回転変動を検出する回転変動検出手段と、
各気筒の点火後の回転変動を予め記憶する記憶手段と、
前記回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御する制御手段とを備え、
前記点火状態の制御は、各点火の回転変動に応じた失火制御であることを特徴とする内燃機関の制御装置。
A rotational speed detecting means for detecting the rotational speed of the internal combustion engine;
Crank angle detecting means for detecting the crank angle of each cylinder;
Rotation fluctuation detecting means for detecting rotation fluctuation after ignition of each cylinder;
Storage means for previously storing rotational fluctuations after ignition of each cylinder;
Control means for controlling the ignition state so as to reduce the rotation fluctuation based on the prediction from the rotation fluctuation of each ignition stored in advance from the rotation speed and the crank angle;
The control device for an internal combustion engine, wherein the control of the ignition state is misfire control according to a rotational fluctuation of each ignition .
内燃機関の回転数を検出する回転数検出手段と、
各気筒のクランク角を検出するクランク角検出手段と、
各気筒の点火後の回転変動を検出する回転変動検出手段と、
各気筒の点火後の回転変動を予め記憶する記憶手段と、
前記回転数とクランク角とから予め記憶された各点火の回転変動からの予測に基づき回転変動を小さくするように点火状態を制御する制御手段とを備え、
前記記憶手段に、各気筒の点火後の回転変動を予めパターン記憶し、
前記制御手段は回転数とクランク角とから予め記憶された各点火の回転変動のパターンからの予測に基づき回転変動を小さくするように点火状態を制御し、
前記点火状態の制御は、各点火の回転変動に応じた失火制御であることを特徴とする内燃機関の制御装置。
A rotational speed detecting means for detecting the rotational speed of the internal combustion engine;
Crank angle detecting means for detecting the crank angle of each cylinder;
Rotation fluctuation detecting means for detecting rotation fluctuation after ignition of each cylinder;
Storage means for previously storing rotational fluctuations after ignition of each cylinder;
Control means for controlling the ignition state so as to reduce the rotation fluctuation based on the prediction from the rotation fluctuation of each ignition stored in advance from the rotation speed and the crank angle;
The storage means stores in advance a pattern of rotation fluctuation after ignition of each cylinder,
The control means controls the ignition state so as to reduce the rotational fluctuation based on the prediction from the rotational fluctuation pattern of each ignition stored in advance from the rotational speed and the crank angle,
The control device for an internal combustion engine, wherein the control of the ignition state is misfire control according to a rotational fluctuation of each ignition .
JP10888096A 1996-04-30 1996-04-30 Control device for internal combustion engine Expired - Fee Related JP3891451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10888096A JP3891451B2 (en) 1996-04-30 1996-04-30 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10888096A JP3891451B2 (en) 1996-04-30 1996-04-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09291872A JPH09291872A (en) 1997-11-11
JP3891451B2 true JP3891451B2 (en) 2007-03-14

Family

ID=14495938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10888096A Expired - Fee Related JP3891451B2 (en) 1996-04-30 1996-04-30 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3891451B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056437A (en) * 2001-08-10 2003-02-26 Moric Co Ltd Engine control method and system for small vehicle

Also Published As

Publication number Publication date
JPH09291872A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP4946889B2 (en) Misfire detection device for internal combustion engine
US5021960A (en) Combustion fault detection apparatus and control system for internal combustion engine
JPS58143169A (en) Method for controlling ignition timing
JPH0388945A (en) Knocking sensing method for engine
US5058550A (en) Method for determining the control values of a multicylinder internal combustion engine and apparatus therefor
US6810855B2 (en) 4-Stroke engine control device and control method
JP3976322B2 (en) Engine control device
JP2003510502A (en) Combustion misfire detection method and electronic diagnostic device therefor
JP2003286890A (en) Controller for engine
JP4027892B2 (en) Engine control device
US5094209A (en) Ignition control system for a fuel injection internal combustion engine
US4586479A (en) Electronic fuel injection control with variable injection intervals
US20020092499A1 (en) Detonation sensing of crankshaft position
JP3891451B2 (en) Control device for internal combustion engine
JP3846191B2 (en) Ignition timing control device for internal combustion engine
US4736719A (en) System for limiting the maximum speed of an internal combustion engine comprising an electronic injection system
JP4023637B2 (en) Electronic fuel injection control device
JP3092454B2 (en) Ignition timing control device for internal combustion engine
US5680843A (en) Method of replicating a crankshaft position signal
US6705288B2 (en) Starting control apparatus for internal combustion engine
JP6742470B1 (en) Control device for internal combustion engine
US5967117A (en) Method for determining a rotational speed for an idling control of an internal combustion engine
JPH05231285A (en) Control device for engine
JP2684091B2 (en) Fuel injection amount control device for two-cycle engine
JP2005023806A (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061201

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091215

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees